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Abstract

We introduce a framework for the recovery of points on a smooth surface in high-dimensional 

space, with application to dynamic imaging. We assume the surface to be the zero-level set of a 

bandlimited function. We show that the exponential maps of the points on the surface satisfy 

annihilation relations, implying that they lie in a finite dimensional subspace. We rely on nuclear 

norm minimization of the maps to recover the points from noisy and undersampled measurements. 

Since this direct approach suffers from the curse of dimensionality, we introduce an iterative 

reweighted algorithm that uses the ”kernel trick”. The resulting algorithm has similarities to 

iterative algorithms used in graph signal processing (GSP); this framework can be seen as a 

continuous domain alternative to discrete GSP theory. The use of the algorithm in recovering free 

breathing and ungated cardiac data shows the potential of this framework in practical applications.
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1. INTRODUCTION

The recovery of signals that lie on a manifold/surface has received extensive attention in the 

recent years. These methods model the high-dimensional data as points localized to low-

dimensional manifolds. For example, patch-based image processing methods such as BM3D 

implicitly use the structure of the patch manifold [1, 2, 3], while we [4, 5] and others [6, 7] 

have recently used the manifold structure of images in a dynamic time series. Manifold 

embedding methods are also widely used in machine learning as visualization tools.

The main focus of this paper is to introduce a continuous domain perspective for denoising/

regularization of points (e.g patches or images), which are assumed to be drawn from a 

smooth surface in a very high dimensional space. This surface can be represented as the 

zero-level set of a bandlimited potential function. We note that the level-set model can 

account for a large variety of surfaces and is widely used in image processing. We observe 

that the potential function is zero for any point on the surface, which we term as an 

annihilation relation. We show that the annihilation relation can be expressed as a weighted 

linear combination of exponential feature maps of the point. The dimension of the feature 

map is equal to the bandwidth of the potential function. When the bandwidth is 

overestimated, there are multiple such annihilation relations, suggesting that the exponential 

feature maps of the points on the surface lie in a finite dimensional space. We show that the 
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finite dimensional nature of the maps translates to a low-rank kernel matrix, computed from 

the points using a shift invariant kernel function such as the Dirichlet and Gaussian kernels. 

This demonstrates the direct link between superresolution signal recovery [8] and kernel 

methods, which are widely used in machine learning.

We propose to use the nuclear norm of the exponential feature maps of the points as a 

regularizer in inverse problems, including denoising and recovery from incomplete data. We 

use the ”kernel trick” to avoid the explicit computation of the maps or the surface, thus 

keeping the computational complexity manageable. We rely on an iterative reweighted 

algorithm to recover the denoised points. The resulting algorithm has similarities to iterative 

non-local methods [9, 10] that are widely used in image processing and graph signal 

processing. Specifically, it alternates between the estimation of a graph Laplacian, which 

specifies the connectivity of the points, and the smoothing of points guided by the graph 

Laplacian. The proposed framework can be thought of as a more principled alternative to the 

above heuristic approaches. We demonstrate the utility of the algorithm in the challenging 

application involving the recovery of free breathing and ungated cardiac MRI data from 

highly undersampled measurements. The experiments show the great potential of this 

method in imaging applications, where patches/images can be assumed to lie on a manifold 

or smooth surface in high-dimensional space.

This work is built upon our prior work [8] and the recent work by Ongie et al., which 

considered polynomial kernels [11]. The direct extension of [8] to recover the patch/image 

surface is computationally prohibitive due to the curse of dimensionality. The main focus of 

this work is to generalize [11] to shift invariant kernels, which are more widely used in 

practice. Our approach uses an implicit representation of the surface using bandlimited or 

Gaussian functions, which is more useful in practical applications. In addition, our work 

shows the connections with graph Laplacian based methods that are widely used in graph 

signal processing as well as patch-based methods. The application to MRI has similarities to 

[4, 6], which estimate the kernel subspace structure from navigator data. In contrast, our 

focus is to develop a navigator-free reconstruction strategy. Besides, [6] relies on an explicit 

mapping between the data and higher dimensional maps, whereas our scheme only works in 

the original domain.

