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Deep-seated slow slip and tremor (SST), including
slow slip events, episodic tremor and slip, and
low-frequency earthquakes, occur downdip of
the seismogenic zone of numerous subduction
megathrusts and plate boundary strike-slip faults.
These events represent a fascinating and perplexing
mode of fault failure that has greatly broadened our
view of earthquake dynamics. In this contribution, we
review constraints on SST deformation processes from
both geophysical observations of active subduction
zones and geological observations of exhumed field
analogues. We first provide an overview of what
has been learned about the environment, kinematics
and dynamics of SST from geodetic and seismologic
data. We then describe the materials, deformation
mechanisms, and metamorphic and fluid pressure
conditions that characterize exhumed rocks from SST
source depths. Both the geophysical and geological
records strongly suggest the importance of a fluid-
rich and high fluid pressure habitat for the SST
source region. Additionally, transient deformation
features preserved in the rock record, involving
combined frictional-viscous shear in regions of
mixed lithology and near-lithostatic fluid pressures,
may scale with the tremor component of SST.
While several open questions remain, it is clear that
improved constraints on the materials, environment,
structure, and conditions of the plate interface from
geophysical imaging and geologic observations will
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enhance model representations of the boundary conditions and geometry of the SST
deformation process.

This article is part of a discussion meeting issue ‘Understanding earthquakes using the
geological record’.

1. Introduction

What was long considered to be bothersome seismic noise and long-period errors in geodetic
time series turned out to be one of the exciting discoveries in the Earth Sciences in recent decades:
episodic slow slip events (SSEs) and associated tremor signals originating deep on the plate
interface of the Nankai, Japan, and Cascadia, Canada and USA, subduction zones (figure 1) [1-3].
Ever since their original discovery, we have been wondering what things look like down there;
that is, what are the geologic materials and structures of slow slip and tremor (SST)?

The ‘SST zone” is located within depth and temperature ranges of about 25-55km and
approximately 350-550°C, which are conditions commonly associated with hot and young
subducting oceanic plates, downdip of the ‘seismogenic zone’ hosting regular earthquakes of
up to M >9 (figures 2 and 3) [4]. Tremors at similar pressure and temperature conditions are
also found in continental plate boundary faults, including the strike-slip San Andreas Fault in
California [9], the oblique right-lateral Alpine Fault in New Zealand [10], and the continental
collision zone in Taiwan [11] (figure 1). Downdip of this zone, plate boundary deformation
appears to be steady, accommodated by ductile shear. Updip of the SST zone, some subduction
zones abut locked sections of the seismogenic megathrust (e.g. Kii Peninsula, Japan), some host
larger, longer-lasting and less frequent SSEs (e.g. Tokai and south Shikoku in Japan, Guerrero in
Mexico), while others feature a wide, steadily creeping zone with little if any tremor, forming an
apparent gap between the SST zone and locked asperities (Cascadia). In some subduction zones,
tremors and slow slip are also found at intermediate and shallow depths [12,13], suggesting that
conditions for SST can exist at all depth ranges of subduction thrusts. Here we focus on the deep-
seated SST region of subduction zones and their potential analogues exhumed from greenschist-,
blueschist- and eclogite-facies environments.

There is abundant evidence that indicates a close temporal and spatial association of tremor
and slow slip [14,15]. Tremors represent enduring low-frequency seismic signals generally
interpreted as being a direct byproduct of otherwise slow and aseismic slip. While on average the
seismic moment released by tremor amounts to only approximately 0.1% of the associated slow
slip [6,16], tremor is generally considered as a direct marker of the spatio-temporal evolution
of slow slip during an SSE. However, while tremor and slow slip are closely associated, they
are not always exactly coincident in space and time. Slow slip may occur without tremor, and
smaller SSEs may be indicated by tremor transients, but lack a resolvable geodetic signal [17,18].
The study of small (M < 2.5) low-frequency earthquakes (LFEs) and M 3—4 very low-frequency
earthquakes embedded in the tectonic tremor signal allows for more detailed investigation of
underlying source properties and the spatio-temporal distribution of fault slip. Thus, accurate
locations and source properties of tremors and LFEs are essential ingredients for improved
understanding of the slow slip process.

So, what are the rocks and structures preserved in the geologic record that could represent
deep tremor and slow slip? An essential aspect of understanding the SST deformation process
is the examination of rocks exhumed from SST source depths, which are exposed in subduction
complexes in a wide range of tectonic settings around the globe (figure 1). Exhumed subduction
complexes can contain slivers of the downgoing slab, the upper plate, and the interface shear zone
itself. Through carefully probing these exposures to distinguish subduction versus exhumation
features, we can identify ‘snapshots’ of the SST source region captured at a range of depth and
temperature conditions, and use them to provide key insights into lithological and rheological
contrasts, short- and long-time scale deformation processes, interplay between deformation and
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Figure 1. Global distribution of regions with modern deep slow slip and tremor along with exhumed blueschist and eclogite
facies subduction complexes. Locations of geologic sites presented in figures in §3 are also labelled. (Online version in colour.)

metamorphism, and fluid migration patterns. Observations focused on this topic thus far suggest
that rocks preserve a record of both long-term strain accumulated over millions of years, as well
as punctuated transient deformation set up in regions where lithologies are mixed, fluids are
abundant, and fluid pressures are near-lithostatic. Here we first provide an overview of inferences
made from geophysical observations about the environment and deformation processes in the
SST zone and then we review knowledge gained from geological studies of relevant analogue
field examples. Improved models and understanding of deep slow slip processes in plate
boundary faults will require drawing on both types of observations.

2. Geophysical observations of SST environment and source

Deep-seated SST represents only a small part of the wide spectrum of seismic and aseismic slip
processes that we now recognize to occur across the whole width of the subduction plate interface
[5,19,20]. In this section, we review what has been learned about the environment, the kinematics
and the dynamics of SST from geophysical imaging and geodetic and seismologic observations.
We focus on aspects that can potentially be related to findings obtained from geologic analogues
of the deep SST source region.

(a) The environment of deep SST

In subduction zones, deep SST are found near and updip of the mantle wedge corner, where the
subducting oceanic crust interfaces with the overriding forearc crust and, often serpentinized,
continental mantle (figure 2). The section of the subduction thrust hosting SST lies near the top or
within a zone of low seismic velocities and very high ratios of the P-wave and S-wave velocities
(Vp/Vs), the low-velocity layer (LVL) [21-24]. For example, in central Japan, Kato et al. [25] find
an LVL with low seismic velocities and high Vp/Vs ratios, both along the zone of tremor and
long-term SSEs without tremor (figure 4). Here, a zone of frequent ETS events appears on the
deeper plate interface beneath the partially serpentinized mantle wedge, while more enduring
years-long SSEs without tremor occur farther updip, below the forearc crust. In the Cascadia,
southwest Japan, Costa Rica, New Zealand and Alaska subduction zones, the maximum Vp/Vs
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Figure 2. (a) Summary schematic of the geophysical view of slow slip and tremor (SST) and informed by geophysical imaging,
source seismology and geodesy. Earthquake ruptures in the seismogenic zone, and low frequency earthquakes (LFE) and very
low frequency earthquakes in the SST zone release seismic energy (red patches). The plate interface away from the seismic
patches slip by aseismic creep, often in episodic slow slip events. Slow slip in the SST zone (grey) is illuminated by tremors.
LFE source patches are clustered in families that are sometimes aligned in the plate convergence direction. Fluid pressure is
likely high along much of the plate interface and reaches lithostatic levels in the SST zone under the mantle wedge corner and
forearc crust. Modified from [4,5]. (b) Bursts of events in LFE families may reflect repeated failure of the same patch, connected
sub-patches or more distributed source patches in a ductile matrix (based on [6]). (Online version in colour.)

regions and SST zones also appear to roughly coincide with the intersection of the subducting
plate with the mantle wedge corner [27].

There continues to be some debate about the makeup and state of the LVL. Based on seismic
data from northern Cascadia, Hansen et al. [28] argue that the 3-4km thickness of the LVL, its
high Vp/Vs ratio and its limited downdip extent support the inference of the SST zone consisting
primarily of uppermost oceanic crustal rocks at very high fluid pressures. By contrast, Abers
et al. [29] and Calvert et al. [30] favour the LVL being dominated by underplated metasedimentary
rocks. The subduction interface may be fluid saturated and frictionally weak across much of its
downdip width thanks to fluids released by the downgoing slab; however, Audet et al. [31] use
onshore—offshore receiver function data to show that the LVL thins offshore and does not extend
to the locked section of the megathrust. High electric conductivity is also found in the SST zone of
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Figure 3. Calculated pressure-temperature profiles for the top of the slab for several SST-hosting modern subduction zones,
superimposed on metamorphic facies and weight per cent water release. Subduction zone geothermal gradients come from
thermal models of [7], modified according to [8]. Water content estimates are from [8]. Metamorphic facies abbreviations are
as follows: Z, zeolite; PP, prehnite-pumpellyite; PA, prehnite-actinolite; eB, epidote blueschist; jeB, jadeite epidote blueschist;
laE, lawsonite eclogite; aE, amphibole eclogite; eA, epidote amphibolite; egA, epidote garnet amphibolite. (Online version in
colour.)

the Cascadia subduction zone, but not in the locked updip section of the megathrust [32]. Delph
et al. [33] find zones with a much thicker (approx. 10km) LVL in both the northern and southern
Cascadia subduction zone, which appear to correlate with increased tremor rates and seismicity in
the underlying slab. This may suggest that thick underplated sediments invaded by slab-derived
fluids are related to increased tremor occurrence in those zones [33]. However, from a geophysical
perspective alone, the exact makeup of the LVL remains uncertain [31].

