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Abstract

National and regional ecological assessments are essential for making rational decisions 

concerning water body conservation and management at those spatial extents. We analyzed data 

from 4597 samples collected from 3420 different sites across the conterminous USA during the 

U.S. Environmental Protection Agency’s 2008–2009 and 2013–2014 National Rivers and Streams 

Assessment. We evaluated the relationship between both fish and macroinvertebrate multimetric 

index (MMI) condition scores and 38 environmental factors to assess the relative importance of 

natural versus anthropogenic predictors, contrast site-scale versus watershed-scale predictors, and 

examine ecoregional and assemblage differences. We found that most of the environmental factors 

we examined were related to either fish and/or macroinvertebrate MMI scores in some fashion and 

that the factors involved, and strength of the relationship, varied by ecoregion and between 

assemblages. Factors more associated with natural conditions were usually less important in 

explaining MMI scores than factors more directly associated with anthropogenic disturbances. 

Local site-scale factors explained more variation than watershed-scale factors. Random forest and 

multiple regression models performed similarly, and the fish MMI-environment relationships were 

stronger than macroinvertebrate MMI-environment relationships. Among ecoregions, the strongest 

environmental relationships were observed in the Northern Appalachians and the weakest in the 

Southern Plains. The fish and macroinvertebrate MMIs were only weakly correlated with each 
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other, and they generally responded more strongly to different groups of variables. These results 

support the use of multiple assemblages and the sampling of multiple environmental indicators in 

ecological assessments across large spatial extents.
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1. Introduction

Quantitative ecological assessment of all water bodies at continental-scales is an extremely 

difficult undertaking—despite their importance in making rational and effective 

environmental policies and management decisions that are relevant to those scales. 

Historically, nearly all quantitative water body assessments were conducted only at local or 

basin scales or through assessing aggregations of disparate data from multiple sources 

(Hughes et al. 2000). However, such limited numbers of local- and basin-scale assessments 

cannot be accurately extrapolated to entire continents, nations, or large river basins with 

known confidence intervals. The same is true of aggregating data derived from differing 

sources, because of substantial differences in sampling methodologies and data collection 

gaps (Hughes et al. 2000; Heinz 2008; Maas-Hebner et al. 2015). Although several states in 

the USA have implemented very thorough and quantitative statewide ecological assessments 

of their surface waters; this is not the rule (Yoder and Barbour 2009). To fill these gaps, 

federal agencies in the USA have implemented standardized ecological assessments of the 

condition of streams and rivers nation-wide (USEPA 2016b; Meador et al. 2008; Meador and 

Carlisle 2009). In Europe, continental-scale ecological assessments have been implemented 

by calibrating different national approaches (Hering et al. 2004) or by employing standard 

sampling methods and data analyses (Pont et al. 2006; Schinegger et al. 2016; Grizzetti et al. 

2017), but those assessments are constrained in their capability to make robust inferences 

beyond the set of sampled sites.

Traditional ecological indicators such as total species richness and assemblage composition 

(e.g., assemblage patterns depicted in ordinations) are imperfect indicators of assemblage 

condition (Hughes 2019). Total species richness can be a problematic indicator of 

disturbance because of the tendency of non-native and tolerant fish species to increase 

because of low levels of anthropogenic disturbance (Hughes et al. 1998; McCormick et al. 

2001; Mebane et al. 2003; Lomnicky et al. 2007). Similarly, both fish and macroinvertebrate 

assemblage richness are very sensitive to sampling effort (Cao et al. 2002; Kanno et al. 

2009) and local environmental conditions (Hawkins et al. 2000; Leal et al. 2018; Leitão et 

al. 2018). Ordinations of assemblage composition, as well as species richness, tend to be 

driven by natural variation (Vannote et al. 1980; Fausch et al. 2002). Therefore, multimetric 

indices (MMIs), which are derivations of the original Index of Biotic Integrity (IBI) first 

developed by Karr (1981), are increasingly being used globally for evaluating assemblage 

condition (Ruaro and Gubiani 2013; Ruaro et al. 2019; Buss et al. 2015). MMIs have 

become popular because they incorporate multiple variables deemed important for 

understanding deterioration in assemblage composition and function into a single index. 
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Many different MMIs have been developed over the years for assessing relatively small 

areas, but more recently continent-wide MMIs have been developed for assessing 

assemblage condition for lotic fish (e.g., Esselman et al. 2013), lotic macroinvertebrates 

(Stoddard et al. 2008), lotic and lentic diatoms (Stevenson et al. 2013; Tang et al. 2016), and 

wetland vegetation (Magee et al. 2019).

Fish and macroinvertebrate assemblages are most commonly used for assessing stream and 

river condition (Ruaro and Gubiani 2013; Ruaro et al. 2019), with diatoms a close third. Fish 

assemblages in streams and rivers offer several unique advantages to assess ecological 

condition, based on their mobility, longevity, trophic relationships, and socioeconomic 

importance (Barbour et al. 1999). There are numerous examples of MMIs developed for fish 

assemblages in smaller streams (e.g., McCormick et al. 2001, Hughes et al. 2004, Bramblett 

et al. 2005) as well as for larger rivers (e.g., Lyons et al. 2001, Mebane et al. 2003). The 

taxonomic composition and relative abundance of different taxa that make up the benthic 

macroinvertebrate assemblage present in a stream have also been used extensively to assess 

how human activities affect ecological condition (Barbour et al. 1999; Buss et al. 2015). 

Both fish and macroinvertebrate MMI scores have been related to a wide variety of site-level 

environmental factors in various parts of the world.

In addition to the effect of local site conditions on assemblage condition, there is a growing 

recognition of the importance of landscape conditions on surface waters (Allan 2004; 

Johnson and Host 2010; Hughes et al. 2006, 2019). For example, Wang et al. (2003) 

reported that watershed variables explained 4% and 11% of the variability in stream fish 

assemblage characteristics and presence-absence, respectively; but markedly less than that 

explained by site variables in the Northern Lakes and Forest Ecoregion of Minnesota, 

Wisconsin, and Michigan. For French rivers, Marzin et al. (2012b) determined that 

watershed land use explained 5% of fish assemblage composition and 11% of 

macroinvertebrate assemblage structure, but less than that explained by site characteristics. 

Macedo et al. (2014) found that watershed land use explained 10% and 28% of the variance 

in fish and macroinvertebrate assemblage richness, respectively, in two Brazilian Cerrado 

(savanna) hydrologic units, but less than that explained by local-scale site conditions. Terra 

et al. (2015) determined that watershed land use explained 2–5% of fish assemblage 

functional and taxonomic variability, respectively, in an Atlantic Forest basin, but less than 

that explained by local-scale site variables. Studying Brazilian Amazon streams, Leal et al. 

