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Soluble adenylyl cyclase (sAC; ADCY10) is a bicarbonate (HCO3
−)-regulated

enzyme responsible for the generation of cyclic adenosine monophosphate
(cAMP). sAC is distributed throughout the cell and within organelles and,
as such, plays a role in numerous cellular signalling pathways. Carbonic
anhydrases (CAs) nearly instantaneously equilibrate HCO3

−, protons and
carbon dioxide (CO2); because of the ubiquitous presence of CAs within
cells, HCO3

−-regulated sAC can respond to changes in any of these factors.
Thus, sAC can function as a physiological HCO3

−/CO2/pH sensor. Here,
we outline examples where we have shown that sAC responds to changes
in HCO3

−, CO2 or pH to regulate diverse physiological functions.
1. Introduction to cyclic adenosine monophosphate signalling
Since its initial discovery nearly 70 years ago, the second messenger cyclic
adenosine monophosphate (cAMP) has been established as a key player in var-
ious biological processes such as development, proliferation and apoptosis [1].
Often, cAMP plays multiple roles within a single cell; to prevent unintended
interactions between different cellular pathways, cAMP signalling is compart-
mentalized into distinct microdomains which control the temporal and
spatial limits of individual cAMP signalling cascades [2]. Contained within
these microdomains are essential components of cAMP signalling, including
the enzymes which generate the second messenger, its effectors, and the
enzymes which degrade cAMP. The family of enzymes responsible for produ-
cing cAMP from adenosine triphosphate (ATP) are adenylyl cyclases (ACs)
[3,4]. Downstream targets of cAMP include protein kinase A (PKA), exchange
protein activated by cAMP (EPAC) [5,6] and cyclic nucleotide-regulated chan-
nels [7]. These effectors are found within close proximity to the enzymes that
synthesize and degrade cAMP; e.g. via PKA-tethering A-kinase anchoring pro-
teins (AKAPs) [8]. Finally, phosphodiesterases (PDEs) degrade cAMP to control
its diffusion and are responsible for defining the boundaries of individual
microdomains [9–12] (figure 1). Ultimately, the compartmentalization of
cAMP signalling pathways to microdomains enables this ubiquitous second
messenger to simultaneously facilitate multiple, and oftentimes opposing,
biological processes throughout a cell.

In mammalian cells, the 10 known AC isoforms can be divided into two
classes: the G-protein-regulated transmembrane ACs (tmACs: ADCY1–9) and
the HCO3

−-regulated soluble AC (sAC:ADCY10) [13]. In most tissues, AC activity
is detected predominantly, if not exclusively, in particulate fractions from cells;
thus, cAMP was thought to be produced exclusively by membrane-bound pro-
teins [14,15]. Molecular cloning of nine mammalian tmAC genes (ADCY1–9)
revealed the presence of multiple transmembrane domains providing molecular
confirmation that tmACs are membrane-bound proteins [16,17]. Biochemical
characterization of tmACs confirmed that they are regulated by G-proteins and
mediate the cellular responses to hormones and neurotransmitters signalling
via G-protein-coupled receptors (GPCRs) [17]. However, cAMP microdomains
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Figure 1. cAMP signalling mediated by the HCO3
−/CO2/pH-regulated soluble

adenylyl cyclase (sAC). Inside of a cell, carbonic anhydrases (CAs) rapidly
interconvert CO2 and water into HCO3

− and protons. HCO3
− activates sAC,

and, due to the nearly instantaneous equilibrium between HCO3
−, CO2 and

pH, sAC activity can fluctuate in concert with changes to any of these factors.
cAMP produced by sAC will bind to and activate a downstream effector
protein (protein kinase A, PKA; exchange proteins activated by cAMP,
EPAC; and/or cyclic nucleotide-regulated channels) and be degraded by phos-
phodiesterases (PDEs) into AMP. LRE1 and KH7 are sAC-specific inhibitors and
CAI represents carbonic anhydrase inhibitors.
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do not solely exist at the plasma membrane; they can be found
throughout the cytoplasm or within several distinct cellular
compartments [4,18,19]. sAC regulates cAMP inside these
intracellular microdomains [4,19–22].
2. History of soluble adenylyl cyclase
In the mid-1970s, Theodor Braun detected a novel ‘soluble’
AC activity in cytosolic extracts from mammalian testis [23].
Unlike the previously identified tmACs, soluble AC activity
was not associated with the plasma membrane, and it was
insensitive to stimulation by G-proteins or the plant-derived
pharmacological tmAC activator forskolin (FSK) [24,25]. A
related activity was detected in spermatozoa, and this activity
was stimulated by bicarbonate (HCO3