Seismic receiver function studies find an anisotropic fabric in the LVL plunging at an oblique
angle to the plate interface both in Cascadia and Mexico, suggesting distributed shear and
the development of high strain fabrics [24,28]. This supports the idea that the LVL reflects the
development of an increasingly thick, fluid-rich and overpressured shear zone hosting both
aseismic and ultimately tremor-producing slow slip. LFEs appear to locate within the LVL [31],
but the exact vertical distribution of the tremor sources and deformation in the LVL is not well
established.

High Vp/Vs ratios of 2-3.5, and equivalently Poisson’s ratios of 0.33-0.46 (table 1), are
consistent with strongly elevated pore fluid pressures in porous (up to 4% porosity) and highly
strained metabasalts and metasediments of the subducting oceanic crust [34,35]. The observed
velocity ratios suggest pore fluids under near lithostatic pressure, but Vp/Vs is also increased in
rocks with high fracture densities [36]. The fluids are made available by prograde metamorphic
dehydration reactions in the subducting oceanic crust [37]. At these temperatures and pressures,
water is a supercritical fluid and is a factor of approximately 10 less viscous than near-surface
water. Sustaining near lithostatic fluid pressures requires a capping seal with very low vertical
permeability [23,34]. This seal may be formed in part by the strongly sheared fault-zone rocks of
the plate interface whose permeability is likely strongly anisotropic [38]. Nakajima et al. [39] and
Wells et al. [40] relate the distribution of tremor to the degree of metamorphism and distribution
of fault zones in the hanging wall of the megathrust, respectively, which appear to provide some
control on lower-crustal permeability and thus on the fluid pressure in the LVL.
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Figure 4. Seismic imaging of Philippine Sea Plate subduction thrust hosting slow slip and tremor beneath Tokai District in
central Japan. (a) Map showing slip contours of long-term SSE (blue), low frequency earthquakes (green circles), and northwest-
southeast profile line (black). (b) Top: Depth section of S-wave velocity perturbation (dVs/Vs) from seismic tomography. Centre:
Ratio of P and S-wave velocities (Vp/Vs). Bottom: Receiver function results (RF amplitude) highlighting sharp changes in
seismic velocities that illuminate the plate interface and the continental and oceanic Moho. (c) Top: Schematic interpretation of
seismic structures. Blue shades in subducting oceanic crust reflect fluid pressure variations. Green arrows denote potential fluid
pathways in the subduction zone. Bottom: Profile showing variations of dVs/Vs and Vp/Vs within the subducting oceanic crust.
Relocated hypocentres are plotted for events within 10 km of the cross-section with grey circles indicating reqular earthquakes
and red stars indicating LFEs. The deep ETS zone hosts LFEs and M6 slow slip events recurring every few months [26]. An
intermediate-depth section of the plate boundary hosts long-term M7 slow slip events (LTSS) that last for years and shorten
the deeper ETS recurrences. The updip locked zone fails in M8 megathrust ruptures every approximately 150 years. (All images
provided by A. Kato based on [25].) (Online version in colour.)

Audet & Biirgmann [41] find that Vp/Vs ratios in the lower crust above the tremor zone
are substantially reduced from typical forearc values, consistent with the addition of quartz
precipitates (5-15% by volume) to the upper plate [42,43]. This is consistent with the idea that
fluids are channelled updip in the permeable plate interface below the serpentinized forearc
mantle and are released upward at the mantle wedge corner into the more permeable crust [42].
In addition, there appears to be a correlation between ETS recurrence intervals and upper-plate
silica enrichment, suggesting that increasing quartz-vein mineralization from slab-derived fluids
reflects more rapid development of fluid overpressure and therefore shorter recurrence times.
This correlation appears to hold both for a number of different subduction zones and for the



Table 1. Basic definitions of common terms used herein

phenomenon definition and notes

slow slip and tremor (SST) General term used here for plate boundary slip transients that are commonly
associated with observable surface deformation over days to years and that are
illuminated by low intensity seismic emissions known as tectonic tremor

slow slip events (SSEs) Aseismic fault slip transient with durations ranging from minutes to decades. Also
referred to as slow earthquakes, silent earthquakes and creep events.

episodic tremor and slip (ETS) SSEs with abundant tremor, typically months or less in duration, found at and around
the mantle wedge corner of some subduction zones. More narrowly defined type of
periodic slow slip transients with tremor based on the characteristics found in
southwest Japan and Cascadia-type localities.

low frequency earthquakes Small and short low frequency (2—8 Hz) seismic events contained in tectonic tremor
(LFE) signal indicative of fault slip. See table 2 for details.

very low-frequency Similar to LFEs but lower frequency (less than 0.1Hz), longer duration (10-200 s) and
Earthquakes larger (M 3-4).

subduction interface The region between the subducting slab and the overriding plate in subduction zones

that accommodates differential motion between the two plates. It can be a fault, an
anastomosing fault zone or a finite-width shear zone.

tectonic underplating The progressive transfer of material from the top of the subducting slab to the upper
plate, and the associated down-stepping of the subduction interface into deeper
levels of the downgoing plate. Underplated material may derive originally from the
downgoing slab, but can also be eroded updip from original or previously accreted
material in the overriding plate.

asperity Defined here as a feature on a fault that exhibits different rheological properties from
surrounding regions. Often used to describe areas that will eventually fail by seismic
rupture.

melange belt A general term used here to refer to a fault- or shear- zone with rock types that exhibit

strong competency contrasts such that a ‘block-in-matrix’ texture is visible at the
outcrop or larger scale. Does not necessarily require the presence of exotic blocks or
large-scale mechanical mixing.

pressure solution creep A deformation mechanism common in rocks in subduction (and other fluid-rich)
environments. It involves dissolution of minerals along grain boundaries in areas of
relatively high differential stress, accompanied by mass transfer within the fluid phase
and eventual deposition of minerals in regions of relatively low differential stress.
Produces strong foliations at high strains, known as pressure solution cleavages or
cleavage microlithon fabrics. Also referred to as dissolution-precipitation creep or
volatile-assisted diffusion creep.

observed systematic decrease in the recurrence time of ETS with increasing depth of the plate
interface in the northern Cascadia subduction zone [41]. These results suggest cycles of slow slip
episodes, dilatancy and healing that produce rapid changes in permeability and fluid pressure.
To achieve high fluid pressure, pathways for fluid transport along the megathrust or into the
overlying mantle wedge or forearc crust may be intermittent [41]. There is some observational
evidence, from temporal changes in gravity, seismic velocity, seismic attenuation, seismicity
and state of stress, that indicates pressure changes and fluid transport along and across the
fault zone associated with slow slip episodes. In the Tokai District in central Japan (figure 4),
Tanaka et al. [44,45] find absolute gravity changes during two approximately 5-year-long slow-
slip episodes, invoking cycles of fluid pressure and fault zone permeabilities of 10718-1071% m?2.
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Table 2. Summary list of relevant deep SST-zone properties from geophysical and laboratory constraints.

parameter constraint or observable typical values and notes references
depth tremor locations and SSE 25-50 km [27]
modelling (to > 60 kmin a few
areas) [51,52]
lithostatic overburden from depths (assuming average 650-1200 MPa
density 2700 kg m )
temperature from thermomechanical 350-550°C [34,53]
modelling
major hydrous mineral thermal and petrological ultramafic rocks: antigorite, [8,54,55]
breakdown reactions modelling chlorite
mafic rocks: lawsonite, chlorite,
glaucophane
metasediments: phengite,
lawsonite, chlorite
geometry of low-velocity seismic tomography and ~4 + 1 km-thick [25,27,31,33]
layer (LVL) hosting ETS receiver function analysis (between higher-velocity layers,
thinning updip and

disappearing at approximately
50 km depth. Can be >>5 km in

places)
fluid pressure, effective from Vp/Vs = 2-3.5 found in ~ lithostatic [22,27]
normal stress receiver function studies (effective normal stress ~ 1 MPa
(lower-resolution tomography or less)
finds somewhat lower values)
porosity from Vp/Vs, electrical 3.3-4% [34]
conductivity
Poisson’s ratio from Vp/Vs 0.33-0.46
V= 1 (WP—205)

e LB VD) e
fluid viscosity laboratory ~107*Pas [34]
permeability Vp/Vs contrast across plate <1072 m? [23,38,56,57]

interface and laboratory (permeability is likely highly
measurements anisotropic and time dependent
through the ETS cycle)

In the northern Cascadia subduction zone, Gosselin et al. [46] document seismic velocity changes
that may reflect seal breaching and fluid flow in permeable pathways within and away from
the megathrust, resulting in transient fluid pressure drops of 1-10MPa. Nakajima et al. [47]
explore temporal changes in slip rate, seismicity and seismic attenuation along the approximately
50km deep megathrust of the Philippine Sea in central Japan to infer cyclic drainage episodes
from the megathrust. Attenuation and seismicity in the overriding plate are enhanced within a
few months following an SSE, suggesting permeable pathways into the upper plate from near
the updip edge of the slow slip zone [47]. In the relatively shallow SST zone of the Hikurangi
subduction zone in New Zealand, Warren-Smith et al. [48] document time-dependent variations
in the state of stress in the underlying, overpressured oceanic crust from focal mechanism data.
The data are interpreted as being the result of inter-SSE rise and co-SSE drop of fluid pressure
in the overpressured zone by several MPa, reflecting multiple cycles governed by fracture and
healing processes in the plate boundary zone [48].
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Table 3. Summary list of relevant source properties of slow slip and tremor (SST) events.