(2018) found that watershed land use explained 2–5% of fish species abundance and 

functional guild abundances across three different river basins, and less than that explained 

by instream or riparian predictors. In a study of fish assemblage richness in four Cerrado 

hydrologic units, Pompeu et al. (2019) determined that land use explained 0–14% of fish 

assemblage structure as measured by Bray-Curtis similarity. Through use of structural 

equation modeling, Leitão et al. (2018) found that watershed deforestation explained nearly 

30% of fish taxonomic diversity and evenness and functional originality and identity in one 

Brazilian Amazon basin, but not in another. Unlike the other studies, watershed conditions 

had greater or comparable effects on fish assemblages than local-scale site conditions. 

Clearly, the relative importance of watershed land use on fish and macroinvertebrate 

assemblage responses varies regionally and with the response indicator, statistical analyses 

employed, and range of land use disturbance evaluated (Wang et al. 2006).
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Because of the difficulties and expense of conducting large-scale surveys, there have been 

many more data-driven studies across small areas than continental extents. To address this 

shortcoming, the EPA’s National Aquatic Resource Surveys (NARS) began in 2004 and 

were designed to estimate the condition of surface waters throughout the USA. A large 

number (~1000) of randomly selected lakes, streams, rivers, wetlands or near coastal sites 

are visited each year during a defined index period (e.g., summer baseflow for streams/

rivers). Each of the five water body types are visited once every 5 years. For logistical 

reasons, stream and river sampling were combined into one survey (the National Rivers and 

Streams Assessment or NRSA) and done over a 2-year period, every 5 years. At each site, 

fish and macroinvertebrate assemblages, water quality, and physical habitat data are 

collected during a 1-day sampling visit. National MMI scores have been developed for both 

macroinvertebrates (Stoddard et al. 2008) and fish (USEPA 2016a). MMI scores have also 

been converted to good/fair/poor condition classes for both fish and macroinvertebrates 

(USEPA 2016a). Thus, the NRSA data provide a unique opportunity to investigate the 

relationship between MMI scores and environmental factors at a continental scale through 

use of consistently collected data.

In this study, we had two objectives. First, we sought to compare and contrast the strength of 

major environmental predictors on lotic fish and macroinvertebrate MMI scores regionally 

and nationally. Second, we wanted to compare and contrast major site-scale stressors and 

watershed-scale stressors associated with lotic fish and macroinvertebrate MMI scores in 

terms of predicting poor versus good assemblage condition class at regional and national 

scales. Based on previous publications, we hypothesized that (1) natural predictors would be 

more important than anthropogenic predictors at the scales at which we were evaluating, (2) 

that site-scale predictors would explain more variation than watershed-scale predictors, and 

(3) that key stressors would vary by region and assemblage type.

2. Methods

2.1. Study Design

Field crews for the National Rivers and Streams Assessment (NRSA) made 2,309 sample 

visits during the summers of 2008 and 2009, and 2,288 sampling visits during the summers 

of 2013 and 2014 across the conterminous USA. (Figure 1). The NRSA used a probability-

based design to select the sites (Stevens and Olsen 2004; Olsen and Peck 2008; USEPA 

2016a) with a target population of all streams and rivers with flowing water during the June-

September index period. Sites were selected from the National Hydrography Dataset (USGS 

2013), which generally reflects the blue-line network at the 1:100,000 map scale. The NRSA 

is representative of a target population of 1,231,000 km of lotic systems ranging from the 

Mississippi River to headwater streams. The design was spatially balanced and stratified by 

state, ecoregion, and stream order to even out the sample site distribution across areas and 

stream sizes (Table 1; Figure 1). Within each year, approximately 10% of the sites were 

randomly selected for a second visit to assess within-year variability. In addition, nearly 

40% of the sites sampled in 2008–2009 were resampled in 2013–2014 to assess between-

year variability and estimate change in ecological condition. Lastly, in addition to the 

probability-selected sites, 497 sites that were hand-picked by regional experts using best 
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professional judgment were sampled to increase the number of potentially least-disturbed 

reference sites (USEPA 2009). At each one-day site visit, field crews collected data on fish 

and benthic macroinvertebrate assemblages along with measurements of water chemistry 

and physical habitat.

2.2. Fish Data

Fish were collected as described in detail in USEPA (2009, 2013a, b). Briefly, a sample site 

was established around the randomly chosen sample point of sufficient extent to characterize 

the fish assemblage within the site (Reynolds et al. 2003; Hughes and Peck 2008). Nearly all 

the sites were sampled by backpack or boat electrofishing; 2% of the sites were sampled 

with seines because of very high conductivity water. In wadeable sites <13 m wide, a reach 

length equal to 40 channel widths, or a minimum of 150 m for headwater streams, was 

sampled. For wadeable sites >13 m wide, and boatable sites, the minimum reach length 

sampled was the longer of 500 m or 20 channel widths. In large wadeable and boatable sites, 

sampling continued beyond the minimum reach length until 500 individuals were collected 

or a reach length equal to 40 channel widths was sampled. Fish were tallied and identified at 

the site, then released alive unless used for fish tissue analyses or vouchers (USEPA 2012). 

Taxonomic names were based primarily on those accepted by the American Fisheries 

Society (Nelson et al. 2004, Page et al. 2013).

For developing fish assemblage metrics, fish species autecologies were based on published 

information (McCormick et al. 2001; Goldstein and Meador 2004; Whittier et al. 2007; 

Frimpong and Angermeier 2009). Traits included habitat guilds (lotic habitat and 

temperature regime), trophic guilds, reproductive guilds (lithophils), migration strategies, 

and relative tolerance to anthropogenic disturbance. The NRSA determined whether each 

species was native or non-native to the basin in which it was collected using distribution 

maps from NatureServe (http://www.natureserve.org), the USGS Nonindigenous Species 

Database (http://nas.er.usgs.gov), Page and Burr (2011) or relevant state fish books.

2.3. Macroinvertebrate data

Macroinvertebrates were collected as described in detail in USEPA (2009, 2013a, b) and 

Hughes and Peck (2008). As for fish, sites were 20 to 40 channel widths long, or a minimum 

of 150 m for headwater streams. Eleven subsamples were taken in a systematic zig-zag 

pattern at each of 11 equidistant transects through use of a D-frame kick net (500-um mesh, 

0.09 m2 area). For wadeable streams, samples were collected in a left, center, right 

alternating order. At boatable sites, samples were collected at alternating left and right bank 

locations from the wadeable margins of the river. The 11 subsamples were combined, 

preserved in ethanol, and shipped to the laboratory, where a fixed laboratory count of 500 

individuals were identified to the lowest possible taxon through use of multiple local, 

regional, and national keys (USEPA 2012). The 500 individual count goal in the laboratory 

was not always achieved so the samples were rarified to a fixed 300 count for data analysis 

to ensure count consistency across all samples. Taxa autecological information for 

calculating assemblage metrics was based on Merritt and Cummins (1996), Barbour et al. 

