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Hypercapnia, the elevation of CO2 in blood and tissues, commonly occurs in
severe acute and chronic respiratory diseases and is associated with
increased risk of death. Recent studies have shown that hypercapnia inhibits
expression of select innate immune genes and suppresses host defence
against bacterial and viral pneumonia in mice. In the current study, we eval-
uated the effect of culture under conditions of hypercapnia (20% CO2) versus
normocapnia (5% CO2), both with normoxia, on global gene transcription in
human THP-1 and mouse RAW 264.7 macrophages stimulated with
lipopolysaccharide (LPS). We found that hypercapnia selectively downregu-
lated transcription of LPS-induced genes associated with innate immunity,
antiviral response, type I interferon signalling, cytokine signalling and
other inflammatory pathways in both human and mouse macrophages. Sim-
ultaneously, hypercapnia increased expression of LPS-downregulated genes
associated with mitosis, DNA replication and DNA repair. These CO2-
induced changes in macrophage gene expression help explain hypercapnic
suppression of antibacterial and antiviral host defence in mice and reveal
a mechanism that may underlie, at least in part, the high mortality of
patients with severe lung disease and hypercapnia.
1. Introduction
Hypercapnia, that is, elevation of the partial pressure of CO2 in blood and tissues,
commonly develops in patients with severe acute and chronic pulmonary dis-
orders, and is associated with an increased risk of death in chronic obstructive
pulmonary disease [1–4], cystic fibrosis [5], community-acquired pneumonia [6]
and adenoviral lung infection [7]. The possibility of a mechanistic link between
hypercapnia and poor clinical outcomes was first suggested by reports that elev-
ated CO2 inhibited expression of cytokines and chemokines that are important
for host defence in macrophages and other cultured cells [8–12]. Our own studies
showed that hypercapnia inhibited expression of tumour necrosis factor (TNF) and
interleukin-6 (IL-6) in human and mouse alveolar macrophages, and in macro-
phage cell lines from both species [11]. We further showed that elevated CO2

inhibited cytokine expression at the level of gene transcription, and that the inhi-
bition was non-cytotoxic, reversible and independent of changes in extracellular
or intracellular pH [11]. Hypercapnia also inhibited macrophage phagocytosis,
respiratory burst activity and autophagy-mediated bacterial killing [11,13].

Beyond its effects on cultured cells, hypercapnia suppresses innate immu-
nity and host defence in vivo. We showed that exposure of mice to 10% CO2/
21% O2, resulting in normoxic hypercapnia, reduced lung cytokine expression,

http://crossmark.crossref.org/dialog/?doi=10.1098/rsfs.2020.0039&domain=pdf&date_stamp=2021-02-12
mailto:marinamatsuda@northwestern.edu
mailto:p-sporn@northwestern.edu
https://doi.org/10.6084/m9.figshare.c.5290088
https://doi.org/10.6084/m9.figshare.c.5290088
http://orcid.org/
http://orcid.org/0000-0002-7566-4560
http://orcid.org/0000-0002-1006-9437


royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20200039

2
suppressed neutrophil function and increased the mortality
from Pseudomonas pneumonia in mice [14]. As in our studies
with cultured macrophages, the effects of hypercapnia in the
murine pneumonia model were not attributable to acidosis.
More recently, we found that hypercapnia inhibited the anti-
viral response, enhanced viral replication and increased the
mortality of influenza A virus (IAV) infection in mice [15].
The adverse effects of elevated CO2 on IAV infection were lar-
gely due to suppression of antiviral activity in lung
macrophages, mediated by activation of Akt1 [15].