−) [26–29]. The mole-
cular source of soluble AC activity remained elusive until,
in 1999, our laboratory purified sAC protein from 950 rat
testes [30,31]. Purified sAC was insensitive to G-protein or
FSK stimulation and was activated by HCO3

− (described in
more detail below) [32].

sAC purification allowed for the molecular cloning of the
mammalian sAC gene (ADCY10) and the identification of
multiple protein isoforms generated by alternative splicing
[30,33,34]. The ADCY10 gene comprises 33 exons and predicts
the 187 kDa full-length sAC (sACfl) protein, which contains
two heterologous catalytic domains (C1 and C2) as well as
multiple C-terminal regulatory domains, one of which has
been identified as an autoinhibitory domain [35,36]. An alter-
natively spliced isoform which skips the 12th exon of the
ADCY10 gene introduces a premature stop codon to generate
a 48 kDa ‘truncated’ splice variant (sACt) [34]. sACt corre-
sponds to the sAC protein originally purified from rat testes
and comprises the C1 and C2 catalytic domains of sAC [30].
Both isoforms are stimulated by HCO3

−, but sACt has higher
specific activity than sACfl [30]. This difference in activity is
due to the presence of the autoinhibitory domain in sACfl,
although the exact mechanism of autoinhibition remains
unknown [35]. An additional molecularly characterized, alter-
natively spliced sAC isoform contains a ciliary targeting
sequence and a single catalytic domain (C2) [33]. Sequence
analysis of ADCY10 revealed that C1 and C2 are closely
related to the catalytic domains of ACs from Cyanobacteria,
which evolved over 3 billion years ago [30].

Genetic ablation of the ADCY10 gene ultimately confirmed
that sAC is responsible for the testis-derived soluble AC activity
originally observed by Braun [37,38]. Prior to its molecular iso-
lation, soluble AC activity was believed to be abundantly
expressed only in the testis [30]. It has since been shown that
sAC is ubiquitously expressed and can be found in a wide var-
iety of tissues [39]. sAC is known to be present in the cytoplasm
as well as within cellular organelles [4], including the nucleus
[19] and the mitochondrial matrix [4,20–22]. As discussed
above, intracellular cAMP signalling microdomains depend
upon an AC that can produce the second messenger away
from the plasma membrane. In several cellular compartments,
sAC was demonstrated to be that source [19–22].
3. Biochemical properties of sAC
Like all mammalian ACs, the catalytic mechanism of sAC
requires the binding of two divalent cations in the active site
[40,41]. sAC can use either Mn2+ or Mg2+ as metal cofactors
though the activity of sAC is much greater in the presence of
Mn2+ [42]. Although Braun originally discovered the soluble
AC activity due to its preference for Mn2+ [23], it is unclear
whether the intracellular concentration of Mn2+ would support
sAC activity in mammalian cells. Studies performed with puri-
fied sACt revealed the biochemical properties that are
responsible for this selectivity; in the presence ofMg2+, sACexhi-
bits a much higher Km for substrate ATP (Km of approx. 1 mM
withMn2+ versusKm> 10 mMwithMg2+) [42].Mg2+-dependent
sAC activity can be enhanced if another metal cofactor, Ca2+,
replaces the secondMg2+ in the active site. Ca2+ is better at coor-
dinating ATP than Mg2+; thus, this replacement results in a
decrease in the Km for substrate ATP (from 10 mM to approx.
1 mM) and an overall stimulation of sAC activity at cellular
levels of ATP [41–43]. This effect is physiologically relevant, as
activation of sAC in response to an increase in intracellular
levels of Ca2+ was observed in several systems [44–48]. Even
when sAC is fully activated, its affinity for ATP (Km of approx.
1 mM) is much lower compared to that of tmACs (Km= 10–
100 µM) [13]. Due to its low affinity, sAC is not saturated with
substrate at physiological ATP concentrations (approx.
1–3 mM). This property allows sAC activity to varywith physio-
logically relevant fluctuations in ATP concentrations, thus
allowing it to function as an ATP sensor within a cell [49].
4. Bicarbonate stimulation: mechanism of action
HCO3