(1999), Klemm et al. (2003), and Carlisle et al. (2007).
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2.4. Environmental data

We analyzed 38 environmental variables for their relationship to both fish and 

macroinvertebrate MMI scores (Table 2). For water quality variables, one water grab sample 

was collected from the randomly selected point in the middle of the site for wadeable 

streams, and at the downstream end of the site for boatable rivers (USEPA 2009). Samples 

were shipped by overnight courier to a central analytical laboratory except for a few states 

that used their own state laboratories. The water quality variables (Table 2) were analyzed in 

the lab using meters to measure pH and conductivity. Sulfate and chloride concentrations 

were measured by ion chromatography, total phosphorus and total nitrogen were measured 

by acid persulfate digestion and colorimetry, dissolved organic carbon (DOC) was measured 

using a carbon analyzer, and turbidity was measured with a nephelometer. Lab 

methodologies are detailed in USEPA (2012).

Physical habitat condition and substrate variables were collected as described in Hughes and 

Peck (2008), USEPA (2009, 2013a, b), and Kaufmann et al. (1999). Multiple measurements 

were made at the 11 evenly-spaced transects where macroinvertebrates were sampled. 

Woody riparian vegetation cover, anthropogenic disturbances, fish cover, substrate 

composition, and wetted width and depth data were collected at each transect through use of 

standardized field forms based on consistent disturbance and cover checklists. 

Anthropogenic disturbances on the checklist included stresses from agriculture, residences, 

recreation, industry, logging, mining, roads and other human activities. Between transects, 

crews determined slope and collected depth, width, substrate and habitat unit data at 

systematic intervals. Field data were converted into physical habitat metrics (Table 2) 

following the methodology described in Kaufmann et al. (1999). In brief, fish cover is 

calculated from transect summaries as percent of wetted surface area. Pool habitat and fast 

water habitat are percents of site length. Riparian cover and disturbance variables are indices 

summarized from standardized measurements at both banks at each transect. Substrate data 

are based on pebble counts. Percent substrate variables are a percent of wetted surface area 

and substrate size is the geometric mean diameter of the pebble counts. Relative bed stability 

is calculated as the difference between observed and expected geometric mean substrate size 

where expected size is calculated from site stream power and shear stress (Kaufmann et al. 

2008).

Geophysical, climate, and land use variables (Table 2) were based on either the sample point 

or the entire watershed. Latitude, longitude, and elevation data are for the sample point. 

Mean wetted width, thalweg depth, and channel slope were averages of multiple site 

measurements in the field as described in Kaufmann et al. (1999). The remaining variables 

were watershed averages. Watershed climate, soils, and anthropogenic stressor data (2011 

era coverages) were taken from StreamCat (Hill et al. 2016). StreamCat contains metrics for 

over 250 environmental attributes, the chosen ones listed in Table 2 are those that we 

thought most relevant to stream condition. NRSA uses nine aggregate ecoregions for data 

assessment and analysis (see Figure 1). The nine NRSA ecoregions are aggregations of 

Omernik and Griffith (2014) level-III ecoregions, aggregated as described in Herlihy et al. 

(2008).
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2.5. Data Analyses

2.5.1. Fish & macroinvertebrate MMI development—In NRSA, fish and benthic 

macroinvertebrate condition are assessed through use of MMIs derived from summing the 

scores of multiple assemblage metrics. Separate MMIs were developed for each of the nine 

aggregated ecoregions (Figure 1) for both macroinvertebrate and fish assemblages. The 

metrics and scoring involved with the MMIs were based on screening hundreds of candidate 

metrics by evaluating their ranges, determining their repeatability, calibrating for natural 

variation, assessing their sensitivity to anthropogenic disturbance, and determining their 

redundancy (Hughes et al. 1998; McCormick et al. 2001; Klemm et al. 2003; Stoddard et al. 

2008).

The metrics and their scoring for the NRSA macroinvertebrate and fish MMIs are described 

in detail in USEPA (2016a). Each macroinvertebrate MMI consists of six metrics each 

chosen as the optimal one to assess one of the six metric classes: richness, taxonomic 

composition, tolerance, feeding group, habit, and diversity. Candidate fish MMI metrics 

were selected as the optimal one to represent each of eight metric classes: non-native, 

taxonomic composition, habitat guild, reproductive guild, migratory strategy, richness, 

tolerance to disturbance, and trophic guild. Because fish richness is strongly related to 

stream size, metrics were adjusted for watershed area if the R2 value of the metric-area 

relationship at least-disturbed reference sites was > 0.10.

For both macroinvertebrate and fish assemblages, the selected metrics were each scored 

from 0 to 10 by linear interpolation between floor and ceiling values set for each metric 

(USEPA 2016a). The eight fish metrics or six macroinvertebrate metric 0–10 scores were 

summed and multiplied by (10/number of metrics) to yield an MMI score of 0–100. Note 

that the metrics in the MMIs and their scoring differ among ecoregions. Thus, specific 

numeric scores do not mean the same thing across ecoregions.

2.5.2. Statistical analyses—We assessed fish and macroinvertebrate MMI scores in 

each of the 9 ecoregions versus the 38 environmental predictor variables (Table 2) through 

use of multiple linear regression and random forests. To explore the variables, we made 

graphical displays (boxplots, histograms), and calculated descriptive statistics and 

correlations. We purposely did not select any environmental variables that were highly 

correlated (r ≥ |0.9|) with each other. Percentage variables and MMI scores that ranged from 

0–100 were not transformed, nor were the environmental variables that had ranges less than 

0–10. The other predictor variables had very skewed distributions and were log transformed 

as described in Table 2. Note that pH, substrate size, and relative bed stability are inherently 

logarithmic and were not transformed. To not overweight sites with multiple visits, we only 

modeled the data from the first visit to each site. The data from site revisits was reserved as a 

validation dataset. Sites that lacked fish or macroinvertebrates received respective MMI 

scores of zero with the exception of small watersheds (area < 2 km2) which could be 

naturally fishless. These sites received no fish MMI scores (missing values). Zero MMI 

scores were very strong outliers in the MMI distribution so we dropped all MMI=0 sites 

from the analysis (112 fish and 45 macroinvertebrate samples).
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For the multiple regression, we ran a full 38 variable model and then selected a final most 

parsimonious model by doing an exhaustive search and variable selection based on the 

lowest Bayesian Information Criteria (BIC) value using the LEAPS package (Lumley and 

Miller 2009) in R version 3.2.2. We checked model fit with residual plots and graphed the 

relationship between the observed and fitted data. The amount of variability accounted for in 

the models was assessed using adjusted R2 to account for the varying number of variables 

included in the different models. The BIC regression model for each ecoregion was also run 

on the validation data for that ecoregion as a test of model fit.

Random forests are a machine learning method that uses ensembling algorithms to construct 

multiple decision trees and then average the trees into one model. Each tree is created using 

a different sample from the original dataset using 2/3 of the cases. The left-out cases are 

used to get an estimate of the error as the trees are added to the forest. The method does not 

overfit and there is no need for cross-validation as it is done internally in the process of 

constructing the final model. We used the library randomForest (R version 3.2.2), which 

implements Breiman’s random forest algorithm (Liaw and Wiener 2002). We tabulated the 

percent of variability explained from the random forest models predicting MMI scores for 

each of the ecoregions and compared them with regression adjusted R2 values. Variable 

importance for each model was calculated by taking the total increase in node purity from 

splitting on the variable, averaged over all trees measured by the residual sum of squares. To 

explore model fit and the possibility of bias in both the regression and random forest models 

we calculated the slopes and correlations of the modeled MMI versus the observed MMI 

values for all ecoregions in both modeled (first visit) and validation (repeat visit) datasets. 