Because of its pleiotropic effects on macrophage function,
and the adverse impact of hypercapnia on antibacterial and
antiviral host defence, in the current study we evaluated
the effect of elevated CO2 on global gene transcription in
stimulated human and murine macrophages. We chose lipo-
polysaccharide (LPS) as the stimulus because it broadly
induces expression of innate immune and pro-inflammatory
genes that are critical to the outcome of bacterial, viral and
other infections, as well as non-infectious insults to the lung
and other tissues. We used human THP-1 and mouse RAW
264.7 macrophages for the investigation, since responses of
the cell lines and primary human and mouse alveolar macro-
phages to hypercapnia were closely matched in our previous
studies [11,13,15]. We show that elevated CO2 selectively
inhibits LPS-induced expression of innate immune, pro-
inflammatory and antiviral genes, while selectively attenuat-
ing LPS-induced suppression of genes required for DNA
replication and cell division. These results have important
implications for pulmonary host defence in patients who
develop hypercapnia associated with severe lung disease.
2. Methods
2.1. Cells
Humanmonocytic leukaemia THP-1 cells (American TypeCulture
Collection (ATCC)) were cultured in RPMI 1640, supplemented
with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 1 mM
sodiumpyruvate, 20 µM 2-mercaptoethanol, 100 U ml−1 penicillin
and 100 µg ml−1 streptomycin and differentiated to a macrophage
phenotype by exposure to 5 nM phorbol myristate acetate (PMA)
for 48 h [11]. Mouse monocyte–macrophage RAW 264.7 cells
(ATCC) were cultured in Dulbecco’s modified Eagle’s medium
(supplementedwith 10% heat-inactivated FBS, 100 U ml−1 penicil-
lin and 100 µg ml−1 streptomycin). THP-1 and RAW 264.7 cells
were expanded and THP-1 cells were differentiated under a stan-
dard culture atmosphere of humidified 5% CO2/95% air.

2.2. Hypercapnia and LPS exposure
For analysis of gene expression by microarray, THP-1 and RAW
264.7 macrophages were stimulated with LPS in humidified 20%
CO2/21% O2/59% N2 (hypercapnia) or maintained in humidi-
fied 5% CO2/95% air (normocapnia), for 0.5, 1.5 or 3 h. Cells
were exposed to hypercapnia in an environmental chamber
(C-174; BioSpherix) contained within the same incubator where
control cultures were simultaneously exposed to normocapnia.
At time zero, culture media were removed and replaced with
new media that had been pre-saturated for 4 h with 5% or 20%
CO2, as appropriate, prior to the addition to the cells. Immedi-
ately following the medium change, ultrapure Escherichia coli
K12 LPS (1 ng ml−1; InvivoGen) was added to the cells. The par-
tial pressure of CO2 (PCO2) and pH of the pre-saturated media
were measured using a pHOx Plus Blood Gas Analyzer (Nova
Biomedical Corp.). For the normocapnia- and hypercapnia-equi-
librated media, the PCO2 values were 44 and 112 mmHg, and the
corresponding pH values were 7.4 and 7.1, respectively. We pre-
viously showed that exposure to 20% CO2 and stimulation with
LPS for up to 24 h has no adverse effect on the viability of the
macrophage cell lines [11].

In a separate set of experiments for polymerase chain reaction
(PCR) validation of microarray results for selected genes, PMA-
differentiated THP-1 cells were exposed for 3 h to a hypercapnic
atmosphere of 15% CO2/21% O2/64%N2, or normocapnia as con-
trol, in a manner analogous to the experiment described above.

2.3. RNA isolation and Illumina geneChip hybridization
Total RNAwas isolated using the RNeasy Mini Kit (Qiagen). The
quality and quantity of each RNA sample were assessed using a
2100 BioAnalyzer (Agilent). Whole-genome microarray analysis
was performed on LPS-stimulated THP-1 and RAW 264.7 cells
using Illumina HumanRef-8 v3 Expression BeadChips and
MouseRef-8 v2 Expression BeadChips, respectively.