parameter constraint or observable typical values and notes references
ETS events
SSE rupture dimensions tremor locations and from few km (tremor only) up to [49,59,65,179]
modelling of geodetic data 10 s km wide by 100 s km long
slip per event geodeticinversion and tremor  mm to few cm [49,59,179]
calibration
Mw geodetic inversion (events Mw 5.37-6.7 [49,59]
<~Mw 5.5 are difficult to
detect)
stress drop geodetic inversion 1-100 kPa [49,179]
duration days to weeks [64,100,179,180]
recurrence interval months to years [41] and references
therein
propagation velocity tremor/LFE space—time along-strike: 5-15 km d-’ [64,67,68,77,181,182]
distribution along-dip: 30-200 km h™'
back-propagating: 5-20 km h~"
slip rate geodesy/tremor T-2mmd~" [17,49,69]
rise time (duration of slip  geodesy/tremor 5-30 days [179]
ata point on the fault)

detic inv

geodetic inversion

geodetic inversion
modellmggeodetmdata .................. anngstr|ke5—15kmd*1 ........................................................
along-dip: 30-200 km h™
back-propagating: 5-20 km h™ [64,67,68,77,181,182]
slip rate geodesy 1-2mmd~" [17,49,69]
rise time geodesy and/or tremor rise time could be as long as [62,63,183-185]
duration, unless individual
SSEs represent a sequence
of many smaller events
(e.g. [63,187])
LFEs
rupture dimensions seismic waveforms 0.1-Tkm [6,88]
slip per event seismic waveforms, number of ~ 0.05-0.12mm [6,88,92]
LFEs per ETS (if multiple slip patches contribute

to LFE-family failures, slip
could reach few mm) [6,188]

(Continued.)
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Table 3. (Continued.)

constraint or observable typical values and notes references

Mw [88,92]
stress drop seismic waveforms 1-10 kPa for 1 km patch size
(if dimensions are 0.1 km, stress [6,88,92]

drops can reach 1 MPa; [181],

p. 3364)
duration 0.2-0.7s [88,92]
recurrence interval seconds to days [74,91]

(in “LFE family’)

rupture velocity ~07kms™' [92]
slip rate ~025mms™! [92]

(b) SST source characteristics

Inversions of geodetic time series (from GPS, tilt- and strainmeters) and the spatio-temporal
distribution of tremors paint a picture of highly dynamic slow slip processes on the deep plate
interface below the seismogenic zone (figure 5). These slow slip transients span a wide range of
many orders of magnitude in dimension, rate and duration (see table 2 for typical values and
related references). Here we summarize the slow slip behaviour in the SST zone including the
macroscale description of large and small SSEs, the mesoscale characterization of the transient
slip dynamics on the rupture surface during an SST episode, and finally the nature of rapidly
repeating failures of individual LFE clusters. The spectrum of geophysically visible SST behaviour
ends at the scale of individual LFE failures with 100s of m dimension, which is larger than
a typical outcrop examined by geologists. Nonetheless, interesting connections can be made
between the properties of observed SST failures and the geologic analogues.

(i) Macroscopic: large-scale SSE characteristics

Inversions of geodetic measurements allow for characterizing the macroscopic dimensions, slip
and other kinematic source properties of large-scale SST events. One outstanding feature of these
SSEs is the minute amount of slip (few centimetres) that even the largest (more than 100 km
along arc extent) events accommodate (table 2). Despite the small amounts of slip, SST events
are frequent enough in some places (e.g. Cascadia) that they are estimated to take up between
60 and 100% of the total slip budget [58]. Similar-sized ETS events frequently recur every few
months to a couple of years, and thus many dozens of events have now been observed in the well-
monitored subduction zones in Cascadia and Japan. The small slip per event also means that the
ETS events have very low stress drops of less than 100 kPa, compared to the 1-100 MPa range of
regular earthquakes. SSEs in the tremor-producing zone appear to be limited to a seismic moment
equivalent to Mw 6.7, slowly released over the course of a few-weeks-long episode. In contrast
to the classic ETS zones hosting weeks-long slip and tremor events (Cascadia, southwest Japan),
some deep SST source regions (e.g. New Zealand, Bungo Channel and Tokai in Japan, Mexico
and Alaska) exhibit many months- to years-long episodes of accelerated slip amounting to Mw 7
events. In some cases, these long-lived SSEs occur updip of shorter duration ETS source regions
(e.g. [25,59-61]), suggesting that relatively modest changes in fluid pressure, thermal conditions
or shear zone composition can lead to such variable fault behaviour. Careful analysis of both
geodetic and tremor datasets suggests that in some of these cases (Mexico, Alaska, southwest
Japan), the slip during long-term SSEs and at other times is composed of many short-duration
events illuminated by the tremor activity (e.g. [62,63]). This suggests that the slow-slip process in
general may represent the accumulation of many smaller slip events.
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Figure 5. Geodesy and source seismology illuminate the hierarchy of ETS and LFE on Cascadia subduction zone. (a) Spatio-
temporal distribution of slow slip events (colour contours indicating slip rate) and tremors (black dots) along the ETS zone of
(ascadia (based on [49]). (b) Spatio-temporal distribution of tremor sources during two ETS events in northern Cascadia. Tremor
clusters light up many of the same source patches in recurring events (based on [50]). (¢) LFEs clustered in LFE families that failed
during two ETS in 2010 and 2011 (also shown in (a)) (based on [6]). Open arrows in (b) and (c) indicate the plate convergence
direction. (Online version in colour.)

In addition to their small slip and low stress drop, SST stand out by the slow propagation
(approx. 10km d ') of their primary slip front and thus long duration of their rupture (figure 5a).
The apparent ease of growth and frequent repeat of such large-scale failures suggests a very
effective means of stress communication and slow rupture propagation. Like regular earthquakes,
SST have a nucleation zone from which they often propagate updip and then either bilaterally or
unilaterally along strike of the subduction zone [62,64—66]. While the along-arc propagation of the
main slip front is slow, slip-parallel migrations of tremors propagate both updip and downdip
hundreds of times faster (30-200 km h~1). This might involve interaction of the slowly laterally
migrating slip front with slip-parallel linear structures on the fault or rapidly propagating fluid
pressure pulses along structural features elongated in the dip direction [66-68]. In some cases,
the nucleation and growth of SST can be rather complex. For example, Bletery & Nocquet [69]
consider a 2013 SST in which tremor and GPS data suggest initial nucleation in three different
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spots followed by growth and coalescence, over the course of three weeks. As the three slip fronts
approach each other and merge, the rate of moment release substantially increases, suggesting
that coalescence of multiple SST can lead to a more energetic event [69]. Frank et al. [70] evaluate
the slip evolution of a long-term SSE inferred from GPS time series and LFE recurrence intervals
in the Guerrero subduction zone to develop a conceptual model of updip migrating pore-pressure
pulses modulating the slip and strength of the fault zone. As the SSE develops updip of the LFE
source region, it loads and accelerates downdip LFE activity and slow slip. Fracture reactivation
and increased anisotropic permeability in the LFE zone leads to a transient decrease in pore
pressure that decelerates the LFE activity as the pore-pressure pulse migrates updip, even as
the long-term SSE continues in the updip section. This case study supports the idea that fluid
pressure cycles and fault valve (e.g. [71,72]) behaviour control the spatio-temporal distribution of
slip in the SST zone.

As pressure, temperature, permeability and other conditions and properties vary both in
the downdip and along-arc direction, there is interest in resolving systematic effects of such
parameters on the SST behaviour [41]. Wech & Creager [65] use the tremor activity in Cascadia
to find a systematic decrease in size and increase in frequency of events with increasing depth. A
similar first-order transition to more episodic slip behaviour is found in the Nankai subduction
zone and in Mexico [73,74]. Wech & Creager [65] put forward a model invoking a cascading
stress transfer process, Audet & Biirgmann [41] suggest that the systematic decrease of recurrence
interval with depth is governed by temperature dependent silica precipitation and healing
processes, which reduce fault zone permeability and thus accelerate overpressure development
and shorten the time to the next SST failure. Idehara [75] carry out a systematic analysis of
changes in the temporal clustering of tremors to evaluate such spatio-temporal patterns in tremor
sequence duration and recurrence intervals in a handful of global tremorgenic subduction zones,
finding both downdip and lateral variations. More such comprehensive explorations of variable
ETS behaviour in the context of varying SST zone conditions should improve our understanding
of the underlying mechanics and hydrology of the SST phenomenon.

(i) Mesoscale: spatio-temporal tremor distribution and SST slip variability

The distribution of tremors in space and time provides detailed information about the structure
and dynamics of ETS. It appears that tremor sources persistently illuminate many of the same
patches in the recurring ETS events, suggesting inherent structural or lithological differences in
the tremor-producing portions of the SSE rupture. Ide [76] highlights apparent alignments or
striations in the tremor source distribution in Japan, which appear to align with the direction of
plate motion but also past plate convergence directions. This suggests that the striations reflect
plate interface structures that could have developed from subducting plate structures, such as
seamounts. Similarly, Armbruster et al. [50] show that the same clusters of LFEs light up in
repeated SST, suggesting that these are persistent features of the plate interface (figure 5b).