The degree of correlation is an indicator of the tightness of fit or variance in model 

predictions and the deviation of the slope from 1 is an indication of bias.

Lastly, we predicted MMI condition class using logistic regression (Vølstad et al. 2003). As 

part of NRSA, MMI scores are classified into good, fair, or poor classes based on ecoregion-

specific thresholds determined from the percentiles of the MMI scores at the least-disturbed 

reference sites in each ecoregion (Herlihy et al., 2008; USEPA 2016a). The good-fair 

threshold was set at the 25th percentile and the fair-poor threshold at the 5th percentile. We 

used stepwise logistic regression to predict poor MMI sites from good MMI sites (fair sites 

were removed) by using a subset of the environmental variables in Table 2. We used a 

criterion of p<0.005 for variable entry into the model and a p<0.01 for staying in the model.

Logistic regression coefficients may also be described as an odds ratio (how many times 

more likely is poor condition given a one unit increase in the predictor variable). To better 

interpret the results, we selected environmental variables that were more conceptually linked 

to disturbance (AGR_WS, DEVL_WS, POPDEN, ROADDEN, DAM, FISHCOV, RIPCOV, 

RIP_DIST, FINES, RBS, ERODE, TN, TP, SO4, CL, and TURB from Table 2). It is also 

easier to interpret odds ratios if the variables are all roughly on the same scale and have a 

positive monotonic relationship with disturbance. Therefore, for the logistic regression 

analysis, we transformed the percentage variables by dividing by 10 so they ranged from 0–

10. Road density, damming index, and soil erodibility factor were multiplied by 10 to put 

them in the 0–10 range. Other log transformed variables were already in the approximate 

range. Riparian cover and fish cover are negatively related to disturbance, so they were 
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converted to negative numbers to make them positively related. Lastly, an absolute value of 

relative bed stability was analyzed because deviation from zero is indicative of a departure 

from expected condition.

3. Results

3.1. Data Distribution

There were 4597 samples from 3420 unique sites in the 2008–09 and 2013–14 NRSA 

sampling that had either fish or macroinvertebrate data (Table 1). Of this data, 61% were 

sampled as wadeable streams and the other 39% as boatable rivers. The wadeable versus 

boatable variable was a categorical variable and only applied to random forest modeling 

where it was never above 5% importance in any of the models we examined. The 

distributions of the MMI scores from the first visit to each unique site, what we call the 

model data, varied widely (Figure 2). The fish MMI scores ranged from 0–96 with a spread 

between first and third quartiles (Q1-Q3) of 38–63. The macroinvertebrate MMI ranged 

from 0–100 with a Q1-Q3 of 23–54. Nationally, the fish and macroinvertebrate MMIs were 

not highly correlated with each other (r=0.33). By ecoregion, the highest correlation of the 

MMIs was in the Northern Appalachians (r=0.54) and the lowest was in the Western 

Mountains (r=0.26, Table 1).

As one might expect with a continental-scale survey, the range in the environmental data 

(Table 2) was quite large (Figure 2). Percentage-based data covered the whole 0–100% 

range. The Q1-Q3 in sand+fine substrate (17–94%) almost covered the entire range of the 

data. For log10 transformed variables, the range in the data was often 3–6 orders of 

magnitude. Of the water quality variables, chloride had the largest range, from 1 to 

1,000,000 μeq/L (Figure 2). Watershed area had a Q1-Q3 spread of 33–4300 km2 with a 

total range from tiny headwater streams (<1 km2 area) to the Mississippi River >3,000,000 

km2 area). Similarly, wetted width ranged from 0.03–2480 m with a Q1-Q3=4.3–46 m, and 

thalweg depth (not shown) ranged from 2.5–3910 cm (Q1-Q3=17–82 cm).

We constructed a 37×37 correlation matrix of all the continuous environmental variables 

listed in Table 2 through use of Pearson correlation coefficients. In general, the variables 

were not or only weakly correlated with each other (absolute r<0.5). The vast majority of 

pairs had absolute r<0.3. Only 5 pairs had absolute value of r>0.7, chloride-conductivity, 

sulfate-conductivity, fine substrate-substrate size, relative bed stability-substrate size, and 

sand+fine substrate-substrate size, and another 4 pairs had absolute r values between 0.5–0.7 

(population density-elevation, population density-longitude, sulfate-pH, sand+fine substrate-

fast water habitat).

3.2. Fish MMI-environmental relationships

After removing sites with fish MMI=0 as outliers and sites with incomplete environmental 

data, there were 2459 sites in the model data that we used to run regression and random 

forest models to examine the relationship between fish MMI and environmental data (Table 

3). Random forest and BIC selection regression models had very similar performance in 

terms of variance explained (Table 3). Among the 9 ecoregions, 5 had slightly higher 
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variance explained with regression models versus 3 ecoregions with random forest (the 

Temperate Plains was a virtual tie). The strongest models were seen in the Northern 

Appalachians (random forest variance explained = 0.72) and the weakest in the Western 

Mountains (random forest variance explained = 0.34. The root mean square error (RMSE) of 

the predicted MMI from BIC regression ranged from 7.88 to 11.8 among the ecoregions 

(Table 3).

Regression and random forest models often identified the same variables or types of 

variables as being significant or important in the fish MMI model (Table 4). For example, in 

the Coastal Plain, DOC, fine substrate, watershed agriculture, and watershed area were BIC 

selected for the regression model and had variable importance > 5% in the random forest 

model. Total nitrogen was very important in the random forest model but not the regression 

model whereas total phosphorus was important in the regression model but not the random 

forest model. There tended to be more variables selected for inclusion into the BIC 

regression models than the number of variables with >5% importance in the random forest 

models (Table 4). A variable importance of 5% is somewhat arbitrary, but it was where there 

was often a major break point in the random forest variable importance plots.

Among the 9 ecoregions, there was a wide variation as to which specific variables were 

significant in their fish MMI models (Table 4). By variable classes, water quality variables 

were significant in all ecoregions except the Western Mountains and Upper Midwest. 

Physical habitat condition had no significant variables in the Northern Plains, Southern 

Plains, Upper Midwest and Xeric West whereas substrate had no significant variables in the 

Northern Appalachians, Northern Plains and Southern Plains. Significant geophysical 

variables were present in all ecoregions (Table 4). It’s hard to compare magnitude of effects 

with regression coefficients because they are related to variable values; however, random 

forest variable importance is a good way to compare important variables across ecoregions. 

Table 4 shows all variables with >5% variable importance, most of the variables were in the 

5–10% importance range. Variables with over 10% importance were total nitrogen in the 

Coastal Plain; chloride in the Xeric West; fast water habitat and stream slope in the Northern 

Appalachians; watershed area in the Southern Appalachians, Temperate Plains and Xeric 

West; sand+fine substrate in the Upper Midwest and Temperate Plains; precipitation in the 

Temperate Plains; and maximum temperature and runoff in the Northern Plains.

