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Forecasting the weather is an increasingly data-
intensive exercise. Numerical weather prediction
(NWP) models are becoming more complex, with
higher resolutions, and there are increasing numbers
of different models in operation. While the forecasting
skill of NWP models continues to improve, the
number and complexity of these models poses a
new challenge for the operational meteorologist: how
should the information from all available models,
each with their own unique biases and limitations,
be combined in order to provide stakeholders
with well-calibrated probabilistic forecasts to use in
decision making? In this paper, we use a road surface
temperature example to demonstrate a three-stage
framework that uses machine learning to bridge
the gap between sets of separate forecasts from
NWP models and the ‘ideal” forecast for decision
support: probabilities of future weather outcomes.
First, we use quantile regression forests to learn
the error profile of each numerical model, and
use these to apply empirically derived probability
distributions to forecasts. Second, we combine these
probabilistic forecasts using quantile averaging. Third,
we interpolate between the aggregate quantiles in
order to generate a full predictive distribution,
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which we demonstrate has properties suitable for decision support. Our results suggest that
this approach provides an effective and operationally viable framework for the cohesive
post-processing of weather forecasts across multiple models and lead times to produce a
well-calibrated probabilistic output.

This article is part of the theme issue ‘Machine learning for weather and climate modelling’.

1. Introduction

The importance of weather forecasting for decision support is likely to increase as we progress
into times of changing climate and perhaps more frequent extreme conditions [1]. Any
methodological developments that can improve our ability to make the optimal decisions in the
face of meteorological uncertainty are likely to have a real impact on all areas that use weather
forecasts.

Since the inception of meteorology as a mathematical science, driven by the likes of Abbe [2],
Bjerknes [3] and Richardson [4], numerical modelling has been the core methodology of weather
forecasting. In 2015, Bauer et al. [5] reviewed the progress of numerical forecasting methods in
the quiet revolution of numerical weather prediction (NWP), and explained how improvements in
physical process representation, model initialization, and ensemble forecasting have resulted in
average forecast skill improvements equivalent to 1 day’s worth per decade—implying that in
2020 our 5 day forecasts have approximately the same skill as the 1 day forecasts of 1980.

However, the continuation of these gains requires ever more computational resources. For
example, in pursuit of higher resolution models, halving grid cell length in three dimensions
requires eight times the processing power, but due to model biases and initial condition
uncertainty, corresponding improvements in forecasting skill are not guaranteed. At the same
time, as society progresses we are placing greater emphasis on efficiency and safety in everything
we do. In order for businesses to operate efficiently and in order to keep the public safe
from meteorological hazards, there should be great emphasis on improving the functionality
of weather forecasts as decision support tools—and that means bridging the gap between
deterministic NWP model outputs (including sparse ensembles from these) and fully probabilistic
forecasting approaches suitable for supporting decision making through the use of decision
theory [6,7]. In essence, statistical approaches are key to optimal, transparent and consistent
decision making.

At the same time, while NWP methodology has evolved gradually over the last century (hence
the quiet revolution), the last decade has seen significant developments in machine learning and its
rise into the scientific limelight, with promising results being demonstrated in a wide range of
applications (e.g. [8-10]). The catalyst for this new wave of machine learning can perhaps be
attributed to the results of Krizhevsky ef al. [11] in the large scale visual recognition challenge
(ILSVRC) of 2012, who demonstrated for the first time that deep neural networks—with their
ability to automatically learn predictive features in order to maximize an objective function—
could outperform existing state-of-the-art image classifiers based on hand-crafted features, which
had been the established approach for previous decades. The parallels between the hand-
crafted features in image classification, and the human choices that are made in all kinds of
data processing pipelines—including weather forecasting—have inspired exploration into new
applications of machine learning. In meteorology, could these tools relieve pressure from current
model development and data processing bottlenecks and deliver a step-change in the rate of
progress in forecasting skill?