2.4. Microarray data analysis
The criteria for differential gene expression were a fold-change
cut-off of greater than or equal to 1.35 and false discovery rate
of less than 0.05. K-means clustering and heat map visualization
for differential gene expression induced by LPS in cells exposed
to normocapnia and hypercapnia were performed using the
Morpheus web tool (https://software.broadinstitute.org/mor-
pheus). Enrichment analysis of gene ontology (GO) terms from
the biological processes of all genes downregulated or upregu-
lated by LPS and hypercapnia were separately analysed using
the Gene Ontology Analysis InnateDB tool [16], which uses a
manually curated knowledge base of genes, proteins, interactions
and signalling pathways involved in mammalian innate immune
responses. Results from the InnateDB analysis were confirmed
using GeneGo Metacore (Thomson Reuter), a separately curated
database and pathway analysis tool. From the GO biological
term results, the four to six most enriched processes were
selected, and interaction networks were constructed for each
set of differentially expressed genes associated with these terms
using the GeneMANIA plug-in [17] of CYTOSCAPE 3.8.0 software
[18]. GeneMANIA can find other genes that are related to the
set of input genes and produce a functional association network
based on their relationships, such as pathways, co-expression, co-
localization, genetic interaction, physical interaction, shared
protein domains and so on, based on the published literature.

2.5. Quantitative real-time PCR
RNAwas extracted using an RNeasy Mini Kit (Qiagen) and reverse
transcribed to cDNA using an iScript cDNA synthesis kit
(Bio-Rad). PCR amplification was performed using a CFX Connect
real-time system (Bio-Rad) and the TaqMan (Applied Biosystems)
or PrimeTime®Predesigned (IDT) gene expression assays with
FAM-labelled probes. The following primer/probe sets were
used, from TaqMan: CCL2 (Hs00234140), IL6 (Hs00174031),
ICAM1 (Hs00164932), EGR1 (Hs00152928); and from PrimeTime:
NFKB1 (Hs.PT.58.21008943), EBI2 (Hs.PT.58.2335925) and
EEF1A1 (Hs.PT.58.15621992.g) as reference. Relative expression
was calculated by the comparative CT method (ΔΔCT) [19].
3. Results
3.1. LPS increases expression of immune response

genes and decreases expression of genes involved
in DNA replication and mitosis in human and
mouse macrophages

The transcriptomic response to LPS under normocapnic con-
ditions was assessed in human THP-1 and mouse RAW 264.7

https://software.broadinstitute.org/morpheus
https://software.broadinstitute.org/morpheus
https://software.broadinstitute.org/morpheus


(a)

(c) (d)

(e) (f)

(b)

0

no
. t

ra
ns

cr
ip

ts
1000

–1000

500

–500

1500
upregulated

downregulated

do
w

nr
eg

ul
at

ed

29
3 

tr
an

sc
ri

pt
s

27
4 

tr
an

sc
ri

pt
s

up
re

gu
la

te
d

time after LPS (h)

human

human

mouse

human
mouse

human
mouse

–1500
0 1 2 3

innate immune response GO:0045087

response to virus GO:0009615

defence response to virus GO:0051607

cytokine-mediated signalling pathway GO:0019221

type I interferon signalling pathway GO:0060337

inflammatory response GO:0006954

response to lipopolysaccharide GO:0032496

positive regulation of nitric oxide biosynthetic process GO:0045429

signal transduction GO:0007165

interferon-gamma-mediated signalling pathway GO:0060333

mitotic cell cycle GO:0000278

mitotic nuclear division GO:0007067

DNA replication GO:0006260

DNA repair GO:0006281

DNA strand elongation involved in DNA replication GO:0006271

base-excision repair GO:0006284

DNA replication initiation GO:0006270

G1/S transition of mitotic cell cycle GO:0000082

IL6 
LPSNT

min max
human3 h

1469

1926

1153

241

681

118

7
6

1.5 h
0.5 h

567

3 h1.5 h0.5 h

CCL5
IRF1
IL1B
REL
OAS2
NLRP3

innate immune response
response to virus
type I interferon signalling
inflammatory response
cellular response to lipopolysaccharide
cytokine-mediated signalling

mitotic cell cycle
DNA strand elongation

DNA replication

DNArepair

MCM2
CCNE2
TK1
POLD1
FEN1
PLK1

0 10 20
log10 (P-value)