Once the main slip front of an SST rupture has passed, dynamic bursts of tremor activity [64,77]
and slow slip [78] continue in its wake, for many days. During this period, coherent migrations
of LFEs and tremor on slipping portions of the fault are observed, suggesting secondary slip
transients with a range of dimensions, propagation speeds and directions, moments, stress drops
and other characteristics [66,66,68,77-80]. The secondary slip fronts start within about 1km of
the main tremor front, and propagate at variable rates backwards, forward and parallel to the
main front [66,80]. Bletery et al. [80] used cluster analysis to catalogue more than 1000 of these
secondary tremor and LFE migrations contained in Cascadia ETS, lasting up to approximately
30h, to systematically inventory their source properties. They find that short-duration secondary
slip fronts dominantly propagate along dip while the more enduring ones mostly propagate along
strike. Peng et al. [77] find many smaller-scale subevents propagate at 10-60 km h~! right behind
and parallel to the main front of tremor migration, which may or may not be aligned with the dip
direction. They thus conclude that even though the SST zone may have a slip-parallel anisotropic
fabric it does not control the orientation of the main front or strongly influence the migration
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pattern of the secondary fronts. The larger-scale and somewhat slower tremor migrations occur
further behind the main front and appear to continue across portions of the fault without many
tremor sources [64,77]. These later migrations advance at 10-20 km h! [64,68], 25-50 times faster
than the main SSE front, and their slip is faster by a similar ratio. As opposed to the initial set
of secondary tremor bursts, events in these larger-scale secondary tremor migrations are strongly
tidally modulated [81]. The tidal sensitivity increases over the course of several days, suggesting
that the fault weakens as SST slip grows [82]. Thus, it appears that some aspect of the SST faulting
process limits the main slip front growth and speed but permits the secondary fronts to propagate
and slip faster and to weaken and become increasingly sensitive to tidal stress.

(iii) LFE source characteristics

LFEs are small seismic events contained within tremor, first recognized by Katsumata &
Kamaya [83] in southwest Japan. They represent barely observable seismic signals extracted
from continuous waveform data, which are characterized by lower frequencies (more than 1 Hz)
and longer durations (0.2-0.5s) than those observed for ordinary microearthquakes [84,85]. It
is possible that localized, near-source attenuation of seismic waves, which may be the result of
high pore-fluid pressures and rock damage in the LVL, could cause the bandlimited nature of
LFEs through the depletion of high frequencies [86,87]. LFEs with a maximum size of about Mw
2.5 have approximately constant durations and appear to break asperities of similar dimension
(1km), suggesting that moment variation is dominated by differences in slip [88]. LFE focal
mechanisms and polarizations are consistent with a double-couple source, originating from areas
in the plate interface that are stationary in space and persist for decades [50,89,90].

An important characteristic of LFEs is their repetitive nature; each LFE source in space (LFE
family) can generate hundreds of events during each SST, interpreted as either the repeat failure
of a single asperity or adjoining failures within a relatively tight cluster of asperities (figure 5c)
[6,9,18,91]. Recurrence intervals in a family during an SST can be as low as a few seconds.
Such rapid repeat failures challenge standard models of failure cycles involving healing and
restrengthening of a slip surface. Chestler & Creager [6] argue that each LFE family typically
hosts multiple separate patches (figure 2b). Thus, while estimates of slip per LFE are of the order
of 0.1 mm, assuming single-patch failures [6], slip could reach a mm if there are approximately
10 patches in a family and more if those patches are spatially separated in a ductile matrix
[6] (figure 2b). Stress drops are thought to be approximately 10kPa [88,92], but Chestler &
Creager [6] suggest that stress drops could be up to 1MPa, getting close to values for regular
earthquakes, if LFEs in a family have smaller slip areas and are more spaced out on the family
patch (figure 5c¢). Given that geological observations indicate that subduction thrusts have finite
thickness increasing with depth (see below), the LFE families could also be distributed in a
three-dimensional volume of ductile material, thus allowing for less slip and lower stress-
drop per LFE [6]. LFEs and tremor only release a tiny fraction (approx. 0.1%) of the otherwise
aseismic plate-interface slip in the ETS zone [6]. This suggests that LFE family clusters represent
small areas in the fault zone that are mechanically distinct from their aseismically shearing
surroundings, representing local anomalies in lithology, metamorphic assemblage, fluid pressure
and/or permeability.

In addition to LFEs, distinct very low-frequency earthquakes have been detected in broadband
seismic records at even lower frequencies of 0.02-0.05Hz [93]. Occurring within tremor zones,
both deep and near-trench, they seem similar to LFEs and are also the result of shear slip on
the plate interface, but they have longer durations (10-200s) and larger magnitudes (M 3-4)
[14,94]. While many of these more enduring slow earthquakes appear to be contained in tremor
sequences, they can occur independently, separated from tremor in both space and time [95].
Even though these very low frequency sources appear to be clearly distinguished from LFEs,
Kaneko et al. [96] suggest that this separation is potentially an artefact of Earth’s microseism
noise hiding signals in the intervening frequency range (0.05-1Hz). Thus the different seismic
and aseismic slip phenomena observed in the SST zone may be parts of a common broadband
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slow slip process [20,97]. Improved seismological and geodetic observations with higher spatio-
temporal resolution and over a broader frequency range would help resolve further details of the
complex slip behaviour in the SST zone.

(c) Scaling and probing the mechanical properties of SST

To better understand the underlying mechanics of slow slip and regular earthquakes, there has
been much interest in the scaling relationships of SSEs, in particular that between their moment
and duration [49,98,99]. Ide et al. [98] suggest that the moment of SSEs scales linearly with their
duration over a wide range of scales from individual LFEs to the largest SST events. This is in
contrast with the systematic duration-cubed scaling of regular earthquakes. However, several
recent studies [49,100-102] find that such a systematic difference does not hold when considering
SSEs from a particular environment or of a different type. Thus, ETS, secondary slip migrations,
very low-frequency earthquakes, LFEs and regular earthquakes may all feature similar, pulse-like
rupture propagation and their rupture velocities and stress drops vary with the size of the event.
Nonetheless, there is a large and real gap in detection of fault slip processes between the two
proposed scaling relationships for SSEs and regular earthquakes, suggesting that earthquakes
and slow slip phenomena are two distinct fault slip processes that seem to indicate a different
geological context [79]. More quantitative studies of scaling relations of SSE across their full
spectrum are needed to improve our understanding of similar and dissimilar dynamics of slow
and fast ruptures under different conditions.

Evidence supporting the idea that fluid pressures are very high, stress levels are low, and
faults are frictionally weak in the SST zone comes from observations of triggering of slow slip and
tremor by seismic waves and Earth’s tides [19,81,94,103-107]. Tremors are quite easily triggered
and their amplitude modulated by few-kPa shear stress cycles from passing surface waves of
remote earthquakes [19,103,104]. Similarly, small tidal shear-stress changes produce substantial
modulation, while the normal-stress cycles produce a more modest response, interestingly
indicating raised rates during times of increased fault-normal compression [107]. The tidal shear-
stress response appears consistent with rate-dependent friction at extremely low effective normal
stress, whereas purely aseismic shearing of various mineralogies and power-law or exponential
viscous deformation mechanisms does not appear to allow for driving such a response [108].
Considering an undrained fault model, Beeler et al. [109] suggest that the observed tremor
response reflects low intrinsic friction, low dilatancy and lithostatic pore fluid pressures. Houston
[82] finds that the modulation of tremors becomes stronger as slow slip accumulates during an
SSE. This indicates that the plate interface has an intrinsically low dynamic friction coefficient
(less than 0.1), is at near-lithostatic fluid pressure, and further weakens during continuing slow
slip associated with secondary slow slip fronts [82]. Examination of tidal modulation of individual
LFE families shows strong spatial variability in the correlation with tidal stress in addition to
systematic temporal changes in which tidal correlation increases with time during secondary slip
fronts and transitions from correlation with stressing rate to correlation with stress amplitude
[107]. These studies show that detailed examination of the response of tremors and slow slip
to very modest external stressing cycles allows for characterizing laterally heterogeneous and
time-dependent physical fault-zone properties.

3. Geologic observations of SST environment and source

Subduction complexes exhumed from depths similar to the SST source region (approx. 25-50 km)
occur on several continents and in a wide range of tectonic settings (figure 1) [110-112].
Around the circum-Pacific, rocks from this source depth are dominantly oceanic in affinity
and crop out in the inboard parts of long-lived accretionary prisms [113-117]. Within the
Mediterranean orogens, several exhumed subduction complexes occupy the footwalls of large-
scale metamorphic core complexes, and consist of intercalated oceanic and continental-affinity
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rocks representing subduction of rifted continental fragments and intervening small ocean basins
[118-120]. Several oceanic-affinity subduction complexes also crop out in the internal zones of
continental collision zones (e.g. the Alpine-Himalayan mountain belts), recording early stages
of oceanic subduction and accretion prior to continental collision [121-123]. The mechanisms of
exhumation of these subduction complexes are debated, but likely involved some combination of
buoyancy- or pressure-driven return flow along the top of the subducting slab, and upper plate
extension driven by surface elevation gradients or slab rollback [115,124-127].

Relating features preserved in these subduction complexes to processes in the modern SST
source region has several challenges. These include firstly that subduction complexes exhumed
from this depth range are too deep to be exhumed simply by erosion, and instead always
involve some tectonically driven exhumation process. In many cases, the exhumation path is
along a warmer geothermal gradient than the prograde path, so subduction-related structures
and metamorphic relationships can easily be obscured. Secondly, even where exhumational
overprinting is weak, individual packages of rock within these complexes record subduction and
tectonic accretion over several million to tens of millions of years, thus aggregating deformation
over much longer timescales than individual SSEs. Thirdly, there are debates as to whether the
rocks we see exhumed to the surface are representative of ‘average’ subduction zones. van Keken
et al. [128], for example, suggested that exhumed blueschist-eclogite terranes may reflect only
young oceanic lithospheric slices based on a data compilation by Penniston-Dorland et al. [110]
indicating that rocks were hotter than thermomechanical model predictions. A more recent
compilation by Agard et al. [111], however, shows good agreement between models and P-T
trajectories of recovered rocks.