− directly stimulates Mg2+-dependent human sAC
activity with an EC50 of 11–12 mM [41,42], which matches
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the normal intracellular concentration ofHCO3
− [50–52]. HCO3

−

andCa2+, the other physiological sACactivator, are synergistic;
together they greatly increase the level of Mg2+-dependent
sAC activity. Biochemical characterization of HCO3

−-induced
sAC activation suggested that the mechanism of action
involved the direct binding of HCO3

− to sAC protein [32].
In vitro, HCO3

− regulation was shown to be pH-independent
and appeared to be due to HCO3

−, but not CO2, changes.
HCO3

− regulation is conserved in sAC-like cyclases from
Cyanobacteria, and crystal structures of a cyanobacterial sAC
homologue (CyaC) revealed that HCO3

− induces closure of
the active site and facilitates the recruitment of one of the
metal cofactors [43]. The bicarbonate binding site (BBS) was
ultimately identified when the crystal structure of human
sAC was solved [41]. The identification of a BBS definitively
showed that the mechanism of action for HCO3

−-induced
sAC activation involved the direct binding of HCO3

−.
Kinetic analysis revealed that HCO3

− stimulates sAC via
two mechanisms: it relieves substrate ATP inhibition and
increases the Vmax of the catalytic reaction [42]. The structural
rationale for the second mechanism of activation, but not the
first, was determined when the crystal structure of the mam-
malian sAC–HCO3

− complex was solved [41]. All known
mammalian ACs (sAC and tmACs) have two catalytic
domains (C1 and C2) that pseudo-heterodimerize to form
the catalytic centre at their interface. The active site contains
several highly conserved residues essential for catalysis
[41,43]. The C1–C2 interaction forms an additional pocket
known as the pseudosymmetric site. The pseudosymmetric
site does not contain the catalytic residues and, thus, is cata-
lytically inactive [53]; instead, it is responsible for binding of
small molecule activators (i.e. HCO3

− in sAC and FSK in
tmACs). The sAC pseudosymmetric site (i.e. the BBS) is sig-
nificantly smaller than the tmAC pseudosymmetric site,
making it unable to accommodate FSK and explaining the
selectivity of FSK for tmAC. HCO3

−, which is significantly
smaller than FSK, is able to enter the BBS of sAC and bind
between residues Lys95 and Arg176 [41]. The interaction
between HCO3

− and Arg176 within the BBS positions
Arg176 towards the bound HCO3

−, disrupting a salt bridge
formed between Arg176 and a conserved catalytic residue,
Asp99, in the apo-enzyme. The salt bridge between Arg176
and Asp99 in the apo-enzyme is an inhibitory interaction,
which prevents Asp99 from coordinating one of the essential
metal cofactors in the active site. The presence of HCO3

− in the
BBS therefore allows Asp99 to coordinate the active site metal
and sAC to enter an active conformation. The HCO3

−-induced
active site closure [43], which rearranges the bound substrate
ATP into a conformation that facilities the formation and
release of the reaction products, could explain the increased
Vmax of the reaction [42]. In addition, the presence of HCO3

−

in the BBS induces smaller active site rearrangements which
are not yet fully characterized [41,53].
5. sAC functions
5.1. sAC as a bicarbonate sensor
5.1.1. Sperm
After being produced within the testis, sperm are stored in
the cauda region of the epididymis. At this stage, the
sperm are morphologically mature, but they are incapable
of fertilizing an egg [54]. Beginning with ejaculation and con-
tinuing during transit through the female reproductive tract,
sperm acquire the ability to fertilize an egg through a matu-
ration process called capacitation [55]. Capacitation, which is
essential for successful fertilization, is induced by HCO3

− and
dependent upon cAMP signalling [27]. As mentioned above,
sAC was originally purified from 950 rat testes [30] and is
known to be highly expressed in testis, specifically in male
germ cells [56], and in sperm [37,57,58]. Both pharmacologi-
cal inhibition and genetic ablation experiments demonstrate
that sAC is the source of the second messenger responsible
for the majority, if not all, of cAMP signalling that occurs
within sperm [37,38,59–61].