2. BANDLIMITED SURFACES & ANNIHILATION

We assume the point cloud to be supported on a surface in [−1/2, 1/2]n, which is the zero-

level set of a bandlimited potential function:

r ∈ ℝn ∣ ψ(r) = 0 where ψ(r) = ∑
k ∈ Λ

ckej 2πkTr
(1)

Here, ck; k ∈ Λ is the smallest set of coefficients (minimal set) that satisfies the above 

relation. Λ ⊂ ℤn is a set of contiguous locations that indicates the support of the Fourier 

series coefficients of ψ. Note that the above level set representation is widely used in image 

processing applications and can represent a large class of open and closed shapes [8].
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Consider an arbitrary point x on the above surface (1). By definition (1), we have the 

annihilation relation ψ(x) = ∑k ∈ Λckej 2πkTx = 0. The annihilation relation can be re-

expressed in terms of the non-linear feature map ϕΛ(x) as cTϕΛ(x) = 0, where ϕ:ℝn ℂ|Λ| is 

defined as:

ϕΛ(x) = ej2πk1
Tx … ej2πk Λ

T x
T

(2)

We now consider a collection of N > |Λ| points on the surface, stacked into a matrix X = [x1, 

x2, … xN]. With the same argument as above, we have:

cT ϕΛ x1 , …ϕΛ xN
ΦΛ(X)

= 0,
(3)

where ΦΛ(X) ∈ ℂ|Λ | × N. The relation (3) implies that there is one vector in the null space of 

the feature matrix ΦΛ(X). Since c is the unique minimal filter, there is no other null space 

vector that satisfies the above relation. This implies that the rank of the feature matrix is |Λ|

−1. In practice, we do not know the exact Fourier support of ψ; we can overestimate the 

support to Γ ⊇ Λ. If we considered a mapping ϕΓ:ℝn ℂ|Γ|, any function ψ′ that is 

bandlimited to Γ is of the form ψ′(r) = ψ(r)η(r), where η(r) is any function. Then, for any r 
such that ψ(r) = 0, we also have ψ′(r) = 0. One can find Γ : Λ linearly independent η 
functions, where Γ : Λ denotes the set of translations of Λ in Γ [8]. We have:

rank ΦΓ(X) ≤ Γ − Γ:Λ (4)

provided Λ ⊆ Γ and the points {xi} are on the surface (1).

2.1. Surface recovery from noisy point cloud

The least square estimation of the coefficients from the data points can be posed as a 

minimization of the criterion C(c) = ∑i = 1
N ψ xi

2 = cTQΓc, where 

QΓ = ∑i = 1
N ϕΓ xi ϕΓ xi

T . The estimation of the coefficients can be posed as the eigenvalue 

problem:

c * = argmin
c

cTQΓc such that‖c‖2 = 1, (5)

whose solution is the minimum eigenvector of the matrix QΓ.

Note that bandlimited ψ functions are often oscillatory, resulting in spurious zero locations. 

One may instead use weighted basis functions ϕ′(x) = D ϕ(x) to obtain smoother curves. We 

choose the weight matrix as a diagonal matrix with diagonal entries e−π2σ2‖k‖2
.
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2.2. Relation to shift invariant non-linear kernels

The above explicit approach is feasible when the dimension of the space n is small. 

However, the dimension of the feature space grows as a power of n, making this approach 

impractical in applications involving clouds of images or patches. Hence, we rely on the 

right null space relations. Since the rank of the feature matrix ΦΓ is r ≤ |Γ|−|Γ : Λ|, we can 

find N − r vectors vi such that ΦΓ(X) vi = 0, or equivalently,

ΦΓ(X)HΦΓ(X)
KΓ

vi = 0,
(6)

The entries of the N × N Gram matrix KΓ are:

Ki, j
Γ = ϕΓ xi

HϕΓ xj = ∑
k ∈ Γ

e j 2πkT xj − xi

κΓ xj − xi

,
(7)

where κΓ(r) is shift invariant. When Γ is a centered cube in Rn, we have κΓ(r) = DΓ(r), 

where DΓ is the Dirichlet kernel whose shape is controlled by the support set Γ. The above 

arguments show that:

rank KΓ ≤ Γ − Γ:Λ (8)

provided the points xi; i = 1, ‥,N lie on the surface (1).