Initial efforts using machine learning in the context of post-processing NWP model output
have shown promising results (e.g. [12-14]) in both probabilistic and deterministic settings. We
believe that the greatest value of machine learning in weather forecasting lies in the probabilistic
capabilities of these methods: not only do they have the potential to learn to improve forecasting
skill empirically but also to bridge the gap between traditionally deterministic forecasting
approaches (i.e. NWP) and the probabilistic requirements of robust decision support tools.
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Figure 1. A visualization of the information provided by numerical weather prediction (NWP) forecasts. Each coloured line
represents an ensemble member from a different model type. Observations (solid black line) go as far as time zero (vertical
dashed line: the ‘current time; which is 00:00 on 5 January in this figure) and beyond that, if a statistical approach is not used,
it is down to individual meteorologists to determine the likely weather outcomes based on the information presented by the
models. (Online version in colour.)

To this end, in this paper, we demonstrate our framework for probabilistic weather forecast
post-processing using machine learning. We have designed this framework to be suitable for
use by operational meteorologists, and therefore, unlike other studies that we are currently
aware of, our proposed solution incorporates forecast data from all available model solutions
(i.e. multiple NWP model types, and all available forecast lead times). The framework aggregates
the available forecast information into a single well-calibrated predictive distribution, providing
probabilities of weather outcomes for each hour into the future. Our application is road surface
temperature forecasting—a univariate output—using archived operational data from the UK
Met Office. In this demonstration, we use quantile regression forests (QRF, [15]) as our machine
learning algorithm, but hope to convince readers that our overall approach—flexible quantile
regression for each forecast, followed by averaging of quantiles across forecasts, and finally
interpolating the full predictive distribution—provides a flexible framework for probabilistic
weather forecasting, and crucially one that is compatible with the use of any probabilistic
forecasting models (post-processed or otherwise).

Our framework can be seen as an overarching aggregator of forecast information, emulating
part of the role of the operational meteorologist, who must otherwise develop a sense for how
skilful each individual forecast is through experience, and mentally combine these forecasts in
order to make probabilistic statements to inform decision making. These include judgements of
uncertainty such as a ‘most likely scenario” and a ‘reasonable worst-case scenario’ [16]. Figure 1
gives an example of how complex a task it is to make sense of the available forecast information,
even for the single variable of road surface temperature at a single site.

While methods for weather forecast post-processing using more traditional statistical
approaches have existed for some time (e.g. [17-20]), we believe our machine learning-based
approach to be a useful contribution to the field as interest in meteorological machine learning
grows. The development of our framework has been guided by the needs of operational weather
forecasting, including handling sets of different weather forecasting models with their own
unique ranges of lead times. Increasingly these forecasts may not all be raw NWP forecasts,
but are themselves likely to have been individually post-processed using machine learning (e.g.
for downscaling), or purely statistical spatio-temporal forecasts. It is therefore a strength of our
proposed framework that we can post-process any number of models of any type, and for any
lead times.
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2. Post-processing framework

The key considerations in designing our framework were that we wanted to develop an approach
that was flexible, compatible and fast. Flexible in the sense that we would like to minimize the
number of assumptions made that would constrain the form of our probabilistic forecasts, and
largely ‘let the data do the talking’, as tends to be the machine learning ethos. Compatible in the
sense that we would like our framework to generalize to scenarios in which NWP model outputs
are not the only forecast available—this is likely to become more common as machine learning
becomes more commonplace. And fast, because weather forecasting is a near-real-time activity
and any post-processing approach has to be able to keep up.

There are many possible approaches for post-processing individual weather forecasts, and
indeed many possible approaches for producing forecasts in the first place (for example, spatio-
temporal statistical models [21], or more recently neural network-based approaches [22], in
addition to the traditional NWP models). By using quantiles as the basis on which we combine
multiple forecasts, our approach is compatible with any forecast from which well-calibrated
predictive quantiles can be obtained, either from the forecast model directly (if probabilistic), or
through uncertainty quantification of deterministic models, as we demonstrate in this paper. The
three stages of our framework’s methodology are explained in the following subsections.