While stored in the cauda region of the epididymis,
mature sperm are in an environment with a HCO3

− concen-
tration that is significantly lower than standard extracellular
levels (i.e. 2–7 mM instead of 25 mM) [62]. Once sperm
leave the epididymis, the normal extracellular HCO3

− in semi-
nal fluid activates sAC and induces capacitation [63]. The
essential role of sAC in HCO3

−-induced capacitation was
demonstrated both genetically and pharmacologically.
Male, but not female, sAC knockout (KO) mice are sterile,
and sperm from these mice have defects in motility, fail to
capacitate, and are thus incapable of fertilizing an oocyte in
vitro [37,38,60]. Likewise, incubating sperm from wild-type
(WT) mice with either of two, molecularly distinct, sAC-
specific inhibitors, KH7 [37] or LRE1 [61], results in similar
defects. sAC’s function in sperm is also genetically confirmed
in humans. A frameshift mutation in ADCY10 was recently
identified as the cause of infertility in two adult men [64].
Similar to sAC KO and sAC-inhibited mouse sperm, the
sperm from these two individuals have defects in motility.
Motility was restored by addition of cell-permeable cAMP
analogues, confirming the defect was caused by insufficient
levels of intracellular cAMP as a result of sAC loss.
5.1.2. Eye
Aqueous humour (AH) is a watery, nutrient-filled fluid found
in both the anterior and posterior chambers of the eye. AH is
secreted from the ciliary body (CB), and is continuously
drained from the eye via several drainage routes, with the tra-
becular meshwork being responsible for a majority of the
drainage. The balance between the rate of AH production
(inflow) and the rate of AH drainage (outflow) determines
intraocular pressure (IOP). Abnormal IOP can lead to the
development of eye disorders; i.e. elevated IOP is a major
risk factor for glaucoma [65] and reduced IOP can lead to
phthisis bulbi (shrunken eye) [66]. Pharmacologic and genetic
tools revealed that sAC regulates IOP. sAC KO mice as well
as mice treated with either of the sAC-specific inhibitors,
KH7 [67] or LRE1 [68], have elevated IOP. In sAC KO mice
or sAC inhibitor-treated WT mice, the elevated pressure is
due to decreased outflow of AH without significant changes
to inflow [67]. The exact mechanism by which sAC controls
outflow of AH remains unknown, but is thought to originate
in the CB [69]. In contrast to the trabecular meshwork, which
does not appear to contain sAC protein or sAC activity, the
CBs of humans and pigs express high levels of sAC protein
and contain measurable sAC activity [67,70]. In the CB,
sAC is thought to act as a HCO3

− sensor. In CB cells, appli-
cation of a carbonic anhydrase inhibitor (CAI) increases
intracellular HCO3

− which stimulates sAC-dependent cAMP
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production [71]. Interestingly, CAIs are a widely used treat-
ment for glaucoma [65], suggesting that CAIs reduce IOP
by increasing intracellular HCO3

− levels and stimulating
sAC activity in CB cells.

5.1.3. Astrocytes
sAC is also abundantly expressed in astrocytes, support cells
of the brain [72]. Astrocytes produce and store glycogen [73]
which they break down into lactate [74]. The lactate is sup-
plied to neurons to be used as an energy source, making
astrocytes an important contributor to energy efficiency in
the brain [74–76]. Astrocytic sAC plays an important role in
this metabolic coupling. Following neural activity, extracellu-
lar concentrations of potassium ([K+

e]) are high. Both in
cultured astrocytes and in brain slices, the elevated [K+

e]
stimulates transport of HCO3

− into astrocytes [72,77–80],
which activates astrocytic sAC [72]. The resultant increase
in cAMP promotes the breakdown of glycogen, increasing
production of lactate [72]. These effects are blocked by sAC-
specific inhibitors, but not by the tmAC-selective inhibitor
dideoxyadenosine (ddAdo). Thus, HCO3

− regulation of sAC
is important for the stimulation of astrocytic glycogenolysis
and lactate production following neural activity.
6. sAC also functions as a carbon dioxide
and pH sensor

Although sAC activity is regulated directly by HCO3
− in vitro,

in cellular systems sAC also responds to changes in levels of
carbon dioxide (CO2) and protons (H+). This responsivity is
due to the ubiquitous presence of carbonic anhydrases
(CAs), which catalyse the instantaneous equilibration of CO2,
HCO3

− and protons (H+). For this reason, sAC functions as a
physiological intracellular pH (pHi), CO2 and HCO3

− sensor,
responding to changes in these factors via its activator HCO3

−.