If we choose the weighted maps ϕ′ = D ϕ, the kernel function approaches a Gaussian 

function, periodized to [−1/2, 1/2]n as Λ ℤn. As |Γ| → ∞, the matrix KΓ is theoretically 

full rank. However, we observe that the Fourier series coefficients of a Gaussian function can 

be safely approximated to be zero outside |k| < 3/πσ, which translates to |Λ | ≈ 6
πσ

n
; i.e., the 

rank will be small for high values of σ. We choose Gaussian kernels since they are more 

isotropic and less oscillatory than the Dirichlet kernel.

2.3. Recovery of noisy point clouds in high dimensions

We rely on the low rank structure of the kernel matrix K to recover the noisy points. 

Specifically, with the addition of noise, the points deviate from the zero-level set of ψ. A 

high bandwidth potential function is needed to represent the noisy surface, which translates 

to a high rank matrix K. Hence, we propose to use the nuclear norm of the feature vectors as 

a regularizer in the recovery of the cloud from noisy data:

min
X

‖A(X) − b‖2 + λ‖Φ(X)‖∗ (9)

For the case of recovery of points from noisy samples, A(X) = X, while in the more general 

case A could be an under-sampling operator. The above formulation is illustrated in Fig. 2, 

where we demonstrate the denoising of a shape from its samples; see caption for details. 

While we illustrate this approach in 2D, it is general enough to be applied in any dimension. 
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However, the direct evaluation of the maps is computationally prohibitive in higher 

dimensions. We hence now propose an efficient algorithm to denoise the points exploiting 

the low rank structure of the maps.

2.4. Iterative reweighted least squares (IRLS) algorithm

We use the IRLS algorithm to solve optimization problem (9). By the definition of the 

nuclear norm:

‖Φ(X)‖∗ = trace[(Φ(X)TΦ(X))
1
2] ≈ trace[(X)Q]

where Q = [K(X) + γI]−
1
2 . We use this property to solve (9) using an alternating strategy:

X(n) = argmin
X

‖A(X) − b‖2 + λ trace K(X)Q(n − 1)
(10)

where

Q(n) = K X(n) + γ(n)I − 1
2 (11)

Note that the solution for (10) involves a system of non-linear equations. We use gradient 

linearization to simplify our computations. Since K(X) is a Gaussian kernel matrix, 

linearizing the gradient of the objective function of (10) at each iterate results in the 

following equivalent optimization problem for (10):

X(n) = argmin
X

‖A(X) − b‖2 + λtrace XTL(n − 1)X , (12)

where L(n) = D(n) − W(n). Here, the entries of W(n) are Wij
(n) =

f′(xi
(n) − xj

(n))

‖xi
(n) − xj

(n)‖
 Qij

(n) and 

Dii
(n) = ∑jWij

(n). The function f determining the weight matrix depends on the Radial Basis 

Function kernel as: [K(X)]ij = f ‖xi − xj‖ .

We observe the equivalence of the above optimization strategy with widely used non-local 

means and graph optimization schemes. These schemes estimate a Laplacian matrix L or 

equivalently a weight matrix W, followed by the minimization of the cost function (12). 

These approaches can thus be seen as fitting a smooth bandlimited surface to the point cloud 

of patches or signals that are assumed to be on the graph.