(a) From deterministic to probabilistic forecasts

For our application to road surface temperature forecasting, the available forecasts come from a
set of NWP models, as is commonly the case. Our model set spans from long range, low-resolution
global models (glu, glm) through medium range, medium resolution European models (eur_eu,
eur_uk) to shorter range, high-resolution UK specific models (ukv, enuk) including a 6 h nowcast
(pvrn). Apart from the ‘enuk’” model, which itself provides an ensemble of 12 members on each
run, the other models provide single deterministic forecasts. While all of these models provide
spatial forecasts, in this study we post-process the forecasts for specific sites in order to focus on
the probabilistic aspects. Figure 1 shows a snapshot of the set of model forecasts for a single site.

While the final output of our framework is a full predictive distribution summarizing the
information contained in the entire set of NWP model output, the first step is to convert each
deterministic forecast into an individually well-calibrated probabilistic forecast. We do this by
using machine learning to model the error profile of each deterministic forecast conditional on
forecasting covariates. The error is defined as

€t,m =Y — Xt,m, (2.1)

where x,, is a NWP model forecast for model type m (e.g. eur_uk) and lead time ¢ while y is the
corresponding observation. For our surface temperature data, lead times range from 0 h to 168 h.
Predictions of future data points are then obtained by

]}t,m =Xt,m + €t,m- (2.2)

Modelling the forecast errors rather than y was empirically found to produce better predictions
using significantly less training data. An explanation for this is that x¢ ,, is used as a complex trend
removal function (e.g. for seasonality and other non-stationary effects), thus allowing us to treat
€;m as a time-invariant (stationary) variable—the stochastic relationship between model error
and lead time is quite stable across absolute time (figure 2). This simplifying assumption may not
hold up in every case, and we would recommend checks before applying it to other variables and
forecasting tasks. Modelling the forecast errors, €, also has the benefit of providing many more
unique €, observations for training than is provided by the absolute temperature observations
Yi.m- This is because, while y; is identical for all m (only one absolute temperature observation is
made per time step), € is unique for each ¢, m pair because each unique NWP forecast produces
its own unique error. The recent work of Taillardat & Mestre [23], and Dabernig et al. [24] before
them, shows that we are not alone in successfully using an error modelling approach.
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Figure 2. Plot of &, for m = glm against lead hour (1,2, . . ., 168) for a random sample of our dataset (spanning multiple

months of absolute time). Each point is €; ,, at a single hourly time step. The red line is a smooth estimate of the mean. (Online
version in colour.)

Figure 2 shows €, for m=glm (global long-range forecast) and t=0,1,...,168. Note the
expected general increase in variance with increasing lead times and the increase in the location
of the mean of the distribution (red line) indicating a systematic bias in the forecast. There is also
a cyclic trend caused by the interaction between lead time and model initialization time. This
particular model is initialized at 00:00 and 12:00 h, so we see increased errors on a 12h cycle
starting from initialization. This is because temperature errors tend to be larger in the early hours
of the afternoon (when effects of inaccurately modelled cloud coverage on solar irradiance are
most pronounced) compared to the early evening and morning.

In order to learn the error distribution of each NWP model type, we use QRF [15] as
implemented in the ‘ranger” package in R [25]. While many other data modelling options are
possible, QRF has a number of desirable properties. First, it has the flexibility to fit complex
functions with minimal assumptions. For data-rich problems such as ours, not specifying a
parametric distribution allows us to capture the true complexity of the error distribution. Second,
it is very fast in both training and prediction, and suitable for operational settings avoiding user
input such as convergence checks (e.g. MCMC or gradient descent-based methods). Third, it is
relatively easy to understand the algorithm and has only a few hyper-parameters to tune, which
makes getting reasonably good results in new problems quite straightforward.