6.1. sAC as a carbon dioxide sensor
6.1.1. Mitochondria
Inside the mitochondrial matrix, the tricarboxylic acid (TCA)
cycle produces electron donors for oxidative phosphorylation
(OXPHOS). OXPHOS, which is responsible for generating
a majority of cellular ATP, is dynamically regulated by
post-translational modifications [81,82], including cAMP-
dependent phosphorylation of mitochondrial enzymes
[21,83]. Initially, the discovery of cAMP-dependent regulation
was enigmatic; membrane-permeable cAMP added to cells
increased oxygen consumption and ATP generation, but
stimulating tmACs to produce cAMP in the cytoplasm had
no effect [20]. The appreciation that mitochondrial sAC syn-
thesizes cAMP inside the mitochondrial matrix resolved the
conundrum of how membrane-impermeable cAMP was able
to regulate its effector proteins inside the mitochondrial
matrix [20,21,84]. As it produces electron donors, the TCA
cycle also generates CO2. Due to the presence of CAs in the
mitochondrialmatrix [85,86], this CO2 is nearly instantaneously
converted to HCO3

−. Matrix-localized, HCO3
−-regulated sAC

generates cAMP which increases electron transport chain and
OXPHOS activities, resulting in increased ATP production
[20]. Thus, CO2-dependent sAC activity links TCA cycle flux
with OXPHOS activity [83,87,88]. In addition to CO2-
dependent regulation, this intramitochondrial sAC signalling
cascade is responsive to calcium released from intracellular
stores [21,84]. The effects of intramitochondrial sAC-generated
cAMP are reversible, and phosphodiesterase 2A (PDE2A) was
identified as the intramitochondrial PDE responsible for
regulating cAMP levels and OXPHOS activity [89].

6.1.2. Bronchi
Bronchi remove contaminants from inhaled air via a mechan-
ism called mucociliary clearance (MCC) in which cilia lining
the airway epithelium beat to propel unwanted material out
of the lungs. sAC was identified in airway epithelium, where
it is specifically localized to the axoneme, the microtubule-
based cytoskeletal structure that forms the core of cilia and
regulates ciliary beat frequency [90]. Baseline ciliary beat fre-
quency (CBF) and changes in CBF are mediated by cAMP.
CO2/HCO3

− exposure increases cAMP in cilia and stimulates
CBF, and sAC-specific inhibitors, but not tmAC-selective
inhibitors, block these effects [90]. sAC-dependent control of
CBF was confirmed genetically. sAC KO mice lack the CBF
regulation seen in WT mice, and recombinant expression of
sAC targeted to cilia using a specific ciliary targeting
sequence, but not cytoplasmic sAC, rescued sAC-dependent
CBF regulation [33]. Thus, sAC in bronchi serves as a CO2

sensor modulating ciliary beat.

6.2. sAC as an extracellular pH sensor
6.2.1. Epididymis
Acidification of the lumen of the cauda region of the epidi-
dymis is essential for sperm maturation and storage.
Acidification is accomplished by the clear cells of the epididy-
mis, which secrete protons from their apical pole lining the
lumen [91,92]. Clear cells possess high levels of the vacuolar-
type H+-ATPase (V-ATPase) proton pump. Basally, the luminal
pH is acidic, and the V-ATPase proton pump is actively
recycled between intracellular vesicles and the apical plasma
membrane. At alkaline luminal pH, apical membrane surface
area increases, which allows more V-ATPase proton pump to
accumulate on the apical membrane from sub-apical vesicles.
In turn, this accumulation stimulates proton secretion to acid-
ify the lumen. This process is dependent upon carbonic
anhydrase activity, suggesting a role for intracellular HCO3

−

[93]. HCO3
−-regulated sAC localizes to the clear cells of the epi-

didymis, and cell-permeable cAMP increases V-ATPase
surface expression. Importantly, inhibition of sAC blocks the
elevation of cAMP and accumulation of V-ATPase on the
apical surface of clear cells. Thus, at alkaline luminal pH, car-
bonic anhydrase-dependent stimulation of sAC increases
apical membrane V-ATPase accumulation.

6.2.3. Kidney
The body’s acid–base status is regulated via proton or HCO3

−

secretion in the collecting duct of the kidney. Analogous to
the mechanism that exists in the epididymis, sAC is thought
to play a parallel pH-sensing role in the intercalated cells
(ICs) of the kidney collecting duct. ICs can respond to
changes in extracellular acid–base status by modulating
proton secretion. While sAC was shown to be expressed in
many segments of the kidney tubule [93], in renal ICs, it
colocalizes with the V-ATPase [94]. As in the epididymis, in
Type-A ICs, sAC is thought to be involved in the carbonic
anhydrase-dependent increase in microvilli and translocation
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of V-ATPase to the apical membrane, as well as the resultant
increase in proton secretion during periods of acidosis.

