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Abstract

We introduce a novel compartmental low rank algorithm for high resolution MR spectroscopic 

imaging. We model the field inhomogeneity compensated MRSI dataset as the sum of a lipid 

dataset and a metabolite dataset using the spatial compartmental information obtained from water 

reference data. Both these datasets are modeled as low-rank subspaces, and are assumed to be 

orthogonal to each other. We formulate the recovery of the dataset from spiral measurements as a 

low-rank recovery problem. Experiments using numerical phantom and in-vivo data demonstrates 

the ability of the algorithm to provide improved spatial resolution and nuisance signal free spectra.
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1. INTRODUCTION

Magnetic resonance spectroscopic imaging (MRSI) is a popular imaging tool used to 

estimate the spatial distribution of various brain metabolites, which are of immense 

significance in characterizing neurological, psychiatric and metabolic diseases [1]. 

Unfortunately, the clinical potential of MRSI is thwarted by low signal to noise ratio(SNR) 

of metabolites, long scan times due to encoding in both chemical shift and spatial 

dimensions, as well as low resolution. Another challenge is the spectral leakage from the 

large unwanted nuisance signal from the subcutaneous lipid layer. Since the lipid signals are 

several orders of magnitude higher than the metabolites of interest, they often heavily 

corrupt the metabolite signals.

Several acquisition schemes were introduced to overcome the above challenges. For 

example, time-varying gradients have been introduced to improve spatial resolution and 

coverage in a specified scan time. Since these methods trade signal to noise ratio to extend 

the k-space coverage, the improvement in spatial resolution is hence fundamentally limited 

by the available SNR. Several methods to suppress lipids such as outer volume suppression, 

inversion recovery, inner volume excitation, and acquisition with longer echo times do exist. 

However, these methods often do not provide perfect suppression of lipids and are 

associated with partial loss of brain coverage or reduced SNR. Advanced image 

reconstruction schemes that rely on spatial priors [2, 3, 4, 5], sparsity priors[6], and spectral 
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priors have been used to overcome the limited k-space coverage of MRSI. The central idea is 

to use high resolution spatial information from water reference data and spectral priors to 

constrain the reconstructions. A key problem with pre-determined priors is the risk of 

biasing the reconstruction, as well as loss in performance when the assumptions are violated. 

Recently, low-rank models [7, 8, 9] which learn the spatial/spectral basis functions from the 

measured MRSI data have been introduced to overcome this limitation. These powerful class 

of methods have the potential to significantly improve the recovery of MRSI data. A 

challenge in using global low-rank models is the high dynamic range of the MRSI signal; 

the lipid and residual water signal will dominate the basis functions, thus potentially 

attenuating the metabolite signals.

We introduce a compartmentalized low-rank algorithm for reconstruction of high resolution 

MRSI data with removal of residual nuisance signals. We model the field inhomogeneity 

compensated dataset as the sum of low-rank lipid and metabolite compartments. Inspired by 

[10], we exploit the orthogonality between metabolites and lipid basis functions to minimize 

lipid leakage artifacts. This enables us to recover the subspaces without imposing any prior 

knowledge about the spectral support of the metabolites or lipid signals. The low-rank 

penalty on the metabolites enables us to recover the higher resolution metabolite maps with 

minimal noise amplification. The proposed method has conceptual similarities to recent two-

step low-rank based MRSI reconstruction scheme [11, 12], which rely on specialized 

processing steps on low-resolution MRSI data to extract the metabolite and lipid signals 

using their assumed spectral support; these basis functions are then used to recover the 

dataset from undersampled acquisitions. By contrast, the proposed approach automatically 

estimates the lipid and metabolite subspace from the measured data. Hence our approach is 

robust to line broadening of metabolites and lipids; the explicit use of the spectral location of 

the metabolite and fat peaks may be violated in practical applications with large field 

variations near the skull.

We compare the performance of the proposed scheme against the method described in [13] 

which penalizes compartmentalized smoothness to reduce noise, inhomogeneity distortions, 

and spectral leakage. Experimental data is collected using a spiral sequence with a matrix 

size 60 × 60 as described in [14] with 8 outer volume suppression bands for lipid 

suppression. Phantom simulations are also performed. The experiments show that the 

proposed method with low-rank regularization of metabolites produces superior quality 

maps with high resolution details while achieving denoising and nuisance removal. By 

contrast, the spatial details are smoothed out with the classical smoothness penalty 

regularization.