Despite these challenges, there are subsets of the global array of exhumed subduction
complexes that overlap in PT conditions, and that preserve both transient and long-term
deformation features that may correlate to the SST source region and process. Studying these
exposures can provide key insights into (a) the rock types that occupy this depth range on the
plate interface and potential sources of rheological heterogeneity, (b) steady-state and transient
deformation mechanisms and modes, (c) effects of metamorphic reactions, and (d) fluid migration
patterns and permeability pathways. Here, we summarize some of the primary insights into the
SST source region and mechanisms that have been or can be gleaned from studies of exhumed
rocks.

(a) Materials in the SST source region and their significance

Exhumed subduction complexes tell us which rock types make it to the deep subduction
environment without being scraped off in the shallow accretionary prism, and, simultaneously,
which rock types become stranded on the deep interface rather than subducting ultimately into
the mantle. The process that strands rocks at these depths is referred to as tectonic underplating,
which is the progressive transfer of material from the down-going plate to the upper plate and
the associated down-stepping of the plate interface (cf. table 1) [112,129-133]. Once individual
slices are accreted through the underplating process, they become part of the upper plate forearc
crust as the subduction interface migrates downward. Geologic observations of deeply exhumed
subduction complexes indicate that sediments, oceanic crustal slices, and mantle slivers are all
capable of becoming underplated at and around the SST source depth (figure 6).

Sedimentary protoliths involved in oceanic subduction shear zones typically include cherts,
shales, greywackes and pelagic carbonates [136], metamorphosed with progressive subduction
to produce schists with variable quartz-mica ratios, meta-cherts (quartzites) and marbles,
respectively. Metasedimentary rocks are more abundant in exhumed subduction complexes than
expected for their predicted thicknesses on the seafloor, suggesting the deep subduction interface
is an important sediment reservoir due to the underplating process [111,137]. The presence
of these metasediments has implications for SST, including that (a) they may help explain
the correlation between SST and the LVL [30,31,138], (b) they provide an important source of
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Figure 6. An example of a subducted, underplated and exhumed mafic-ultramafic complex associated with Tethys oceanic
subduction preserved in the Western Alps. The complex consists of several slices of basaltic and gabbroic oceanic crust separated
by high strain serpentinite and chlorite schist melange shear zones. The melange zones contain blocks of metasediments,
eclogite-facies and lower-grade metabasalts and serpentinized peridotites, representing imbricated slivers of oceanic crust and
mantle. Tectonic sketch map and cross section modified from [134]. Map view of Lago Superiore melange modified from [135].
(Online version in colour.)

fluid compositions not present in volcanic oceanic crust [139-141], and (c) they are generally
rheologically weaker than their mafic counterparts [126,142,143].

Oceanic crustal slices are also commonly preserved in deep subduction complexes, with
protoliths that include both highly altered and pristine seafloor basalts, as well as intrusive
oceanic crustal sequences such as sheeted dykes and gabbros [55,144]. These suggest that various
depths of oceanic lithosphere become entrained or sliced off during progressive subduction
[129,145,146]. Despite these protoliths all being similar in bulk composition (i.e. mid-ocean ridge
basalt), their rheological properties on the subduction interface may change drastically as a
function of initial sea-floor alteration, and metamorphic grade. Originally fine-grained, altered
basalts, for example, are often tightly folded with pelagic metasedimentary cover sequences
on the deep interface (e.g. figure 7), whereas originally coarser-grained gabbroic or unaltered
basaltic lenses are more typically incorporated as boudinaged blocks and/or underplated as
intact slabs, especially when they have been eclogitized (figure 8) [147-150]. The intact oceanic
crustal fragments may be important for SST because they may correspond to multi-kilometre-
scale lineaments or smeared ‘asperities’ on the plate interface that could guide migrating slow slip
fronts or tremor bursts in an along-strike and /or downdip direction (e.g. [67,151,152]), depending
on interface kinematics and the degree of finite strain accumulated in the surrounding rocks.
These mafic fragments may also act as permeability barriers once accreted to the upper plate
(cf. §3d and figure 13).
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Figure 7. Example of viscous deformation patterns that accumulate over long timescales at SST source depths, from
the blueschist-facies (7 =~ 450°C, P = 9-11kbar) Condrey Mountain schist in the Klamath Mountains of northern
(alifornia/southern Oregon. (a) A massif with metasediments tightly folded around a blueschist-facies metabasaltic lens, likely
representing an older thrust fault contact, now transposed by distributed viscous deformation. (b—c) Graphitic mica schists
(b) and quartz schists (c) showing two prograde subduction-related fabrics and several generations of quartz veins variably
transposed by the youngest schistosity. While the quartz veins may have formed during transient deformation pulses, the record
of this process becomes dismembered due to accumulation of viscous deformation over comaratively long timescales. (Online
version in colour.)

Mantle peridotite slivers (typically serpentinized) are preserved in relatively small volumes
in deep subduction complexes and have three potential sources: the down-going slab, supra-
subduction zone ophiolites derived from the shallow forearc, and deeper mantle wedge material
derived from beneath the upper plate Moho. Derivation from the down-going slab may relate
to fracture zones or to abyssal peridotites already exposed on the seafloor, suggesting slow
mid-ocean-ridge spreading environments and oceanic core complexes [153,154]; or it may imply
especially deep slicing into the down-going slab during underplating [146,155]. Derivation
from supra-subduction zone forearc ophiolites or deeper upper plate mantle wedge requires
a subduction erosion environment, characterized by entrainment of upper plate material into
the subduction shear zone, and usually indicates low sediment supply and/or variations in
slab topography [156-159]. The observation that mantle slivers may be incorporated into the
subduction shear zone near the trench is important to understanding SST because it implies that
ultramafic rocks can be involved as a dehydrating source rock, a weak rheological heterogeneity,
and/or a fluid channel or barrier at even shallower depths along the plate interface than the
mantle wedge corner.
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Figure 8. Examples of frictional-viscous deformation in a blueschist-facies shear zone on Syros Island in Greece, modified from
[148]. (a) Lensoidal mafic eclogite pod (approx. 2.5 m in length) embedded in a blueschist and quartz schist matrix. (b) Zoom
in on the base of the eclogite pod showing brittle shear veins filled with high pressure minerals (e.g. glaucophane). The brittle
shear veins culminate in discrete ductile shear zones in the surrounding blueschist matrix, indicating coeval frictional viscous
slip. (c) Zoom in on the flanks of the eclogite pod where several generations of quartz veins were emplaced and subsequently
sheared in a top-right shear sense, indicating cyclical switches from brittle vein emplacement at high pore fluid pressures to
viscous creep and back again (cf. figure 10a). (d) Sketch illustrating the inferred cyclical development of the quartz vein set in
(). The veins show repeated opening and precipitation parallel to Sigma3 (horizontal) followed by progressive rotation in the
shear direction. (e—f) Panoramic photo of the entire outcrop highlighting the distribution of brittle eclogite pods and their vein
structures, within the dominantly viscously deformed matrix. (Online version in colour.)

(b) Deformation styles and mechanisms on the deep interface

(i) Long term deformation patterns

The subduction, underplating and exhumation histories, and the temperatures around and above
the brittle-ductile transition within deep subduction complexes, mean that the majority show
distributed, polyphase ductile deformation to very high strains. It is common for even the
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simplest exhumed rocks to preserve three deformational fabrics, including (1) an early prograde
fabric cryptically preserved in the cores of later folds and/or as inclusion trails in metamorphic
porphyroblasts (e.g. garnet), (2) a penetrative fabric formed at near-peak metamorphic conditions,
and (3) a variably developed overprinting fabric produced during later exhumation (e.g.
[160-165]). The transition from one fabric to another is often accompanied by changes in
kinematics, including tectonic transport direction and/or strain geometry (e.g. [160,166]). Rocks
deformed in this distributed ductile manner on the subduction interface can form coherent tracts,
continuous across multiple lithological boundaries and previous tectonic contacts (e.g. thrust
faults), suggesting that over long timescales the plate interface can be several kilometres in
width (figure 7), consistent with multichannel seismic evidence for a thick shear zone in the
SST source region [16,167,168]. Even where these coherent terranes have escaped exhumational
overprinting, they represent deformation integrated over a minimum of approximately 0.5 Myr
(based on maximum subduction rates and slab dips). At these timescales, bulk deformation is
accommodated by viscous flow in the weaker subducted units, involving both pressure solution
(most common in metasedimentary and fine-grained mafic rocks) and dislocation creep (in
some mafic rocks or quartz-rich metasedimentary rocks and veins) [169-173]. Where shear stress
magnitudes have been estimated from recrystallized grain size piezometers in quartzites and/or
from experimental flow laws, they are typically under 10 MPa [170,174-178]. These long-term
deformation patterns are relevant to understanding the SST source region firstly because they
reflect deformation processes that dominate over many earthquake cycles, and secondly because
of the frozen-in seismic velocity /anisotropy signals they store along the plate interface, which can
remain long after the active subduction interface has migrated structurally downward.