For a detailed explanation of the QRF algorithm see Athey et al. [26] or Taillardat et al. [14]
for a more weather oriented description. For regression problems like ours, the QRF algorithm
(a variant of the popular random forest algorithm) consists of an ensemble of regression trees.
A regression tree recursively partitions the space defined by the covariates into progressively
smaller non-overlapping regions. A prediction is then some property/statistic of the observations
contained within the relevant region. Conventionally for each tree, the prediction is the sample
mean of the observations in the partition corresponding to new input data. Suppose for instance
that a regression tree is grown on the data in figure 2 and that our aim is to predict the mean
forecast error at 100h. Suppose also that the tree had decided to group all observations in
t €[98,106] into the same partition. Then the prediction for ¢ =100 would simply be the mean
of all observations between 98 and 106 h. For a QRF however, the same tree would instead
return the values of all the observations between 98 and 106 h as an empirical distribution from
which quantiles are later derived. The predictive performance of random forests is sensitive
to how the covariate space is partitioned. The splitting rule, which governs the placement of
partitioning splits as each tree grows, is therefore an important parameter, as are tunable hyper-
parameters that we discuss in the next paragraph. Here, we use the variance splitting rule, which
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Figure 3. Coverage of the 50%, 80%, 90% and 95% QRF prediction intervals on out-of-bag data from one training scenario
(though the picture is indicative of other scenarios). The coverage is the proportion of observations that fall within each
prediction interval, and should match the interval (i.e. with 95% of observations falling within the 95% prediction interval)
in a well-calibrated set-up. (Online version in colour.)

minimizes the intra-partition variance within the two child partitions at each split. A key aspect
of the random forest and QRF algorithm is that each tree in the ensemble is grown on its own
unique bootstrapped random sample of the training data. This produces a forest of uncorrelated
trees, which when aggregated (called bootstrap aggregation or ‘bagging’) results in an overall
prediction that is less prone to over-fitting than an individual decision tree, while retaining the
ability to learn complex functions. To produce quantile predictions, the QRF returns sample
quantiles from all observations contained within the relevant partition of each individual tree
in the forest. In doing so it behaves as a conditional (on the covariates) estimate of the CDF.

For modelling NWP surface temperature errors, the tuning of QRF hyper-parameters as well
as the selection of input covariates was conducted manually with the aim of achieving good out-
of-bag quantile coverage (a QRF proxy for out-of-sample performance) across all lead times. This
was achieved using visual checks such as figure 3, which indicates that on average, prediction
intervals are close to the ideal coverage across lead times, i.e. 90% of the time observations will
fall within the 90% prediction interval. However, for operational set-ups it may be preferable to
use a more formal optimization procedure, such as Bayesian optimization. We found that using
just lead time, t, and model type, m, as covariates gave the best calibration results, presumably
aided by the parsimonious nature of this simple representation. The chosen hyper-parameters
were mtry =1 (this is the number of covariates made available at random to try at each split),
min.node.size=1 (this limits the size of the terminal nodes/final partitions of each tree—in
this case, there is no limit on how small these can be), sample.fraction = 128/nrow(training
data) (this is the size of the bootstrap sample of the training data provided to each tree), and
num.trees =250 (this is the number of trees in the forest). The use of a relatively small sample
size (128 observations for each tree, out of a total of around 50 000 observations in a 14 day run-
in period) and a minimum node size of one (trees grown to full depth) was found to produce
the best out-of-bag coverage at a minimal run time. Our mtry setting meant that one of our two
covariates (t and m) was made available at random to each tree at each split. If another objective
had been prioritized (e.g. to minimize mean squared error, rather than optimize coverage) the
optimal hyper-parameters would be different.

Once the QRF has been trained, each NWP forecast can be converted to a probabilistic forecast
by adding to it the predicted error distribution (2.2). Unlike the deterministic NWP forecast,
the prediction is now a probability distribution, constructed through a conditional bootstrap of
€rm via the QRF algorithm. Prediction intervals are obtained as quantiles of this distribution as
illustrated in figure 4.
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Figure 4. A deterministic NWP forecast for m = glm that has been converted to a probabilistic forecast using equation (2.2).