3.3. Macroinvertebrate MMI-environmental relationships

As was seen for fish, BIC regression models and random forest models for 

macroinvertebrate MMI scores gave similar results in terms of model performance (Table 3). 

The proportion of variance explained was slightly higher for 3 ecoregions for random forest 

models versus 6 ecoregions for BIC regression models. Variance explained ranged from 

0.185 in the Southern Plains for the random forest model to 0.572 for the BIC regression 

model in the Northern Appalachians. The RMSE of the BIC regression models for the 

macroinvertebrate MMI ranged from 12.7 to 15.3 among the ecoregions, somewhat higher 

than observed for predicting the fish MMI (Table 3).

Again, as was seen for fish, the regression and random forest models often identified the 

same variables or classes of variables as being significant or important in the benthic 
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macroinvertebrate MMI models (Table 5). For example, in the Northern Plains, both random 

forest and the BIC selection identified DOC, chloride, sand+fine substrate, and maximum 

temperature as being important. There was also a wide variation among ecoregions as to 

which specific variables were significant in their respective benthic MMI models. By 

variable classes, water quality, substrate, and geophysical variables were significant in every 

region for both model types. No land use variables were significant in the regression models 

in the Coastal Plain, Northern Appalachians, Southern Plains, and Xeric West ecoregions 

and no land use variable had a random forest variable importance > 5%. Variables that had 

over 10% importance in the random forest models included substrate size in the Coastal 

Plain, Northern Appalachians, Northern Plains and Western Mountains; sand+fine substrate 

and fast water habitat in the Northern Appalachians; and watershed area in the Temperate 

Plains (Table 4).

3.4. Composite variable models

We compared the relationship between MMI scores, and the 6 variable classes shown in 

Table 2 by constructing multiple regression models using all the variables in that class (and 

only that class) and calculating the model R2. For example, the water quality model R2 is 

based on the regression of MMI versus TN, TP, COND, DOC, CL, SO4, TURB, and PH 

(Table 2).

For the fish MMIs, the Northern Appalachians had high R2 models for all classes with a 

high of 0.56 for the geophysical model (Figure 3). On the other hand, none of the classes 

had R2 over 0.12 in the Western Mountains. Note that the full model (all 37 variables) R2 in 

each ecoregion for fish ranged from 0.35 in the Upper Midwest to 0.70 in the Northern 

Appalachians (Table 3). All the variable classes had a model R2 > 0.25 in at least one 

ecoregion. Water quality and geophysical class models tended to have higher R2 than the 

other classes (Figure 3).

The composite regression models for the macroinvertebrate MMIs had the highest R2 

models in the Northern Appalachians, Northern Plains, and Western Mountains with a high 

of 0.41 for the substrate model in the Northern Appalachians (Figure 4). The Southern 

Plains and Temperate Plains had the lowest R2 class models (all < 0.18). For comparison, the 

full (all 38 variables) model R2 for macroinvertebrates in each ecoregion ranged from 0.26 

in the Southern Plains to 0.60 in the Northern Appalachians (Table 3). All the variable 

classes had a model R2 > 0.2 in at least one ecoregion. There was no pattern of one class 

having consistently higher R2 than any other class across all ecoregions (Figure 4).

3.5. Model Performance

We evaluated both regression and random forest model performance by examining the 

relationship between model predicted MMIs and observed MMIs for both fish and 

macroinvertebrates. Plots of the relationship for an ecoregion with high model R2, the 

Northern Appalachians (Figure 5) and low R2, the Southern Plains (Figure 6) show a strong 

relationship between predicted and observed MMIs with the Northern Appalachians having 

higher correlation between predicted and observed (r=0.75–0.85) than the Southern Plains 

(0.43–0.68). Correlations for the ecoregions not shown in figures 5 and 6 are tabulated in 
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Table 6 and correlation coefficients ranged from 0.46 to 0.84 for BIC regression models and 

from 0.43 to 0.90 for random forest models. Predicted versus observed MMI correlations 

were not noticeably different between the two model types.

The slopes of the predicted versus observed MMI relationships were always less than 1 for 

both model types for both fish and macroinvertebrate MMIs (Table 6). Slopes below 1 

indicate that the model is overpredicting the observed MMI at low MMI values and 

underpredicting the observed MMI at high MMI values (see Figures 5 and 6). For BIC 

regression model predicted versus observed MMIs, slopes ranged from 0.23 in the Southern 

Plains macroinvertebrate data (Figure 6) to 0.71 in the Northern Appalachians fish data 

(Figure 5). For the random forest model, slopes ranged from 0.18 to 0.66 in those same 

ecoregions (Figures 5 and 6). Random forest model predicted versus observed slopes were 

almost always lower than BIC regression slopes.

We used the repeat visit sites as a validation dataset to test model performance. Models 

constructed from the first visit model data were applied to this validation dataset. Correlation 

coefficients and slopes for the model predicted versus observed MMI values for validation 

sites (Table 6) show the same ecoregional pattern as that seen in the first visit data. Values of 

the correlation coefficients in the validation data were usually similar or slightly smaller than 

first visit data for the regression model; slopes were more similar. For the random forest 

model validation, correlation coefficients and slopes were almost always higher in the 

validation data than in the first visit data. Correlation coefficients for the random forest 

validation data were always higher than those in the regression validation data.

3.6. Predicting Poor MMI Condition Class

Our best logistic regression model for predicting good versus poor MMI condition class in 

each of the study ecoregions had 1 to 5 predictor variables (Tables 7 and 8). McFadden’s R2 

varied between 0.151 for fish in the Upper Midwest and 0.511 for fish in the Northern 

Appalachians. According to McFadden (1978), R2 values between about 0.2 and 0.4 suggest 

a very good fit. The only models with R2<0.2 were for fish in both the Upper Midwest and 

Western Mountains.

The logistic regression coefficients in Tables 7 and 8 can be interpreted as odds ratios. For 

every one-unit increase in the value of the disturbance variable, the odds of having poor 

MMI condition as opposed to good condition is X times more likely (where X is the odds 

ratio). Recall that we transformed the disturbance variables for this logistic regression 

analysis so that a unit change in the percentage variables is 10 percentage points (original 

percent divided by 10) and a unit change in chemistry and the other log transformed 

variables is a factor of 10 (they were log10 transformed). These transformations were done 

for the logistic regression because they make the odds ratios more comparable among 

disturbance variables.

For fish logistic regression models, the highest odds ratios were seen for water quality 

variables (Table 7). For a 10-fold increase in total phosphorus, it is 60 times more likely in 

the Temperate Plains and 11 times more likely in the Southern Plains that a site will have 

poor fish condition based on the MMI score. Similarly, high odds ratios for total nitrogen 
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were observed in the Coastal Plain (22.8), Northern Appalachians (9.2), and Northern Plains 

(19.9). Other significant variables for predicting fish MMI condition class were relative bed 

stability, population density, damming index, and soil erodibility factor.