6.3. sAC as an intracellular pH sensor
6.3.1. Lysosomes
The endo-lysosomal pathway is the crucial intracellular path-
way that follows the processes of endocytosis and autophagy
[95,96]. Along the endosomal pathway, early endosomes
mature, become late endosomes, and eventually merge with
lysosomes. The acidification process is essential for efficient
lysosomal protease function and breakdown of endo-lyso-
somal contents [97]. sAC is necessary for proper lysosomal
acidification in a variety of cell types. Pharmacological and
genetic ablation of sAC increases lysosomal pH [98]. Further-
more, multiple assays showed that in sAC KO or sAC-
inhibited WT cells, lysosomal degradative capacity is reduced
and autophagic vacuoles accumulate [98]. One possible
mechanism underlying this phenotype is that sAC activity
is regulated by local increases in HCO3

− due to changes in
intracellular pH near acidifying lysosomes.

6.3.2. Melanosomes
Melanin, which determines skin colour, is synthesized in mela-
nocytes inside a specialized lysosome-related acidic organelle
called a melanosome. The rate-limiting step in melanin syn-
thesis involves tyrosinase, a pH-sensitive enzyme. At basic
pH, tyrosinase is active, which results in increased melanin syn-
thesis [99]. Reduction of sAC activity, via either genetic or
pharmacological inhibition, increases melanosome pH, which
stimulates tyrosinase activity and accumulation of melanin [99].
7. Additional sAC functions
sAC has additional functions which have been demonstrated
both genetically and pharmacologically, but which have not,
at least by currently available findings, been directly ascribed
to its CO2/HCO3

−/pH-sensing capabilities. In addition to
CO2/HCO3

−/pH, sAC activity can be regulated by Ca2+,
ATP and multiple regulatory domains located in the
C-terminus of the protein [35,36,44–49]. A recent role for
sAC has been uncovered in the liver. Non-alcoholic steato-
hepatitis (NASH) is an advanced form of hepatic steatosis
that is mainly characterized by the presence of fibrotic scar-
ring on the liver. sAC was shown pharmacologically and
genetically to be essential for development of fibrotic scarring
in response to high cholesterol in animal models of NASH
[100]. sAC has also been ascribed immune functions in differ-
ent contexts. sAC is required for transendothelial migration of
leucocytes, the process by which leucocytes migrate through
the endothelium to gain access to sites of infection [101]. sAC
has also been identified to play a role in cAMP-dependent
regulation of inflammasome functions [102–104]. Whether
these sAC functions depend upon sAC’s CO2/HCO3

−/
pH-sensing capabilities or an alternative sAC regulatory
mechanism awaits further studies.
8. Conclusion
This review details a number of sAC functions that have been
demonstrated both pharmacologically and genetically.
Despite this wide range of sAC functions, two different
sAC KO mouse strains [37,105] and humans homozygous
for a rare frameshift mutation that results in a premature ter-
mination of the ADCY10 gene [64] exhibit male-specific
sterility with no other readily observable phenotypes
[37,38,105]. Other identified phenotypes in sAC KO mice
were more subtle and required deeper investigation to
uncover. In contrast to sperm, where sAC-generated cAMP
is required to initiate capacitation in an ‘all-or-nothing’
manner, the ‘somatic’ functions of sAC-generated cAMP
appear to modify the amplitude or timing of pathways. For
example, in the mitochondrial matrix, sAC-generated cAMP
does not turn on or off the electron transport chain; instead
it acts as a rheostat to control how much ATP is generated
[20,22,83,106]. Similarly, sAC-generated cAMP regulates beat-
ing frequency (not whether there is a beat) in airway cilia [90]
and the rate and efficiency of lysosomal acidification [98].

Discovery of HCO3
−-regulated sAC revealed a mechanism

by which cells and organisms can respond to changes in
HCO3

−, CO2 or pH and defined CO2/HCO3
−/pH as physio-

logical signals. Future studies of sAC, including
characterization of sAC functions not yet known to depend
upon CO2/HCO3

−/pH sensing and identification of novel
sAC functions, will further illuminate the biology of CO2/
HCO3

−/pH signalling.
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