2. THEORY

We propose to estimate the spatial support of the brain (denoted by M) and the extra cranial 

lipid regions (denoted by L) from the water reference data. We model the spatio-temporal 

MRSI signal as the linear combination of metabolite and lipid signals:

X(r, t) = XM(r, t) + XL(r, t) (1)
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where r is the spatial dimension and t is the temporal dimension. Here, XM is signal 

restricted to the spatial regions corresponding to the brain, and XL is the lipid compartment 

restricted to the support of the lipid region. We assume that the residual water signal is 

removed using pre-processing methods like HSVD [15]. We observe that the dynamic range 

of the signals in the respective compartments L and M are small, while the combined signal 

often has a very high dynamic range. The modeling of the entire dataset X(r, t) as a single 

low-rank subspace as in [8] may be counter-productive due to the huge dynamic range 

between the lipid and metabolite signals; the subspace will be dominated by lipid basis 

functions.

We denote the Casorati matrix corresponding to the signals XM and XL by XM and XL, 

respectively. Since the dynamic range of the signals within each spatial compartment is 

small and are contributed by finite number of distinct anatomic regions, we propose to 

model XM and XL as low-rank matrices. Even with the spatial separation, the high dynamic 

range between the signals will result in cross talk between XM and XL. We observe that the 

spectral signatures of metabolites and lipids are highly dissimilar. To minimize the cross-

talk, we propose to exploit the orthogonality between the temporal/spectral profiles of XM 

and XL (rows of XM and XL, respectively).

We formulate the recovery as the optimization problem:

X = arg min
XL, XM

‖A(X) − b‖2 + λ1‖XM‖p + λ2‖XL‖p

such that XM ⊥ XL.
(2)

Here, A is the forward model accounting for the non-uniform Fourier transform, field 

inhomogeneity distortion, and coil sensitivity encoding. b is the measured k-space data after 

water removal. In this work p is assumed to be 1.

2.1. Algorithm

We propose to use the iterative least square algorithm [16], originally introduced for nuclear 

norm minimization, to solve (2). This results in an iterative algorithm that alternates between 

the weighted least square problem:

X = arg min
XL, XM

‖A(X) − b‖2 + λ1‖QM
1/2XM‖F

2

Metabolite Low Rank Recovery
+ λ2‖QL

1/2XL‖F
2

Lipid Low Rank Recovery
+ λ3‖QOXM‖F

2

Orthogonality constraint

(3)

and updating the weights

QM = UMΓεM ΣM
p − 2UM*

QL = ULΓεL ΣL
p − 2UL*

QO = ULUL* .
(4)
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Here XM = UMΣMVM*  and XL = ULΣLVL* . Here, Γε(Σ) is a stabilizing operator to prevent 

the singular values from becoming too small; every jth singular value of Σ = diag(σ1, σ2, …) 

is boosted by ε>0 if they become too small, as

Γε(Σ) = diag max σj, ε (5)

Note that (3) has an intuitive justification. If the singular vectors of XM and XL decay 

rapidly, QM and QL can be viewed as the projection operators to the subspaces of XM and 

XL with insignificant singular values, respectively. Similarly, QO is a projection operator to 

the signal subspace of XL. Hence, solving (3) can be viewed as denoising the data by 

penalizing the null space projections of XL and XM, respectively. The last term constrains 

the signal spaces of lipids and metabolites to be orthogonal to each other. This prevents the 

huge lipid signals from dominating the metabolite signal subspace.

3. EXPERIMENTAL METHODS

We compare the proposed scheme of compartmentalized low rank with orthogonality, 

motivated by [10] against compartmentalized smoothness penalty as described in [13]. 

Compartmentalized smoothness prior also reduces cross-talk between different spatial 

regions.

We also process the data using the conventional pipeline, consisting of an inverse Fourier 

transform & field inhomogeneity compensation to demonstrate the benefit in using 

orthogonality priors and denoising. We evaluate the performance of the low-rank method 

and smoothness promoting method on simulated data and experimental data.

3.1. Numerical phantom

A digital brain phantom containing different compartments for CSF, white matter and gray 

matter is constructed on a 512 × 512 grid size. Each compartment is assigned a spectra 

containing NAA, Creatine, and Choline, based on known chemical shift locations. The 

intensities of the metabolites in CSF, white matter and gray matter are chosen as reported in 

literature for normal subjects. Lipid peaks, using standard six peak model, are added to an 

additional lipid layer to simulate residual lipid after suppression methods are used. All the 

basis sets are also broadened spectrally to simulate T2* decay, using Gaussian damping. A B0 

inhomogeneity map is simulated using fourth order polynomial in both the spatial 

dimensions.