30 40

Figure 1. LPS induces transcriptional changes in human and mouse macrophages. Global gene expression was assessed on Illumina microarrays in human THP-1
and mouse RAW 264.7 cells stimulated with LPS (1 ng ml−1) in normocapnia (5% CO2, PCO2 44 mmHg) for 0.5, 1.5 or 3 h. Transcripts downregulated and up-
regulated by greater than or equal to 1.35-fold at 0.5, 1.5 or 3 h after LPS treatment (a). Bars represent the top GO biological processes of downregulated (blue) and
upregulated (red) genes induced by LPS after 3 h in THP-1 cells (b). Venn diagrams of human and mouse common genes changed by LPS at 0.5, 1.5 or 3 h (c). Heat
map of common genes changed by LPS over time in human macrophages (d ). Networks of GO biological processes upregulated (e) and downregulated ( f ) by LPS
after 3 h of treatment.
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macrophages cultured under 5% CO2/95% air (PCO2

44 mmHg) and stimulated with LPS (1 ng ml−1) for 0.5, 1.5 or
3 h, followed by analysis of global gene expression on Illumina
microarrays. In THP-1 macrophages cultured in normocapnia,
LPS increased expression of 9, 683 and 1085 genes at 0.5, 1.5
and 3 h, respectively, and decreased expression of 4, 711 and
1408 genes at the same time points (figure 1a). In RAW 264.7
macrophages cultured in normocapnia, LPS increased
expression of 89, 402 and 886 genes and decreased expression
of 35, 519 and 1149 genes, at 0.5, 1.5 and 3 h, respectively. All
these genes were changed by greater than or equal to 1.35-
fold, among 14 320 genes mapped in the human array and
17 572 genes in the mouse array (figure 1a).

GO analysis of the LPS response in human THP-1 cells
showed that, for LPS-upregulated genes, the most enriched
processes were innate immune and inflammatory responses
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including response to virus, cytokine-mediated signalling,
type I interferon signalling, nitric oxide biosynthesis, inter-
feron-γ signalling and, as expected, response to LPS
(figure 1b). Among LPS-downregulated genes, the most
enriched processes involved mitosis, DNA replication and
repair, and G1/S cell cycle transition (figure 1b). Not surpris-
ingly, analysis of genes differentially expressed in RAW 264.7
cells stimulated with LPS documented highly similar GO
processes to those seen in human macrophages (electronic
supplementary material, figure S1A), confirming that the
response to LPS is conserved from mice to humans. Since
the GO processes were so similar, we identified genes regu-
lated by LPS in common in human and mouse
macrophages. Figure 1c shows that 7, 241 and 567 common
genes were differentially expressed following LPS stimulation
for 0.5, 1.5 or 3 h, respectively. These 567 common genes were
grouped by K-means clustering, and heatmaps were gener-
ated to illustrate the LPS response in human and mouse
macrophages. In human macrophages the LPS-upregulated
cluster comprises 274 genes and the LPS-downregulated clus-
ter comprises 293 genes (figure 1d ), while in mouse
macrophages LPS upregulated 285 genes and downregulated
282 genes (electronic supplementary material, figure S1B).
Interestingly, when gene networks were generated for the
commonly upregulated and downregulated clusters
(figure 1e,f ), the GO biological processes represented were
nearly identical to those obtained when the LPS responses
of human and mouse macrophages were analysed separately
(figure 1b and electronic supplementary material, figure S1B).
As shown in figure 1e, for the common LPS-upregulated
genes, the most enriched processes were all related to inflam-
mation and innate immunity, comprising genes from the NF-
κB pathway (REL, RELA, RELB, NFKB1, NFKB2 and others),
response to virus (INFB1, IRF7, DDX58, IFIH1, GBP1, BNIP3L
and others); type I interferon signalling (IRF1, IRF7, IRF8,
STAT1, STAT2, SOCS3, EGR1 and others), inflammatory
response (IL1A, IL6, IL15, IL18, CXCL10, CCL2, CCL5,
IRAK2, MYD88, CEBPB, NLRP3, PTGS2, CFB and others),
cytokine-mediated signalling (IL10RA, IL15RA, CD44,
GBP2, IFNGR2, EBI3, IRAK2, PTPN1 and others); mitogen-
activated protein (MAP) kinases (MAP2K3, MAP3K8); and
other LPS response genes (including ICAM1, CD40, CXCL9,
ATF3, PI3KAP1 and TNIP2). For the common LPS-downregu-
lated genes, the most enriched processes were mitotic cell
cycle (RRM2, CDC20, AURKA, KIF2C, FOXM1, CCNE2,
CENPA, INCENP, PLK1, NUP43 and others); DNA replication
and elongation (FEN1, MCM2, MCM3, MCM4, MCM5,
GMNN, CHTF18 and others) and DNA repair (APEX1,
MUM1, PARP1, UNG, RAD51C, RAD54L, MBD4 and
others; figure 1f ).
3.2. Hypercapnia selectively modulates LPS-regulated
gene transcription changes in human and mouse
macrophages