A wide variety of predictor variables were significant across the nine ecoregions for 

predicting poor macroinvertebrate condition class based on MMI scores. Macroinvertebrate 

logistic regression models were also strongly driven by water quality variables with either 

total nitrogen, turbidity or both being significant in seven ecoregions (Table 8). The highest 

odds ratio for the macroinvertebrate logistic regression was for total nitrogen in the Coastal 

Plain, where a ten-fold increase in total nitrogen is 16 times more likely to lead to poor 

condition. Predictor variables related to sedimentation (fine substrate, relative bed stability, 

soil erodibility factor), were also significant in seven ecoregions with the highest odds ratios 

being 5.0 for relative bed stability in the Northern Appalachians and 6.7 for soil erodibility 

factor in the Northern Plains. Riparian cover was also a significant predictor in two 

ecoregions and population density and road density were important in one ecoregion each 

(Table 8).

4. Discussion

4.1. MMI-Environmental Relationships

Almost all of the numeric environmental variables we assessed in this analysis (34 of 37) 

were significant in at least one of the statistical models for predicting fish or 

macroinvertebrate MMI score. Although some variables appeared in more models than 

others, there was no clear “master variable” that was driving either fish or macroinvertebrate 

MMI scores in every ecoregion across the continent. This is likely because the ecoregions 

are very different both in terms of what environmental variables control aquatic condition, 

and the scale or range of these variables within individual ecoregions. Environmental 

variables with narrow ranges within an ecoregion will not be good predictors of biotic 

condition (Wang et al. 2006).

The fish and macroinvertebrate MMIs were only weakly correlated with each other when 

examined at the ecoregion scale (Table 1) and they generally responded more strongly to 

different groups of variables. For example, the fish MMI models responded most strongly to 

differences in the water quality and geophysical variables whereas the macroinvertebrate 

MMI models responded strongly to all the variable groups except the climatic and land use 

variables (Figures 3 and 4). In addition, the prediction of poor fish condition class was much 

more sensitive to elevated nutrient levels than was poor macroinvertebrate condition class. 

Furthermore, a wide range of local and watershed predictor variables were important in both 

fish and macroinvertebrate MMI models and for predicting poor MMI scores. These results 

support using both assemblages and collecting a broad suite of environmental variables in 

rigorous water body monitoring and assessment programs (Hughes et al. 2000; Hughes and 

Peck 2008; Yoder and Barbour 2009).

In terms of the error in predicting MMI scores, fish regression models had lower RMSE than 

macroinvertebrate models in all ecoregions. Fish statistical models also tended to have 

higher percent variance explained than macroinvertebrate models. Brazner et al. (2007) and 
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(Marzin et al. (2012a) also reported that fish assemblage indicators were more responsive to 

anthropogenic perturbation than macroinvertebrate indicators across the Laurentian Great 

Lakes Region and France, respectively. The ecoregion pattern in model strength (e.g., 

highest in Northern Appalachians, lowest in the Southern Plains) was similar between the 

fish and macroinvertebrate models.

The logistic regression analysis indicated that increased total nitrogen, total phosphorus and 

chloride had significant effects on predicting poor fish condition class in six of the nine 

ecoregions; for macroinvertebrates, total nitrogen and/or turbidity had highly significant 

effects on predicting poor condition in seven of the nine ecoregions (Tables 5 & 6). For both 

assemblages, these site-scale disturbance variables more strongly and more often predicted 

poor condition than watershed-scale variables such as damming index, soil erodibility factor, 

road density, or population density. These site- versus watershed-scale results agree with 

those from other comparable studies in the USA (Hughes et al. 2006; USEPA 2016b; Wang 

et al. 2003), Europe (Marzin et al. 2012b; Sály et al. 2011), and Brazil (Leal et al. 2018; 

Macedo et al. 2014; Silva et al. 2018; Terra et al. 2015). However, separating direct site-

scale predictors from indirect watershed-scale anthropogenic pressures and natural gradients 

may over-simplify critical drivers and variable interactions (Grace 2008; Leitão et al. 2018; 

Mora et al. 2018). Our observation of stronger site-scale predictors may be due to the large-

scale nature of our study or that we made detailed quantitative site-scale measures of 

disturbance based on field observations at the time of sampling whereas our watershed-scale 

measures of disturbance were based on more general GIS based interpretations of 

disturbance like agriculture or population density. Percent watershed disturbance is not very 

specific as to the location, type, or intensity of disturbance and as a metric doesn’t appear to 

be as strongly related to poor biotic condition as actual crew observations and rating of 

disturbance in the riparian zone.

Few examples exist for making rigorous regional or national assessments of the relationship 

between biological condition indices and environmental factors based on statistical survey 

designs and analyses of quantitative ecological data. Examples of such assessments 

conducted at river basin scales include those of Mulvey et al. (2009), Jimenez-Valencia et al. 

(2014), Silva et al. (2018) and Larson et al. (2019). Mulvey et al. (2009) reported that the top 

four stressors for fish assemblages in Oregon’s Willamette River Basin were excess water 

temperature, insufficient riparian canopy cover, insufficient riparian vegetation, and low 

water quality index scores. For macroinvertebrate assemblages, the key stressors were 

insufficient riparian canopy cover, insufficient riparian vegetation, low water quality index 

scores, and excess total phosphorus. In the Guapiaçu-Macacu River Basin (Brazil), Jimenez-

Valencia (2014) found that poor physical habitat structure was strongly associated with poor 

macroinvertebrate assemblage condition. Silva et al. (2018) concluded that excess turbidity, 

excess fines, and percent agriculture were the major stressors associated with poor 

macroinvertebrate assemblage condition in two hydrologic units (Tres Marias, Nova Ponte). 

However, total nitrogen, excess turbidity, excess fines, and percent agriculture limited 

macroinvertebrates in Volta Grande, whereas total nitrogen, excess turbidity, and riparian 

disturbance were limiting in Sao Simao. Regionally, total nitrogen, excess turbidity, excess 

fines, and percent agriculture were most strongly associated with poor macroinvertebrate 

assemblage condition, further indicating the differing effects of landscape scale and location 
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on key stressors. Larson et al. (2019) concluded that stressors related to substrate condition 

were most strongly associated with poor macroinvertebrate assemblage condition in 

perennial streams in Washington, USA. Thornbrugh et al. (2018) developed a GIS-based 

index of watershed integrity for all stream segments in the conterminous USA and related 

them to the 2008–2009 NRSA fish and macroinvertebrate MMIs. They found significant 

relationships nationally, but the amount of variation explained by the index of watershed 

integrity was low (adjusted R2 <0.12). As in our findings, they found the strongest 

relationships in the Northern Appalachians ecoregion.