The 80% and 95% prediction intervals are shown as overlain grey ribbons, while the solid grey line is the median (which differs
little from the NWP forecast here). (Online version in colour.)

(b) Combining probabilistic forecasts

The next step is to combine these predictive distributions from each NWP model output into
a single distribution that is suitable for use in decision support. The challenge is to combine
the forecasts in a probabilistically coherent manner, with the goal of producing a single well-
calibrated and skilful predictive distribution.

A popular approach for combining probabilistic models is Bayesian model averaging (BMA),
and its use in the statistical post-processing of weather forecasts has precedent (e.g. [17,27,28]).
Basic BMA produces a combined distribution as a weighted sum of PDFs. However, in order to
satisfy the requirements of our framework, we propose an alternative approach using quantile
averaging, whereby each quantile of the combined distribution is taken as the mean of the
same quantile estimated by each individual model. An illustrative comparison of equal-weighted
BMA and quantile averaging is shown in (figure 5). For the purposes of our framework, we
found BMA to be unsuitable for the following three reasons: (1) achieving good calibration of
the combined distribution produced by BMA requires optimization of the intra-model variance,
i.e. the spread of each individual model’s error profile. In our case, where each model’s error
profile has been learned independently by QRF, and is already well-calibrated, combining these
through BMA produces an over-dispersed predictive distribution due to the inclusion of the
inter-model variance in addition to the already calibrated intra-model variances. (2) In turn, this
makes BMA rather incompatible with input models that are individually well-calibrated (e.g.
statistical nowcasts), and therefore incompatible with a general framework like ours. (3) The use
of BMA across all models and lead times is complicated by the fact that there are not an equal
number of forecasts available for each lead time. This means that the inter-model variance is
intrinsically inconsistent across lead times, even dropping to zero at our longest ranges, where
only a single deterministic forecast is available (e.g. figure 1). This decrease in inter-model
variance with increasing forecast range trends opposite to the true uncertainty, which intuitively
should increase with forecast range. This is a quirk of NWP forecast availability and one that
probabilistic post-processing must overcome.

Our framework overcomes this instability in inter-model variance by using quantile averaging
(also known as the “Vincentization” method [30,31]) to combine forecasts that are already well-
calibrated for coverage (owing to their QRF error profiles, in our case). Using this approach,
we construct our combined forecast distribution from the quantile predictions of our individual
QRF post-processed forecasts. To produce each predicted quantile of the combined distribution,
Vincentization simply takes the mean of the set of estimates of the same quantile by each
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Figure 5. Synthetic example of combining two probabilistic forecasts using Bayesian model averaging (BMA) and quantile
averaging (QA), after [29].

individual forecast. As explored by Ratcliff [32], Vincentization produces a combined distribution
with mean, variance, and shape all approximately equal to the average mean, variance, and
shape of the individual distributions (as we see in figure 5). Vincentization therefore provides
similar functionality to parameter averaging of parametric distributions, but for non-parametric
distributions such as ours. Within our framework, Vincentization effectively integrates out
the inter-model variance (by taking the mean across models), and in doing so preserves the
calibration of the individual QRF post-processed forecasts, avoiding the overinflation issues that
BMA would produce. Vincentization is therefore one possible solution to the issue of combining
calibrated probability distributions without loss of calibration [28]. However, the method by
which probability distributions are combined can have important implications for decision-
support forecasting, and while quantile averaging satisfies our general requirements for this
framework, we do not discount that alternative approaches may be preferable depending on the
application.

Our quantile averaged forecast benefits from stability owing to the law of large numbers—
any quantile of the forecast distribution represents an average of the estimates of that quantile
across the available individual forecasts. This approach is therefore more akin to model stacking
procedures, as used in ensemble machine learning to improve prediction accuracy by reducing
prediction variance [33]. Indeed, this same logic is behind the bootstrap aggregation (bagging)
procedure of the random forest algorithm: by averaging the predictions of multiple individual
predictors—each providing a different perspective on the same problem—the variance of the
aggregate prediction is reduced, resulting in improved prediction accuracy at the expense of some
increased bias [34]. Crucially for our framework, unlike a BMA approach which retains the inter-
model variance, the calibration of our quantile averaged output is invariant to the number of
forecasts available at each timestep. This is key for temporally coherent forecast calibration across
all lead times.