The effect of hypercapnia on LPS-regulated gene expression
was assessed by stimulating THP-1 and RAW 264.7 macro-
phages with LPS (1 ng ml−1) for 0.5, 1.5 or 3 h under 20%
CO2/21% O2/59% N2 (PCO2 112 mmHg). The cells exposed
to hypercapnia were from the same passages and were stimu-
lated with LPS simultaneously with those in normocapnia
whose results are described above. Microarray analysis
showed that hypercapnia modulated expression of many
genes regulated by LPS in both THP-1 and RAW 264.7
macrophages. Relative to normocapnia, hypercapnia down-
regulated expression of 742 genes and upregulated
expression of 434 genes by greater than or equal to 1.35-
fold in THP-1 cells stimulated with LPS for 3 h. Similarly,
hypercapnia downregulated 611 genes and upregulated 508
genes by greater than or equal to 1.35-fold in RAW 264.7
cells stimulated with LPS for 3 h. Complete lists of all genes
downregulated and upregulated by hypercapnia after 0.5,
1.5 and 3 h of LPS stimulation in THP-1 and RAW 264.7
macrophages are available in the electronic supplementary
material, tables S1 and S2.

The heatmaps in figure 2a depict changes in expression of
the LPS-regulated genes that were commonly modulated by
hypercapnia in human THP-1 (i) and mouse RAW 264.7 (ii)
macrophages. In each case, K-means analysis generated
three clusters: genes that were upregulated by LPS in normo-
capnia and relatively downregulated by hypercapnia (cluster
1, C1), genes that were upregulated by LPS in normocapnia
and further upregulated by hypercapnia (cluster 2, C2) and
genes that were downregulated by LPS in normocapnia and
relatively upregulated by hypercapnia (cluster 3, C3). (No
genes that were downregulated by LPS in normocapnia
were further downregulated by hypercapnia.) Among the
genes commonly upregulated by LPS in normocapnia,
hypercapnia downregulated 121 of 274 (44%) in THP-1
macrophages and 106 of 285 (37%) in RAW 264.7 macro-
phages (C1, figure 2b(i)). Of these LPS-upregulated genes in
normocapnia, hypercapnia further upregulated only 6 (2%)
in the human and 14 (5%) in the mouse macrophages (C2;
figure 2b(i)). Among the genes commonly downregulated
by LPS in normocapnia, hypercapnia upregulated 71 of 293
(24%) and 101 of 282 (36%) in the human and mouse macro-
phages (C3; figure 2b(ii)).

Major GO biological processes represented by the LPS-
upregulated genes whose expression was decreased by
hypercapnia belonging to cluster 1 include innate immune
response, cytokine-mediated signalling, response to virus,
type I interferon signalling, inflammatory response and
response to LPS (figure 2c). The LPS-downregulated genes
whose expression was upregulated by elevated CO2 in cluster
3 involve biological processes related to the mitotic cell cycle,
and to DNA replication, elongation and repair (figure 2c).
Genes that were upregulated by LPS and further increased
by hypercapnia in cluster 2 were too few in number to map
to GO processes; these include ATF3, EGR1, ERRFI1, IFNB1,
NLRP3 and ZFP36.