For the denoising problem (where A(X) = X), and for some operators A it is convenient to 

solve problem (12) analytically. In other cases, a conjugate-gradient algorithm can be used 

to solve it. Note that in the proposed IRLS iterations, it is sufficient to only compute the 

kernel matrix K(X); the matrix of feature vectors Φ(X) is never required to be computed 

explicitly. This is important since the feature vectors in many cases may be large or even 

infinite dimensional.
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2.5. Application to cardiac MRI

We apply the proposed framework to the recovery of free breathing and ungated MRI data 

from highly undersampled measurements. Since MRI is a slow imaging modality, the 

standard practice in functional cardiac MRI is to integrate the data from multiple heart beats 

in a breath-held acquisition. However, this approach is often challenging in pediatric and 

obese subjects who cannot hold their breath. The image frames can be safely assumed to be 

non-linear functions of two parameters: cardiac and respiratory phase, and hence can be 

modeled as points on a smooth manifold in high dimensional space. In our previous work, 

we have acquired the data with navigators, from which the graph Laplacian is estimated. The 

main challenge with this strategy is the need for customized sequences and the additional 

40% overhead in acquiring the navigators. In this paper we enable a navigator-free 

acquisition scheme using the proposed approach.

3. RESULTS

We use the algorithm (9) to directly recover the dynamic MRI dataset X from golden angle 

acquired dataset with 10 radial spokes per frame ( 50 fold acceleration) and a 30 channel 

cardiac and spine array. The data was acquired in 40 seconds, which corresponds to 1000 

frames and a temporal resolution of ≈ 40 ms. A subset of 15 coils was chosen for the 

reconstruction. The proposed technique was used to iteratively estimate the L matrix from 

the 31 × 31 centre under-sampled k-space data. This L matrix was used to reconstruct the 

full data in a single iteration. The in-vivo cardiac free-breathing images recovered from their 

≈ 50 fold undersampled measurements using the proposed scheme are shown in Fig. 3. Two 

reconstructed frames are shown from the dataset along with the temporal profile. It is 

observed that the proposed scheme can reconstruct images of good quality while preserving 

the temporal dynamics.

4. CONCLUSION

We introduce a novel framework for the recovery of images/patches, which lie on a smooth 

low-dimensional manifold/surface in high dimensional space. We model the surface as the 

level set of a bandlimited function. We show that the non-linear feature maps of the points 

satisfy annihilation relations. Since these relations imply that the maps lie in a finite 

dimensional subspace, we use the nuclear norm of the maps as a regularizer to recover the 

points/images from highly undersampled measurements. The application of this framework 

to navigator-free free breathing and ungated cardiac MRI provides promising results.
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Fig. 1: 
Illustration of the annihilation relations in 2-D. We assume that the curves/surface is the 

zero-level set of the potential function ψ(x). Each point on the curve/surface satisfies ψ(xi) 

= 0 = cTϕ(xi), which can be seen as an annihilation relation in the non-linear feature space 

ϕ(x). Specifically, the maps of the points lie on a plane orthogonal to c.
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Fig. 2: 
Recovery of shape from noisy samples of the Tigerhawk logo. (a) shows the original points, 

and their projection to a bandlimited Gaussian curve with σ = 0.15. Note from (c) that the 

singular values of the bandlimited points decay rapidly, while the ones corresponding to the 

noisy points decay slower. The denoising algorithm (9) exploits the lower nuclear norm of 

Φ(X) to denoise the data. The points after random noise addition and denoising using our 

algorithm is displayed in (b). Since Φ(X) has several null space vectors, we display the sum 

of squares function in (d).
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Fig. 3: 
Reconstruction of free breathing and ungated cardiac MRI data from ≈ 50 fold 

undersampled measurements. Recovery of the data using standard CS or low-rank methods 

is challenging due to the extensive motion; see [4] for comparisons with state of the art 

methods. (a) denotes two frames, recovered by gridding. (b) Corresponding frames 

reconstructed using the proposed scheme. (c) Temporal profile from reconstructed frames at 

the position marked by dotted blue line. The image quality of the proposed scheme is 

comparable to breath-held methods.
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