Our error modelling approach does require one extra-step of processing in order to handle
model types which themselves have multiple interchangeable ensemble members. The ‘enuk’
model (figure 1) is our example of this, having twelve non-unique members. In such cases, the
apparent error profile for the model type as a collective gets overinflated by the inter-member
variance. Our solution to this is to label each ensemble member by its rank (at each time step).
This splits our 12-member ‘enuk’ ensemble into 12 unique model types in the eyes of the QRF.
This approach produces well-calibrated error profiles (though with significant offset bias in the
extreme ranking members, as would be expected).

66000707 ‘6L ¥ 205 Supi 144 1y euinol/Bio'Suysigndaaposefor



(@) )
1.00
1000 4
0.75 -
750 4
= =
VI
v, 0.50 1 § 500
U
0.254 250
0 N
0.00 . T T r T r .
-2 0 2 4 -3 0 3
temperature (°C) temperature (°C)

Figure 6. Interpolated CDF of the combined predictive distribution (a), and corresponding road surface temperature simulation
(b) for a particular 50 h ahead forecast.

(c) Simulation from the full predictive distribution

While quantile averaging provides an effective way of combining multiple probabilistic forecast
distributions, it leaves us with only a set of quantiles rather than the full predictive distribution.
This distribution is desirable because it allows us to (a) answer important questions such as
‘what is the probability that the temperature will be below 0°C?” and (b) evaluate the skill of
the probabilistic forecast using a range of proper scoring rules (although, depending on the end
use, some proper scoring rules could be calculated directly from quantile predictions, e.g. the
quantile score [35] or the interval score [36]).

To obtain the full predictive distribution, we interpolate between the quantiles of our combined
forecast in order to construct a full CDF using the method of Quifionero-Candela et al. [37], which
has previously been applied to precipitation forecasting [38] and is available in the R package qrnn
[38]. The method linearly interpolates between the given quantiles of the CDF (our combined
quantiles from Vincentization), and, beyond the range of given quantiles, extrapolates down
to P(X <x)=0 and up to P(X <x) =1 assuming tails that decay exponentially with a rate that
ensures the corresponding PDF sums to one (figure 6a; for details see pp. 8 and 9 of Quifionero-
Candela et al. [37]). Using this approach allows us to construct a full predictive distribution
from the Vincentized quantiles of our individual QRF post-processed forecasts. Depending on
the application at hand, suitable forecast information might be obtained by querying the CDF
of the predictive distribution directly at each time step, but in our application here, we go the
extra step of simulating temperature outcomes at each timestep by randomly sampling from the
CDF (figure 6b). This is the final step of our framework—taking us from a set of disparate NWP
forecasts to a full predictive distribution of weather outcomes.

3. Results

To evaluate our framework, we applied it to 200 randomly time-sliced and site-specific forecasting
scenarios extracted from our UK Met Office road surface temperature dataset, which we have
aggregated to hourly time steps. Each scenario has its own training window of 14 days, providing
approximately 50000 data points of €;,; to train the QRF, immediately followed by its own
evaluation window extending as far as the longest range NWP forecast (up to 168h/7 days),
which is akin to the area to the right of the vertical dashed line in figure 1. While there are only
336 hin a 14 day training window, the number of NWP models and their regular re-initialization
schedule, means that approximately 150 forecasts are made for any hour by the time it is observed.
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Figure 7. An example of the output of our post-processing framework. (a) The probabilistic forecast is visualized by the 80%
and 95% prediction intervals. (b) Simulations from the full predictive distribution as grey dots, while the red line (right-hand

y-axis) shows the probability of temperature being <0°C. NWP model forecasts are shown by coloured lines, and the true
observed temperature (not known at time of forecasting) is shown by a solid black line. (Online version in colour.)