3.3. Hypercapnia downregulates LPS-induced genes
associated with innate immunity, response to
virus, type I interferon signalling, inflammatory
response and cytokine signalling

Figure 2d shows the network of human genes belonging to
cluster 1, i.e. genes whose expression was upregulated by
LPS and relatively downregulated by hypercapnia. Genes
central to all of the major biological processes related to
innate immunity and inflammation represented by the tran-
scriptional response to LPS in normocapnia (figure 1b,e)
were downregulated by hypercapnia. These include NF-κB
pathway genes (NFKB1, NFKB2, NFKBIE, MAP3K8, REL,
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RELB and others), antiviral and type I interferon signalling
genes (STAT1, STAT2, DDX58, IRF1, IRF2, IRF7, IFIT1,
ISG20, MX1, MX2, OAS2, RSAD2 and others); cytokine
signalling genes (IL1A, IL6, IL15, JAK2, TRIM21 and
others); and other inflammatory and LPS response genes
(IRAK2, CEBPB, PELI1, TLR2, ICAM1, CXCL2, CXCL9,
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CXCL10, CD40, IL27 and others). Taken together, these
results indicate that hypercapnia broadly suppresses induc-
tion of innate immune, antiviral and inflammation-related
gene transcription in human and mouse macrophages.
3.4. Hypercapnia increases expression of
LPS-downregulated genes associated with mitosis
and DNA replication

Figure 2e shows the network of top human genes belonging
to cluster 3, i.e. genes that were downregulated by LPS and
relatively upregulated by hypercapnia. Genes with roles
in each of the biological processes suppressed by LPS were
counter-regulated by hypercapnia. These include genes
involved in the mitotic cell cycle (CCNE2, CDKN2D,
CENPA, CENPL, CENPQ, INCENP, CKAP5, NUP43, SKP2
and others); and DNA strand elongation, replication and
repair (FEN1, MCM2, MCM4, MCM5, MCM6, POLD1,
RPA1, PARP1, UNG, RAD51C, MBD4 and others). Thus,
hypercapnia attenuates LPS-induced suppression of genes
required for mitosis and DNA replication and repair.
3.5. Validation of microarray results for selected genes
by quantitative PCR

To validate LPS- and CO2-regulated changes in gene
expression demonstrated by microarray, we performed a set
of independent experiments in which THP-1 macrophages
were stimulated with LPS for 3 h under normocapnic and
hypercapnic conditions. As shown in figure 3, hypercapnia
significantly downregulated the LPS-induced increases in
mRNA expression of the cluster 1 genes, CCL2, IL6, ICAM1
and NFKB1, as determined by quantitative PCR (qPCR).
Similarly, analysis by qPCR confirmed that hypercapnia
further upregulated the LPS-induced increase in expression
of the cluster 2 gene EGR1 and reversed LPS-induced
suppression of the cluster 3 gene EBI2 (figure 3). Thus, we
were able to confirm the directionality of both LPS- and
CO2-regulated expression of representative genes in each of
the three clusters from the microarrays in independent exper-
iments analysed by qPCR.
4. Discussion
The transcriptional responses to LPS we observed in human
THP-1 and mouse RAW 264.7 macrophages are similar to
LPS responses in the two cell lines and in primary macro-
phages reported by others previously, including rapid
induction of a wide range of innate immune and inflamma-
tory genes, and downregulation of many genes involved in
DNA replication and cell division [20–23]. The LPS-triggered
changes in gene expression we documented were broad,
robust and highly similar in the human and mouse macro-
phage lines. These factors, plus the fact that LPS has been
shown to induce a core macrophage transcriptional response
that aligns closely with responses to a range of pathogens and
other microbe-related agonists [24], support the approach of
using LPS stimulation as a model to interrogate the effects
of hypercapnia on gene expression related to immunity,
host defence and other critical cell functions in the
macrophage.