4.2. Model Performance

Both random forest and regression models had biased predictions in that they overpredicted 

both fish and macroinvertebrate MMI scores at the low end of the range and underpredicted 

MMI scores at the high end of the range (Figures 5 and 6). A likely explanation of this result 

is that the very good sites and the very bad sites are driven by environmental variables that 

were not measured in NRSA and are not in our statistical models. For example, toxic 

chemicals, livestock grazing, agricultural type, watershed mining activities, and hydrologic 

flow alterations all have significant effects on stream biota, are not included in the models, 

and could be responsible for very low MMI scores (Poff et al. 1997; Mebane et al. 2003; 

Beschta et al. 2013; Daniel et al. 2015; Cooper et al. 2017). Similarly, there are unmodeled 

environmental factors that can cause biological “hot spots”, such as proximity to channel 

confluences, natural lakes, or preserved (refuge) areas (Hughes et al. 2004; Hitt and 

Angermeier 2008) that would result in very high MMI scores.

In our analyses, regression and random forest models had very similar performance in terms 

of amount of variation explained and which types of variables were related to MMI scores. 

Regression model predictions of MMI scores are much more easily transferable than random 

forest predictions in that one can provide a simple equation predicting an MMI score. 

Transferring random forest prediction requires the same R software, model data, and random 

number seed, which can be quite cumbersome and requires some statistical sophistication by 

the end user. The variable importance plots from random forest, however, are an excellent 

way to evaluate the importance of each variable put into the model. Just because a variable is 

not in a particular regression model doesn’t necessarily mean that it is unimportant. Also, it 

should be noted that the proportion of variance explained by these models ranged from 0.34 

to 0.72 for fish and from 0.19 to 0.60 for macroinvertebrates (Table 3). Thus, they are only 

explaining about half of the variability in observed MMI scores.

The models predicting MMI scores were much stronger by proportion variance explained in 

some ecoregions than others. For example, both the fish and macroinvertebrate models for 

both random forest and regression were much stronger in the Northern Appalachians than in 

the Southern Plains (compare Figures 5 and 6). This is likely a result of the varying strength 

of the environmental gradients in each ecoregion. The Northern Appalachians has a very 

large gradient of condition ranging from areas with very high-quality streams (Adirondacks, 

White and Green Mountains) to the most urbanized corridor of the USA (the Boston-New 

York megalopolis). The Southern Plains, in contrast, has a more uniform gradient of 

conditions with no high-quality areas, resulting in weaker statistical models of MMI scores. 
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It is also possible that MMI quality is a factor as well. The relative accuracy and precision of 

the MMIs developed for each ecoregion vary in quality. High-gradient mountainous 

ecoregions tended to have MMIs that better discriminated least- from most-disturbed sites 

than low-gradient Plains ecoregions (Stoddard et al. 2008; USEPA 2016a).

We used our revisit data as a way to test the validity of the statistical models. Although these 

samples are not truly independent samples because they are revisits to the same sites either 

within the same year or 4–6 years apart, they still provide useful information on the 

robustness of the models (Table 6). As measured by correlation of modeled to observed 

MMI scores, the regression models, in most cases, performed almost as well in the 

validation data as they did with the first visit data. The random forest models performed 

better in the validation data than they did in the first visit data. This may result from the 

extensive cross-validation done during the random forest modeling (Breiman 2001; Liaw 

and Weiner 2002). The validation results do indicate that the statistical models are a robust 

representation of the MMI-environmental data relationships we report from the NRSA data.

4.3. Predicting Risk of Poor Condition

The logistic regression analysis presents odds ratios that relate the risk of poor biotic 

condition with respect to changes in continuous numeric stressor variables. It is analogous to 

the relative risk analysis routinely carried out in NARS assessments (Van Sickle and Paulsen 

2008, USEPA 2016b, Herlihy et al. 2019) except that relative risk is based on categorizing 

the continuous stressor data into two classes (e.g. high versus low) and thus evaluates the 

risk of having poor condition when the stressor class is high versus low. Relative risk results 

are therefore dependent on the thresholds used to define stressor classes, a problem that is 

avoided in the logistic regression analysis which uses continuous numerical stressor data. 

Our logistic regression analysis also looked at all the variables together as candidates and is 

more reflective of any synergisms that may occur among variables whereas relative risk 

analysis is univariate and looks at each stressor variable independently.

We found that water quality and substrate variables were most often associated with poor 

fish and macroinvertebrate MMI scores. In its assessment of the 2008–2009 NRSA data, 

USEPA (2016b) evaluated risks of poor MMI scores for both fish and macroinvertebrates. It 

reported that high levels of total phosphorus, acidity, and fine sediments were most strongly 

associated with poor macroinvertebrate assemblage condition in upland areas of the eastern 

USA. High nitrogen, fine sediments, and salinity were most strongly associated with poor 

macroinvertebrate condition in the western USA. Nationally, excess fine sediments, total 

nitrogen, and total phosphorus were most strongly associated with poor macroinvertebrate 

assemblage condition. For fish assemblages, USEPA (2016b) reported that poor condition in 

the upland areas of the eastern USA was most strongly associated with excess levels of total 

nitrogen, total phosphorus, and salinity. In the western USA, poor riparian vegetation 

condition and excess salinity were most strongly associated with poor fish assemblage 

condition. Nationally, excess salinity, excess total nitrogen, and poor riparian vegetation 

condition were most strongly associated with poor fish assemblage condition.
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4.4. Conclusions

In summary, we found that most of the environmental factors we examined were related to 

either fish and/or macroinvertebrate MMI scores in some fashion and that the factors 

involved, and strength of the relationship, varied by ecoregion and assemblage. Factors more 

associated with natural conditions were usually less important in explaining MMI scores 

than factors more directly associated with anthropogenic disturbances. Local site-scale 

factors explained more variation than watershed-scale factors. Random forest and multiple 

regression models performed similarly, and the fish MMI-environment relationships were 

stronger than macroinvertebrate MMI-environment relationships. Among ecoregions, the 

strongest environmental relationships were observed in the Northern Appalachians and the 

weakest in the Southern Plains. The fish and macroinvertebrate MMIs were only weakly 

correlated with each other, and they generally responded more strongly to different groups of 

variables. These results support the use of multiple assemblages and the sampling of 

multiple environmental indicators in large-scale ecological assessments.
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Highlights

• A wide variety of environmental factors were related to condition.

• Local site-scale factors explained more variation than watershed-scale factors.

• Fish had stronger environmental relationships than macroinvertebrates.

• The strongest relationships were observed in the Northern Appalachians.

• Fish and macroinvertebrate conditions were only weakly correlated.
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Figure 1. 
Locations of the sites sampled in 2008–1014 and the nine study ecoregions.
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Figure 2. 
Distribution of selected variables in the first-visit model data for fish and macroinvertebrate 

MMI scores and percentage-based variables; and log10-transformed variables. Boxes show 

the interquartile range, the line in the box is the median, and the whiskers show the 

minimum/maximum values. Full variable names, transforms, and units are given in Table 2.
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Figure 3. 
Fish MMI multiple regression R2 for models based only on the variables within each 

predictor class by ecoregion. Ecoregion codes are given in Table 1, predictor classes are 

listed in Table 2.
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Figure 4. 
Macroinvertebrate MMI multiple regression adjusted R2 for models based only on the 

variables within each predictor class by ecoregion. Ecoregion codes are given in Table 1, 

predictor classes are listed in Table 2.
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Figure 5. 
Scatterplot comparison of Random Forest and BIC-MLR predicted fish and 

macroinvertebrate MMI scores to observed MMI scores in the Northern Appalachians 

ecoregion. The solid line is a 1:1 line and the r-value is the Pearson correlation coefficient of 

the scatterplot.
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Figure 6. 
Scatterplot comparison of Random Forest and BIC-MLR predicted fish and 

macroinvertebrate MMI scores to observed MMI scores in the Southern Plains ecoregion. 