(ii) Transient deformation patterns

Given the frequency at which SST events recur (days to months, cf. table 3), and that in some
localities SST accommodates between 60% and 100% of the total plate boundary slip budget (e.g.
[58]), it can be inferred that a significant fraction of the deformation accumulated over million-
year-timescales is produced in the short term by SST processes. In making comparisons from the
rock record to the SST source region, we are therefore interested in detecting transient deformation
signals embedded within the integrated subduction history described above. We distinguish
transient features in the rock record as spatial changes in deformation mode, from distributed
ductile flow, to synkinematic fracturing, frictional sliding or accelerated viscous creep, which
implies a local switch to strain rates elevated above a background steady state [189-195].

There are two key challenges in interpreting transient features in the rock record, however.
Firstly, how elevated the strain rates were is very difficult to quantify from the rock record [196],
although some estimates can be gleaned from correlating deformation mechanisms in the rocks to
experimental flow laws. The ‘smoking gun’ for recognizing seismic strain rates is pseudotachylite
(but see [197] for a summary of other potential indicators of seismically generated frictional
heating). Pseudotachylite is described for only one of the 30-50-km-deep exhumed subduction
interface localities shown in figure 1 (Corsica [198]), whereas they are described for a handful of
subduction complexes exhumed from the shallow subduction interface (e.g. [199-202]). This may
imply that fast seismic slip along the deep interface is rare, consistent with seismic observations
of modern subduction zones, and with the elevated temperature conditions expected for the deep
megathrust. However, the generation of frictional heat is sensitive to both the velocity of slip and
the shear stresses, so their absence does not rule out the possibility of seismic slip on the deep
interface where shear stresses may generally be very low. The second challenge is that transient
deformation features are bound to be only minimally preserved because in many places they are
erased by the longer-term aseismic creep process (cf. figure 7).

One of the most widely documented potential markers of transient deformation in subduction
complexes are ‘melange belts’, which we loosely define here as localized high strain shear zones
in which blocks of higher viscosity material are embedded in a less viscous matrix [203—206].
These most commonly develop in rheologically weak geological units such as phyllosilicate-rich
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metasediments and serpentinites, and contain mafic or ultramafic slivers or blocks such as
coarse-grained amphibolites, eclogites and/or relict peridotites. Experimentally derived flow
laws for this range of subduction zone materials predict viscosity contrasts of up to 4 orders
of magnitude in the temperature range of SST (see compilation in fig. 2 in [143]). Melange
belts are potential culprits for transient deformation firstly because they are characteristically
narrower than coherent terranes, implying that they record elevated strain rates, and secondly
because the deformation mechanisms they record are nearly always combined frictional-viscous
creep at a variety of length scales, e.g. [190,207,208]. That is, due to their high viscosities, the
clasts within these melange belts cannot yield viscously and instead accommodate fracture and
frictional sliding through veining and faulting that is synkinematic with viscous strain in the
surrounding matrix (figures 8 and 12). The brittle deformation in the clasts can be triggered
by stress concentrations generated at clast margins and/or by transient increases in pore fluid
pressures (e.g. [209-212]). This combined frictional-viscous mechanism of deformation commonly
produces S-C-type fabrics similar to those observed in mylonite zones near the brittle-ductile
transition in continental shear zones (e.g. [213]).

An additional possible form of transient frictional-viscous creep that does not necessarily
require significant lithological variations are localized shear zones that appear to have
deformed by some combination of pressure solution, frictional sliding on phyllosilicate
laminae or cleavage planes, and dilational micro-cracking [214,215]. Pressure solution involves
the dissolution of soluble minerals in the direction of maximum compressive stress and
reprecipitation in the extension direction [216-218]. This process segregates insoluble minerals,
such as micas, amphiboles and oxides, forming discrete and highly anisotropic cleavage
domains, from soluble phases such as quartz precipitated in veins and microlithons at
varying angles to the cleavage domains. Several subduction complexes deformed under
greenschist and blueschist-facies conditions show evidence for shear slip along weak cleavage
planes (e.g. [219,220]) or along kink-like micaceous crenulation bands [175] that appear
kinematically linked and coeval with incremental precipitation into dilational fractures (figures 9
and 10).

(iiii) Transient deformation and fluid pressures

The two types of transient deformation features described above are ubiquitously associated
with evidence for cyclical variations in fluid pressures (figure 10). Veins themselves represent
tensile fractures, which require the pore fluid pressures to locally exceed the magnitude of the
minimum compressive stress [221-223]. The occurrence of purely extensional veins oriented
at high angles to the shear fabric in these systems imply approximately lithostatic pore fluid
pressures and low differential stresses. It is common for the interior of dilational veins to exhibit
‘crack-seal” textures that reflect precipitation pulses [219-223,225-228]. In some instances, these
show changes in composition of the fluids at approximately constant metamorphic conditions,
evidenced by different mineral precipitates from the same metamorphic facies forming in a single
vein over time (e.g. [151]). Additionally, in some blueschist and eclogite terranes, garnet zoning
patterns appear most consistent with short-timescale growth-dissolution cycles driven by fluid
pressure pulses, as opposed to long-term changes in metamorphic conditions (e.g. [228]). Even
where crack-seal textures are not present, cross-cutting relationships among vein sets can show a
repeating progression of vein opening, infilling, and rotation into the shear plane by ductile creep
processes (e.g. figures 8 and 10a). There are also examples of mutually cross-cutting relationships
between veins opened both perpendicular and parallel to the shear zone fabric, suggesting
transient switches in the orientation of the maximum compressive stress, also indicative of very
high pore fluid pressures (figures 9 and 10c) [220]. These lines of evidence for high pore fluid
pressures from the geology are consistent with the geophysical observation of tidal triggering of
SST events; additionally, the high fluid pressure is observed over a wide range of metamorphic
conditions (greenschist to eclogite facies) and are thus also consistent with the observed high
Vp/Vs ratios of the seismic LVL discussed in §2a.
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Figure 9. Examples of transient deformation features preserved in the Makimine melange in the Shimanto accretionary
complex in Japan, modified from [220]. (a) Mutual cross-cutting relationships between melange pressure solution cleavage
and extensional shear fractures cf. figure 10b. (b) Coexistence of foliation-parallel and foliation-perpendicular veins suggesting
transient switches in the orientation of sigma-1 with respect to the shear plane. (c) Quartz slickenfibres developed on foliation
parallel veins highlighting a shear component. (d) Photomicrograph of crack-seal texture in foliaton-parallel dilational shear
veins, indicating many stages of fracture opening and precipitation. (Online version in colour.)

(iv) Transient deformation length- and time-scales

The transient rock deformation patterns showing a combination of accelerated viscous creep, and
cyclical frictional deformation triggered by high fluid pressures qualitatively resemble inferences
from geophysical observations of SST (e.g. its correlation with a seismic LVL, high fluid-pressures
and low effective stresses inferred from tremor-tide correlations). We can also attempt to make
semi-quantitative comparisons of the length- and timescales of transient geologic features relative
to SST events.

First considering length scales, geophysical data suggest the dimensions of individual LFE
families is between 100 m and 1 km, and slip-per-event ranges from 0.05 to approximately 3 mm.
In geologic exposures, shear and dilational displacements, where recorded by offset features, vein
widths or crack-seal textures, are very similar in magnitude to LFE slip (figure 11), suggesting they
could relate to the LFE source. However, the slip area of individual veins or shear surfaces in rocks
are typically less than 1m, at least one order of magnitude lower than the minimum size inferred
for LFEs from seismology. However, vein sets and shear fractures do commonly cluster in discrete
patches, e.g. in shear zones where high viscosity blocks, metamorphic reactions and/or high
fluid pressures are concentrated. The length scales of these patches are more compatible with the
inferred length scales of LFEs (figure 11). Thus, if we entertain the possibility that displacements
within the patches are able to ‘communicate” over the areas of their geologic exposure, estimated
moments are more similar to those inferred from LFEs. Achieving moments characteristic of some
of the larger geodetically detected slow slip events would then require this ‘communication’
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Figure 10. Examples of changes in mechanical state (brittle to ductile) during transient deformation under high pore fluid
pressures, as based on vein and fabric relationships in melange belts. (a) A scenario in which viscous pressure solution creep
dominates long term deformation and controls the orientation of finite strain. Extensional fractures (commonly including a
shear component) form during transient high pore fluid pressure pulses, and are subsequently viscously deformed and rotated
during inter-event periods (see [148] and f. figure 8). (b) A scenario in which weak cleavage planes formed by viscous creep may
evolve into shear fractures oriented at high angles to the maximum principal stress (Sigma-1) due to low cohesive strength and
simultaneous high fluid pressures. These shear fractures can be activated at the same time as (and rate-limited by) precipitation
into extensional veins (see [190]). (c) A scenario in which there are mutual cross-cutting relationships between dilational
fractures oriented at both high and low angles to the melange fabric, suggesting transient switches in the orientation of Sigma-1,
also an indicator of near-lithostatic pore fluid pressures (see [220] and cf. figure 9). (Online version in colour.)

process to extend to even larger scales, linking up heterogeneous patches both along strike and up
and downdip; or, alternatively, it would require heterogeneous patches of much larger dimension
to exist on the deep interface such that what we see in rocks is a minimum length scale due to the
exhumation context in which we view them.