While we only use the current forecasts from each model type to generate our predictions, the
training benefits from every historical forecast within the window.

Figure 7 shows an example prediction of up to 168 h into the future for a particular scenario.
This is just one of the 200 random scenarios used in our overall evaluation. Although the
prediction at each hour ahead is a full probability distribution, here we present prediction
intervals as well as a simulation of 1000 temperature values from it. The samples were used to
derive the probability of the temperature being below 0°C as the proportion of values less than
zero. Different stakeholders will require their own unique predictive quantities, and by providing
a full predictive distribution, our framework should cater for a wide variety of requirements.
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forecasts. (b) The MAE achieved by the median of the combined probabilistic forecast (QRF_pp) compared to taking the median
of the available NWP forecasts (NWP_avg). (Online version in colour.)

Various metrics could be used to evaluate the skill of our probabilistic forecasts over multiple
scenario runs. From the perspective of decision support, the ideal metric to evaluate would be
the change in loss resulting from using our forecasts to make real-world decisions, such as about
when to grit roads in our case. However, in the interest of a more general analysis, we use a range
of standard metrics. These are: prediction interval coverage (figure 8a), the mean-absolute-error
(MAE) of the median (figure 8b, because sometimes a single ‘best” deterministic forecast is still
desired), as well as the continuous ranked probability score (CRPS) and logarithmic score of our
probabilistic forecast (both in figure 9).

Figure 8 indicates that coverage is good overall, with 94.7% of observations falling within the
95% prediction interval, although there is some over-dispersion of our forecast at the shortest
ranges and under-dispersion at the longest ranges. This is an indication that, despite producing
near perfect results on out-of-bag training data (figure 3), the QRF performance diminishes
slightly when applied to new data. The range dependent over- and under-dispersion may be due
to the partitioning process on which the forest is grown—by necessity the partitions that represent
the extremes of forecast range must extend some distance towards the middle of the range, and
in doing so end up capturing an empirical error distribution that is slightly biased towards the
average empirical error distribution, rather than perfectly representing the distribution at the
extremes of covariates. It may be the case that other data modelling approaches could do better
in this respect.

Although deterministic performance was not our focus, the QRF median prediction does
outperform the median of the available NWP models across the entire forecast range in terms
of MAE. While only a conceptual benchmark, this can be taken as some indication that we have
not ‘thrown away’ deterministic performance in pursuit of probabilistic calibration. Figure 8 also
indicates that our method results in a monotonically increasing error with forecast range, unlike
the median of the original NWP forecasts. Similarly, we see a monotonic increase in both the CRPS
and the logarithmic score with increasing forecast range (figure 9a,b), and, when compared with
the performance of the raw NWP ensemble on the same metrics, find our QRF post-processing
approach to perform better. In the case of CRPS, our QRF post-processing approach reduces the
rate at which forecasting skill decreases with forecast range. Also, by looking at the spread of
performance across individual forecasting scenarios (represented by individual points in figure 9,
rather than the lines, which trace the mean) we can see that our QRF post-processing approach
reduces the variance in forecasting skill across different forecasting scenarios, making it a more
consistent forecast than raw NWP. In the case of logarithmic score (figure 9b), we see again that
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Figure 9. Evaluation metrics of our post-processing framework across all lead times on 200 random forecast scenarios. We
compare our QRF post-processed output to the raw NWP ensemble in terms of continuous ranked probability score (CRPS, a)
and logarithmic score (b). (Online version in colour.)

the forecasting skill provided by the QRF post-processed output is more consistent than that of
the raw NWP ensemble, although the difference in the mean performance is less pronounced.
The logarithmic score of the NWP ensemble cannot be obtained at longer ranges as only a single
deterministic forecast is available. The authors recognize that comprehensive comparisons of our
approach to other probabilistic post-processing approaches (in addition to raw NWP output) will
be important to consider when choosing the best approach for any operational set-up. While we
do not offer such comparisons in this study, we have made our dataset openly accessible as one of
several benchmark datasets compiled by Haupt ef al. [39] at https://doi.org/10.6075/]J0854NDM
in the hope that it will facilitate comparison of different post-processing approaches on common
benchmarks in the future.