We compute the Fourier samples of the phantom on the spiral trajectory as described in [14] 

at a matrix size of 60×60. Random Gaussian white noise is added to simulate measurement 

noise resulting in metabolite SNR of 18 dB.

3.2. Experimental data

Data is acquired with the same spiral trajectory as the numerical phantom, with matrix size 

60 × 60 with 256 temporal frames [14]. A healthy volunteer was scanned at a Siemens 3T 

scanner with a 12 channel receiver headcoil. Eight fat saturation bands were used to suppress 
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extra cranial lipids. The first repetition of the sequence is used to acquire water reference 

data. An axial slice of FOV= 240 mm2 was collected at TR/TE = 1500/55 ms and the scan 

time was 7.2 mins to collect 12 averages. The water data was processed to obtain high 

resolution field inhomogeneity maps and lipid and brain masks that characterize the spatial 

compartments as described in [17].

4. RESULTS

The results with the numerical phantom reconstructed at a grid size of 60×60 are shown in 

Fig. 1 and Fig. 2. The reference data is reconstructed using inverse Fourier transform of the 

spiral data before adding any noise or lipids or inhomogeneity distortion. The noisy data is 

reconsructed using the conventional pipeline of inverse Fourier transform and field 

inhomogeneity compensation. We observe that the algorithm with smoothness priors results 

in blurred edges. By contrast, the low rank prior preserves most of the fine details. This is 

due to the high frequency information being suppressed along with noise. Low rank prior 

performs with minimal loss of high frequency edge information. The spectra are denoised in 

both the methods but the compartmental smoothness prior still has some residual lipid peaks 

though it is reduced by penalizing cross talk between compartments.

The results for the experimental data reconstructed at a grid size of 60 × 60 are shown in 

Fig. 3 and Fig. 4. The regularization parameters for both the regularized recovery methods 

were manually tuned to achieve denoising with as little smoothing of the maps as possible. 

The peak integral maps of NAA, Creatine, Choline, and Lipid are shown in Fig. 3 for both 

the methods. The data processed using the conventional pipeline (inverse Fourier transform 

& field inhomogeneity compensation) is shown in the first column for comparisons. We 

observe that this data is noisy and some of the pixels near the skull have considerable 

residual lipid leakage. The smoothness prior method also suffers form lipid leakage as 

expected, as marked by the arrows in the Fig. 3. The proposed method achieves better 

denoising and generates considerably improved spatial maps with spatial details, while the 

smoothness penalty is observed to oversmooth the data. The lipid maps show minimal lipid 

leakage artifacts for the proposed method. The spectra at four representative voxels marked 

in the reference image is shown in Fig. 4. The voxels close to the skull show lipid leakage in 

the conventional inverse Fourier transform reconstruction and the smoothness prior method.

5. CONCLUSION

In this paper we proposed a novel reconstruction scheme for low-rank recovery of MRSI 

data. We introduced a technique to learn the metabolite subspaces efficiently without 

imposing any prior spectral knowledge. We further demonstrated the improvement of low 

rank modeling of metabolite data over more popular smoothness constraint. High resolution 

maps are achieved while achieving denoising. This would be immensely beneficial for SNR 

deficient low resolution metabolic imaging.
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Fig. 1. 
NAA Maps of the simulated phantom are shown for the two methods. The noisy data is 

obtained by using the conventional pipeline of inverse Fourier transform & field 

inhomogeneity compensation. The RMSE of the maps for the noisy data, compartmental 

smoothness prior method and the proposed method are 5.08%, 7.2% and 2.8% respectively.
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Fig. 2. 
Spectra at 3 different pixels marked in the Fig 1 are shown for both the methods. The 

horizontal axis is in ppm. The noisy data obtained by the conventional pipeline shows lipid 

leakage and added noise.
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Fig. 3. 
Metabolite and lipid maps for the different methods are shown. The conventional method 

appears to be noisy whereas spatial details are lost with smoothness prior. Both these 

methods have lipid leakage in regions close to skull as pointed out by the arrows. The 

proposed method however gives superior quality maps without lipid artifacts.
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Fig. 4. 
Spectra at 4 different pixels marked in the NAA map in Fig. 3 are shown.The horizontal axis 

is in ppm. Smoothness prior achieves denoising but the pixels close to the skull have lipid 

leakage.The spectra obtained from the proposed method are denoised and lipid leakage is 

removed.
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