In now considering timescales, the geophysical data indicate that recurrence intervals of SST
events are on the order of months to years, whereas LFEs belonging to an SST family recur
in seconds to days, with hundreds of LFEs within each SST event. As discussed in §2b, LFE
recurrence has been interpreted as either repeat failure of a single asperity, or adjoining failures
within a relatively tight cluster of asperities. If, as discussed above, we interpret clusters of
dilational shear fractures as the geologic record of these failed asperities, healing rate estimates
become essential to quantifying likely recurrence times. In the case of block-in-matrix-type
melanges, for example vein closure can lead to restrengthening and restoration of cohesion in
blocks while simultaneously causing fluid pressure build-ups due to decreased fracture porosity
and permeability. And in the case of frictional shear on weak interfaces combined with dilation,
the slip process itself will be rate-limited by vein precipitation, e.g. [219]. If very fast healing
is assumed, then shear veins opening and closing along a single fault plane with LFE source
dimensions may explain LFE recurrence and source. Alternatively, if the LFEs are sourced from
heterogeneities within a three-dimensional shear zone, then they may represent distributed
dilational shear events that occur rapidly, but in different locations within a thick SST slip zone. In
the latter case, vein healing rates could more closely match the recurrence interval of SST events,
rather than individual LFEs.
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Figure 11. Comparison of source areas and event displacements from active and fossil subduction zones. Displacements from
the geological record are based on the widths of crack-seal vein increments and/or measurable shear displacements within
shear veins or along faults. LFE source areas and slip are based on the assumption of single-patch failures, except in the models
of Chestler and Creager, which assume either 3—10 distributed sources in a ductile matrix or contiguous slip patches make up
an LFE-family source area. Source areas are estimated from the mapped area of map-scale heterogeneities (e.g. mafic blocks
or melange zones) resolved onto a plane oriented parallel to the dominant subduction foliation (cf. [148]), or from estimates of
the length of planar faults or shear zones as described by the authors (in which case equal length and width dimensions were
assumed). In some studies, displacements were reported but information on possible source area could not be gleaned—these
are plotted as dashed horizontal lines. (Online version in colour.)

Estimates of healing rates have been examined theoretically, in laboratory experiments, and
via natural observations, but proposed timescales for subduction zone settings vary over several
orders of magnitude [225,233-235]. Ujiie et al. [220] used a kinetic model for quartz precipitation
driven by fluid migration [236], and estimated that crack-seal textures in a low temperature
(approx. 300°C) frictional-viscous shear zone had a minimum healing time of 1.6-4.5 years,
generally longer than typical SST recurrence times. This model also predicted a fluid pressure
drop of greater than 150 MPa, much larger than the less than 10 MPa estimates of [46]. Recent
kinetic models inspired by natural melange shear zones by Fisher et al. [237] examined the
rates of diffusive redistribution of Si from melange matrix to blocks for two potential driving
forces: (1) a transient drop in fluid pressure, and (2) a difference in mean stress between
matrix and clasts. Their application of the model to geothermal gradients typical of subduction
zones suggests minimum healing times of 10-100 years over the depth range corresponding
to SST (approx. 30-50km), again much longer than SST recurrence intervals, but perhaps
more comparable to earthquake recurrence. In contrast to these estimates of annual to decadal
timescales, early experiments by Brantley et al. [238] and Smith & Evans [233] suggested that
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crack healing in quartz can be very rapid, completed within hours at temperatures as low as
300°C. Additionally, recent work using Li diffusion modelling on transport veins in an eclogite
melange block in New Caledonia suggested vein precipitation occurred in one to four months
[239]. More estimates like this from experiment and natural observation will ideally help calibrate
theoretical models and provide more insight into links between vein precipitation and SST
phenomena.

(c) Geologic constraints on the role of metamorphic reactions

The depth estimates discussed in §2, coupled with the modelled geothermal gradients in modern
subduction zones that host SST events suggest that the SST source spans the upper greenschist
through blueschist and into lower pressure eclogite and high pressure amphibolite facies for
sediments and mafic rocks, and antigorite facies for serpentinized peridotites in the mantle wedge
(figure 3) [240]. There are many metamorphic reactions within this range of conditions, several
of which involve dehydration and volume reduction [241]. We distinguish two timescales over
which these reactions can influence transient deformation patterns that could correlate with
seismic phenomena, including SST.

Firstly, reactions themselves can generate instantaneous shear instabilities due to liberation of
water [242,243] and/or precipitation of new unstable phases [244,245]. Breakdown of lawsonite
and antigorite serpentine, two phases expected to be present in the SST source region, are
especially well-studied examples that exhibit instantaneous ‘dehydration embrittlement’ in
laboratory experiments, defined by the development of localized fault planes and/or acoustic
emissions [246-250]. Additionally, reaction kinetics experiments on lawsonite and antigorite
indicate these reactions are rapid, inducing high fluid discharge rates on the order of 107> to
108571 (e.g. [251,252]), which is 1-5 orders of magnitude slower than estimated strain rates of
viscous relaxation (107°-10~1 s1) (e.g. [253]), supporting the idea that dehydration can lead to
instantaneous hydrofracture. These reactions have been implicated in both intermediate depth
slab seismicity [247,254] and as possible contributors to SST [240,255-258].

To identify instantaneous dehydration embrittlement in the geologic record, we would look
for transient deformation features (i.e. highly localized shear zones) in close association with the
mineral reaction products. Interestingly, examples of shear instabilities associated directly with
lawsonite dehydration reactions in exhumed rocks have thus far not been documented. There are
in fact several descriptions of pristine lawsonite pseudomorphs formed on the prograde path with
no evidence for closely associated brittle faulting or localized shear strain [259-264]. By contrast,
there are a few examples of shear slip generated in close association with antigorite dehydration
in the field [245,265]. Some of the best examples come from the Voltri Massif (Erro Tobbio unit)
in the Italian Alps where partially hydrated peridotite bodies and serpentinite mylonites exhibit
synkinematic shear bands and hydraulic fractures decorated with fine-grained reaction products
of antigorite breakdown [266-268]. These may be analogues for tremor signals located in the
upper plate of subduction zones near the Moho.

The observation that SSTs do not correlate specifically with a single metamorphic reaction
or facies, however, but span several of them (figure 3), suggests that instantaneous shear
instabilities cannot uniquely explain these events. Perhaps more compelling is the concept that
reactions result in gradual precipitation of new minerals and/or gradual increases in fluid
contents and pressures with increasing reaction progress and strain, eventually culminating
in transient deformation pulses in the bulk rock. Evidence for this progression is abundant
in the rock record and affects a wide range of rock types (and not just in subduction zones,
e.g. [269,270]) [271]. The progressive growth, alignment, and concentration of micas in low- to
medium-grade subduction interface rocks, for example, has been postulated to strongly influence
megathrust seismic behaviours (e.g. [215,272]). Additionally, at the transition from blueschist
to eclogite facies conditions in metabasalts, a switch from bulk ductile deformation in the
blueschist to brittle deformation in eclogite is commonly observed, with newly formed lenses
of eclogite exhibiting fracturing, boudinage, brecciation and/or abundant veining (figure 8)
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Figure 12. Images modified from Tarling et al. [276] illustrating the interplay between chemical reactions and fluid overpressure
in a mantle wedge-type setting. The primary metasomatic reactions captured in this shear zone involved the addition of Si and
(a from fluids derived from adjacent metasedimentary schists, producing reaction products such as talc, tremolite, diopside and
water. (a) Field photo of the 400-m-wide serpentinite shear zone associated with the Livingstone Fault in New Zealand. Inset
shows the location of the Livingstone Fault in New Zealand (b) Schematic cross section across the shear zone along profile X-Y.
The shear zone contains blocks of schist (grey), massive serpentinite (dark green) and rodingite (light orange) embedded in
a strongly foliated serpentinite matrix. (c) Slickenlines on a frictional slip surface developed within the metasomatic reaction
zone. (d) Polished slab showing several cataclastic slip surfaces coated with serpentinite cutting across multiple generations of
folded and dismembered tremolite veins. (Online version in colour.)

[151,226,273,274]. The switch in deformation mode is interpreted to reflect both a viscous
hardening of eclogite relative to its blueschist precursor, and an increase in fluid pressures
induced by blueschist mineral dehydration [148,151]. In rocks exhumed from conditions similar
to the mantle wedge corner, where peridotites are infiltrated by slab-derived fluids, strain
commonly localizes into newly formed, narrow, antigorite shear zones (e.g. [266,275]) and in some
places shows evidence for reaction-related fluid overpressures and associated frictional-viscous
shear [245,257] (figure 12). The concept of fluid overpressure driven by abundant metamorphic
reactions is consistent with the greater propensity for SST events to occur in warm subduction
zones, as they release more fluids at comparatively shallower depths than cold subduction zones
(e.g. [42,277]).

(d) The role of fluid migration and permeability

Exhumed rocks from deep subduction environments have proven a rich data source for
understanding the role of fluids on the subduction plate interface [278,279]. As discussed in
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previous sections, there are several prominent sources of fluids anticipated at the SST source
depth due to metamorphic reactions in both metasedimentary and mafic/ultramafic rocks,
and exhumed rocks unequivocally preserve evidence for abundant fluid activity. Of particular
relevance to SST is whether the exhumed rocks preserve information about migration distances
and pathways of subduction fluids, and/or spatiotemporal changes in permeability.

Given the recurrence intervals and slip characteristics of SST events (cf. table 3), diffusional
fluid flow processes such as grain boundary or volume diffusion are likely too slow to be
relevant (e.g. [280]), so we’re most interested in understanding the advection of fluids through
vein networks, and along lithological contacts or shear zones, which, as discussed in §3b, are
abundant in exhumed subduction complexes. Both structural and geochemical observations shed
light on this process. Some exhumed rocks show clear cross-cutting relationships and mineral
assemblages among vein networks, such that different generations can be used to estimate the
structural permeability of the rock mass under varying metamorphic conditions [194,281-283].
Vein textures themselves also provide some clues, with ‘transport veins’ showing sharp interfaces
with the host rock, in contrast to in situ dehydration veins, which exhibit diffusional depletion
halos at their margins [279,284]. Major and trace-element data and isotopic compositions can also
be used to establish whether fluids represented by veins were derived from local dehydration
(implying limited transport) or from external sources (implying significant fluid transport)
[278,279].