In terms of speed, training the QRF for each forecast scenario takes between just 3 and 4 s on
an i7-8550U laptop, and so the implementation of this framework can be expected to add very
little overhead to a typical operational NWP forecasting set-up.

4. Discussion and conclusion

The conversion of disparate forecasts into a cohesive probabilistic output is important. A key
function of weather forecasts is to support decision making, but current numerical methods do
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not provide the well-calibrated probabilistic output required to do this rigorously. By applying
our framework, we compensate for this shortcoming, effectively supplementing forecasts with
information from their historic performance in order to combine all available deterministic inputs,
for all lead times, into a single well-calibrated probabilistic forecast. While our approach is by
no means the first to provide probabilistic post-processing of weather forecasts, we believe the
flexibility and speed provided by our use of machine learning, along with our framework’s
relative simplicity and ability to simultaneously deal with all available models and lead times,
makes it a strong option for consideration in operational forecasting settings.

In this study, we have only applied our framework to site-specific forecasting, but there are
no fundamental reasons why the same principles cannot be applied to spatial forecasting by
providing the QRF with additional spatial covariates against which to learn its error profiles, or
by adopting the standardized anomaly model output statistics (SAMOS) approach as proposed
by Dabernig et al. [24]. The error modelling approach that we use seems a very effective way
of minimizing the amount of training data required compared to predicting absolute values.
Taillardat et al. [14], who also make use of QRF in their post-processing, initially used 4 years
of training data for their absolute value forecasting system in 2016, but have since adopted an
error modelling approach themselves [23].

There are still several aspects of our framework that are open to further investigation. One
significant aspect that we explored in preliminary experiments but have not included in our
methodology here, is the opportunity to use weighted quantile averaging for combining forecasts.
In our set-up, where all of the inputs are recent NWP forecasts (and therefore similarly skilful),
we saw negligible difference in using a weighted averaging approach, but in situations where
more diverse forecast types are in use, it may prove beneficial to assign weightings according
to forecast skill. A dynamic weighting approach also enables individual models to be updated
without jeopardizing the overall post-processed output, as the contribution of the new or updated
model will be minimal until it is error profile is well understood. The QRF algorithm provides
a convenient means by which skill can be estimated ahead of time, in the form of out-of-bag
metrics. For example, we showed earlier the out-of-bag coverage of our trained QRF (figure 3).
Metrics such as the CRPS, logarithmic score, and Kullback-Leibler divergence would provide
good comparisons of forecast skill on which to base quantile averaging weight, although their
calculation would add some additional processing time. Yao ef al. [40] provide more detail about
using such metrics for weighted model stacking, and in fact these weights can be optimized as an
additional supervised learning problem [33].

The overall strategy for combining forecasts is also open to further research. Because it retains
the inter-model variance, BMA may be considered to provide a better representation of extreme
outcomes at the expense of well-calibrated coverage (at least in set-ups where each input forecast
is already well-calibrated, which is likely to become the norm). We also think that the output of
BMA would be difficult to make use of in practice when applied across all lead times as in our
framework, because of the discrepancy in the number of models available at each time step, and
therefore the spurious inconsistency of the inter-model variance across the forecast range. Still,
applications where capturing extremes is a priority may wish to investigate further. For general
purposes, we are satisfied with our time-consistent and calibration-preserving quantile averaging
approach.

It is our belief that, as time goes on, and the number of different forecasting models in
use—along with their complexity and resolution—continues to increase, there will be increasing
need for algorithmic interfaces such as ours to summarize the otherwise overwhelming sea of
forecast information into decision-ready output. This would consist of optimally well-calibrated
probabilities of future weather outcomes given all available information. Probabilistic machine
learning is a technology that can enable this, and we hope that the work we have demonstrated
here will go some way in aiding progression towards this goal.
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