The principal finding of our study is that hypercapnia
broadly downregulated LPS-induced expression of innate
immune and inflammatory genes in both human and
mouse macrophages. The hypercapnia-downregulated
genes are important for host defence against bacterial, viral
and fungal pathogens. The results corroborate and extend
our previous finding that elevated CO2 inhibited LPS-
induced macrophage expression of TNF and IL-6 [11].
Broad suppression by elevated CO2 of innate immune gene
expression in macrophages is also consistent with our obser-
vation that hypercapnia inhibited lung cytokine gene
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expression and increased the mortality of mice with Pseudo-
monas pneumonia [14]. Likewise, hypercapnic suppression
of antiviral and type I interferon pathway gene expression
in the macrophage cell lines coincides with our recent
report that hypercapnia suppresses IAV-induced antiviral
gene and protein expression in alveolar macrophages and
other lung cells, and increases the mortality of IAV infection
in mice [15]. Of note, we have also shown that hypercapnia
downregulates innate immune gene expression in human
bronchial epithelial cells [25]. Thus, hypercapnic suppression
of immune gene expression is not restricted to macrophages,
indicating that the adverse impact of elevated CO2 on host
defence against bacterial and viral pulmonary infections
in vivo probably results from impacts of hypercapnia on
multiple cell types in the lung.

Interestingly, we have also shown that hypercapnia inhi-
bits expression of antimicrobial peptides and other immune
genes inDrosophila [26]. As in the mouse, exposure to elevated
CO2 increased the mortality from bacterial infection in the fly
[26]. Further, in a genome-wide RNAi screen in Drosophila
cells, we identified a number of genes whose expression is
required for hypercapnic inhibition of antimicrobial peptide
gene expression, and confirmed that one of these, the zinc
finger homeobox transcription factor, zfh2, mediates CO2-
induced suppression of antibacterial host defence in vivo
[27]. Thus, hypercapnic suppression of innate immune gene
expression is conserved from Drosophila to mammals. To
explore the basis of this conservation, we are now studying
the role of Zfhx3, a mammalian orthologue of zfh2, as a poss-
ible mediator of hypercapnic immunosuppression in mice.

A second major result of our analysis is that hypercapnia
countered LPS-induced downregulation of multiple mitosis-
related and DNA replication and repair genes. Suppression
of these gene programmes underlies the inhibition of DNA
synthesis and cell cycle progression first observed in LPS-
treated macrophages many years ago [28,29]. More recently,
it has been shown that LPS reprogrammes macrophage
metabolism to a glycolytic phenotype [23,30], which, in com-
bination with the block in proliferation, optimizes the cell for
antimicrobial activity. On the other hand, attenuation by
hypercapnia of LPS-induced downregulation of mitosis-
associated and DNA replication genes might be expected to
divert cellular resources away from antimicrobial functions
and towards proliferative pathways. In this way, CO2-
induced upregulation of non-immune, proliferation-related
genes might further impair macrophage innate immune
activity and contribute to the host defence defect caused by
hypercapnia.

The molecular mechanism(s) by which hypercapnia alters
gene expression remain to be determined. Given the large
number and variety of genes whose expression is altered, it
seems likely that multiple transcriptional regulators may be
involved. One possibility is that the activity of transcription
factors or their upstream regulators could be altered directly
by elevated CO2 via carbamylation [31]. Alternatively, signal-
ling proteins and/or transcription factors could be targeted
for other activity-modifying, post-translational modifications
triggered by signals from yet-to-be-discovered upstream CO2

sensor(s). In line with the latter possibility, hypercapnia has
been shown to activate and signal via AMP-activated protein
kinase in alveolar epithelial and skeletal muscle cells [32,33],
miR-183 and isocitrate dehydrogenase 2 in alveolar epithelial
cells and lung fibroblasts [34], caspase-7, miR-133a and RhoA
in airway smooth muscle [35], Wnts in several tissues [36],
and heat shock factor 1 [37] and Akt1 [15] in macrophages.

In conclusion, using global gene profiling we have shown
that hypercapnia selectively downregulates a broad array of
innate immune and inflammatory genes, while upregulating
genes involved in cell division and DNA replication in LPS-
stimulated human and mouse macrophages. These results
align with our previous finding that hypercapnia inhibits
macrophage TNF and IL-6 mRNA and protein expression in
a non-cytotoxic, reversible and pH-independent manner [11].
They also help explain the immune defects that underlie the
hypercapnia-induced increase in mortality of mice with Pseudo-
monas and IAV pneumonia [14,15]. Furthermore, our results
reveal a mechanism by which elevated CO2 may contribute,
at least in part, to the high mortality of patients with severe
acute and chronic lung disease complicated by hypercapnia.
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