An intuitive, first-order observation that emerges from these complementary methods is that
open-system fluid—rock interactions and km-scale fluid migration is much more prominent for
localized high strain shear zones and melange belts than for coherently underplated mafic
terranes that become attached to the upper plate forearc crust above the interface (figure 13)
[278,285-287]. In subduction complexes where weakly deformed slices of oceanic lithosphere
metamorphosed at blueschist and eclogite facies are exhumed, for example, they dominantly
show evidence for local fluid circulation and fluid entrapment [288-294], although there are some
examples of fluid focusing into higher permeability transport veins [295]. Indicators of large-scale
open system behaviour or fluid transport into or out of weakly or undeformed mafic slabs are
limited though, and the few documented examples suggest fluid migration length scales only of
the order of tens of metres [296,297]. These relationships thus far imply that underplated and
metamorphosed oceanic crustal slices occupying the deep forearc generally act as barriers to
fluid flow on the deep interface; they may therefore form transient or long-lived fluid pressure
seals.

In many subduction complexes, however, previously underplated and eclogitized mafic
fragments become incorporated within the subduction shear zone during exhumation from
eclogite through greenschist facies conditions. Once incorporated, these oceanic fragments tend
to gradually lose their impermeable quality as they begin to fracture, boudinage and disperse
into the shear zone matrix [285,287,298,299]. They may still retain lower permeabilities than the
surrounding matrix rocks, however, and can therefore produce large spatial gradients in fluid
flux, with the largest fluxes produced in the matrix adjacent to blocks with long-axes oriented
parallel to the foliation [285]. Evidence for metasomatism by an external fluid source in these
melange or block-in-matrix shear zones abounds. Some key indicators include: (a) substantial
addition of Si relative to the melange host rocks, usually in the form of multiple generations of
veins of varying orientations to the shear zone foliation [283]; (b) the development of reaction
rinds (a.k.a. ‘blackwall alteration zones’) around melange blocks [286,300,301]; and (c) isotopic
homogenization of the melange matrix [302].

The phyllosilicate-rich matrix materials that compose melange belts and subduction shear
zones are also notoriously anisotropic such that these shear zones dominantly host fluid flow
in the plane of the foliation, approximately parallel to the plate interface, therefore promoting
fluid migration to lower pressure regions updip [38,303]. Experiments on antigorite serpentinite,
for example, show at least one order of magnitude higher intrinsic permeability parallel to
foliation than normal to it [38]. Updip fluid flow can also be traced in the rock record by
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Figure 13. Summary schematic view of the subduction plate interface as inferred from the exhumed geologic record. (Online
version in colour.)

linking fluid geochemistry preserved in veins to deeper metamorphic reactions from which the
fluids were liberated. Angiboust et al. [287], for example, used major and trace-element data
from metasomatized eclogites from the Lago Superiore Unit in the western Alps to argue for
approximately 20-30km of updip flow of fluids sourced from antigorite breakdown reactions
downdip. Nishiyama et al. [304] recently documented high salinity, high 3He/4He fluids in
strongly sheared greenschist-facies metasediments, also interpreted to represent mantle derived
fluids transported updip from the mantle wedge.

Combined, the observations above suggest that underplated tracts of mafic oceanic fragments
attached to the forearc crust, and associated meta sediment- and/or serpentinite-rich melange
belts that occupy interface shear zones, are likely to strongly suppress vertical fluid flow, such
that elevated pore fluid pressures are expected to be at least transiently sustained along the
interface.

(e) Ageological model of the SST source region

Figure 13 provides a synthesized view of the subduction plate interface as inferred from the
exhumed geologic record and integrated with the geophysical observations discussed in §2. The
interface is depicted as grading downward from a discrete megathrust fault and associated brittle
fault splays to a wider, distributed, frictional-viscous shear zone and eventually to a zone of fully
viscous shear. Through time, the active portion of the subduction interface migrates downward
such that earlier subducted material is left stranded above the actively deforming zone—these
underplated terranes may control the seismic velocity signatures and/or permeability structure
of the broader subduction interface. The deep subduction shear zone can entrain fragments of
the downgoing slab, including sediments, altered and unaltered oceanic crustal fragments, and
variably serpentinized peridotite. Metasedimentary rocks tend to deform as broadly distributed
viscous tracts over long timescales, but they record evidence for transient deformation under
high Pf. Mafic rocks commonly form coherent pods or tabular lenses that accommodate transient
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brittle deformation triggered by fluid pressure cyclicity and stress concentrations at their margins.
Serpentinized mantle material, whether entrained from the down-going slab or the upper plate
mantle wedge, form high-strain shear zones that show evidence for anisotropic, updip fluid-flow
and high fluid pressures accentuated by abundant chemical reactions. In this model of the
interface, tremor and LFEs could concentrate in low vertical-permeability, frictional-viscous
melange belts where fluids are trapped and rocks types are mixed. LFE migration and streaking
along-dip and along-strike during ETS events could be controlled by the distribution of deformed
and underplated mafic lineaments. Long-term SSEs without tremor could represent regions in
which the frictional heterogeneities in melange belts are too small or widely distributed to permit
detection of LFE sources.

4. Summary

The preceding overview of the geophysics and geology of the deep subduction interface
illustrates the considerable progress being made toward understanding the structure, materials
and environment of deep-seated episodic tremor and slow slip (cf. figures 2 and 13). The
geophysical record illuminates the close spatial and temporal relationship between low frequency
earthquakes and slow slip events, the fluid-rich and high-fluid-pressure habitat that these forms
of unconventional seismicity occupy, and the length scales, timescales and mechanisms that
define SST slip processes. The geological record strongly supports the concept of abundant fluid
migration and high fluid pressures over a range of depths along the plate interface, which may
correspond well to the observations of tremor-tide correlations that require very close to lithostatic
pore pressure, and the very high Vp-Vs ratios that also indicate high pore fluid pressures observed
in modern subduction zones. Additionally, the most prominent form of transient deformation
preserved in rocks from this environment involves an interplay between frictional and viscous
mechanisms modulated by cyclical fluid pressure variations and defined by combined shear
and vein precipitation. Although each individual transient deformation feature preserved in the
rock record is small, the displacements they record, and the total outcrop areas where they are
clustered, scale reasonably well with inferred seismic moments of low frequency earthquakes.
Key uncertainties and questions remain, however, including the following.

(1) Do LFEs represent repeated (over timescales as short as minutes) rupture of small
asperities on a single fault plane or are they distributed over a finite-width shear zone? In
the former case, which structures would constitute these discrete fault planes in the rock
record? In the latter case, what mechanisms (e.g. fluid—pressure diffusion, viscoelastic
stress transfer) allow transient deformation features to communicate within a more
distributed shear zone to form a coherent LFE ‘patch’, and to reliably participate in
frequently recurring SST events that propagate over 10s of km distances? Addressing
these questions would require further improved LFE locations from geophysics, and
better constraints on interface shear zone matrix rheology, fluid migration rates and vein
precipitation timescales from geology and experiment.

(2) What geological processes distinguish the diverse timescales and recurrence intervals of
LFEs and SSEs? What is the relative importance, to fluid pressure buildup and associated
valve-like fault behaviour, of processes that generate additional fluids (e.g. metamorphic
reactions, updip fluid flow), versus those that trap fluids in place (e.g. vein closure, shear-
induced permeability changes)? Improved estimates of reaction kinetics, rates of fluid
flow, and rates of vein mineral precipitation could help us link these various processes to
specific timescales within the diverse spectrum of slow slip transients.

(3) Are the characteristics we summarize for the SST depth range unique to the deep
interface? Although we focused here on the deep SST zone, tremor and slow slip on the
shallow subduction interface of some subduction zones share characteristics with those
observed deeper (e.g. [305-307]). However, shallow slow slip is also often associated
with abundant microseismicity, indicative of a different thermal environment, contrasting
dimensions and physical properties of frictional heterogeneities, and/or variations in
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local seismic attenuation (e.g. [308]). Nonetheless, the geologic record preserves many
of the same features updip of the locked megathrust as it does below it—e.g. wider,
more distributed interface shear zones, mixed-lithology melange belts and abundant
veining triggered in the shallow case by escape of pore waters and dehydration of clay
minerals. Could slow slip and tremor simply be the ‘motion and sound’ of distributed,
rheologically heterogeneous deformation?

(4) What distinguishes short slow slip events that are accompanied by abundant tremor
and LFEs (e.g. as observed ETS in Cascadia and Nankai) from long-term, sometimes
‘tremorless’ SSEs (e.g. as observed in New Zealand)? And what distinguishes portions
of ETS slip zones that apparently produce little or no tremor (e.g. [17,182])? Are the
different behaviours due to differences in fluid pressures, rock deformation mechanisms,
and/or distributions and sizes of mechanical heterogeneities? Are tremor/LFE sources
not present in these instances, or are they simply too small to detect?

(5) Can the wide range of geophysical and geological observations inform the development
of meaningful new approaches to modelling fault slip in the SST zone? Ultimately,
improved constraints on what’s down there; i.e. the rocks, macro- and micro-structures,
fluids and reactions, need to be distilled down into meaningful fault-zone model
parameters, such that we can better represent the (time-dependent) boundary conditions
and geometry of the ETS system. Detailed information about the dynamic evolution of
slow slip and tremor failures and their response to changing conditions and external
forcing should allow for improved characterization of the spatio-temporally variable
deformation, dominant deformation processes and relevant rheological properties.
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