The solid line is a 1:1 line and the r-value is the Pearson correlation coefficient of the 

scatterplot.
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Table 1.

Number of unique sample sites in each ecoregion with fish and macroinvertebrate (Macr) MMI scores and the 

ecoregional Pearson correlation coefficient between the macroinvertebrate and fish MMI scores. The number 

of revisit sites used as validation sites are given in parentheses.

Ecoregion Code Fish Sites Macr Sites Correlation

Coastal Plain CPL 433 (127) 484 (150) 0.383

Northern Appalachians NAP 369 (141) 392 (148) 0.535

Southern Appalachians SAP 449 (157) 494 (183) 0.385

Upper Midwest UMW 261 (84) 284 (97) 0.317

Temperate Plains TPL 397 (127) 421 (134) 0.321

Northern Plains NPL 254 (69) 288 (96) 0.459

Southern Plains SPL 225 (68) 266 (89) 0.263

Xeric West XER 245 (67) 339 (111) 0.350

Western Mountains WMT 299 (90) 434 (141) 0.256

Total NRSA 2008–2014 ALL 2932 (930) 3402 (1149) 0.328
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Table 2.

Variables used to predict MMI scores and their code. Variables are ordered by class used for data 

interpretation.

Variable (units) Code Variable (units) Code

Water Quality Watershed Land Use

Total Nitrogen (ug/L) TN* Agriculture (%) AGR_WS

Total Phosphorus (ug/L) TP* Developed Land (%) DEVL_WS

Conductivity (μS) COND* Wetlands (%) WETL_WS

Dissolved Organic Carbon (mg/L) DOC* Population Density (#/km2) POPDEN*

Chloride (μeq/L) CL* Road Density ROADDEN*

Sulfate (μeq/L) SO4* Dam Disturbance Index DAM*

Turbidity (NTU) TURB*

pH PH Climate

Mean Precipitation (cm/yr) PRECIP*

Physical Habitat Condition Mean Runoff (cm/yr) RUNOFF*

Riparian Cover Index RIPCOV* Maximum Temperature (°C) TEMPMAX

Natural Fish Cover (% area) FISHCOV* Minimum Temperature (°C) TEMPMIN

Fast Water Habitat (% length) FASTPCT

Pool Habitat (% length) POOLPCT Geophysical

Riparian Disturbance Index RIP_DIST Latitude (degrees) LAT

Agricultural Riparian Disturb. RIP_AGR Longitude (degrees) LON

Non-Agricultural Riparian Disturb. RIP_NOAG Site Elevation (m) ELEV*

Watershed Area (km2) WSAREA*

Substrate Mean Thalweg Depth (cm) DEPTH*

Fine Substrate (% area) FINES Mean Wetted Width (m) WIDTH*

Sand+Fine Substrate (% area) SANDFINE Channel Slope (%) SLOPE*

Geometric Mean Diameter (mm) SUBSIZE Soil Erodibility Factor ERODE

Relative Bed Stability Index RBS Boatable or Wadeable LOTIC

*
Log10(x+1) transformed for data analysis, except for SLOPE (Log10(x+0.001), and DAM, RIPCOV, and FISHCOV (Log10(x+0.1).
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Table 3.

Full 38 variable multiple regression model adjusted R2, BIC variable selected multiple regression model 

adjusted R2, and random forest (RF) proportion variance explained (Var) for fish and macroinvertebrate 

(Macr) MMI models by ecoregion. The BIC regression model root mean square errors (RMSE) are also 

shown.

Eco Sample Size Fish/Macr

Fish Macroinvertebrate

Full BIC RF BIC Full BIC RF BIC

R2 R2 Var RMSE R2 R2 Var RMSE

CPL 288/331 0.598 0.563 0.545 8.25 0.396 0.348 0.391 14.8

NAP 352/369 0.704 0.699 0.718 10.5 0.598 0.572 0.558 15.0

SAP 398/436 0.535 0.543 0.566 9.36 0.473 0.457 0.425 13.8

UMW 231/251 0.353 0.320 0.406 11.8 0.392 0.356 0.325 12.7

TPL 315/338 0.614 0.589 0.591 9.93 0.433 0.422 0.403 15.3

NPL 237/273 0.531 0.515 0.490 9.64 0.547 0.543 0.515 14.7

SPL 198/239 0.430 0.441 0.361 7.88 0.262 0.216 0.185 15.3

XER 193/303 0.647 0.615 0.578 11.3 0.429 0.406 0.458 15.0

WMT 247/400 0.427 0.425 0.340 9.94 0.497 0.448 0.500 15.1
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Table 4.

Variables predicting fish MMI scores by ecoregion that were either BIC selected for inclusion in the regression 

model or had random forest model percent importance >5% (†) or >10% (††). Numeric values are the 

regression coefficients, variable units and transforms are listed in Table 2, and -- indicates the variable was not 

selected in the regression.

Variable CPL NAP SAP UMW TPL NPL SPL XER WMT

Water Quality

TN --†† -- -- -- -- --† --† -- --

TP −5.6 -- -- -- −8.1 -- −5.8† −6.0 --

COND -- −6.7 5.6 -- -- -- -- --† --

DOC −8.4 −12 −12† -- −7.7 −13 −9.0† -- --

CL -- --† -- -- 8.4 −4.5 -- −5.4†† --

SO4 -- -- −5.4 -- −6.8 -- -- -- --

TURB -- -- −4.2 -- -- -- -- -- --

Physical Habitat Condition

FISHCOV -- -- -- -- 3.8 -- -- -- 5.8

FASTPCT -- 0.23†† 0.08† -- --† -- -- -- --

POOLPCT −0.05 -- -- -- -- -- -- -- --

Substrate

FINES −0.06† -- −0.08 -- -- -- -- -- --

SANDFINE -- -- -- --†† −0.16†† -- -- -- −0.16†

SUBSIZE -- -- -- 5.1† -- -- -- 2.9 --†

Watershed Land Use

AGR_WS −0.12† -- −0.09 -- -- 0.15 -- -- --

DEVL_WS −0.14 -- -- -- −0.17 -- -- -- --

WETL_WS -- -- -- -- -- -- 1.6 -- --

POPDEN -- --† −3.1 -- -- -- −2.3 -- −4.6

DAM −7.4 -- --† -- -- -- -- -- --

Climate

PRECIP 41 -- −34 -- --†† -- -- -- --†

RUNOFF -- -- -- 33† -- --†† -- -- --

TEMPMAX -- --† -- -- -- −2.5†† -- --† --

TEMPMIN -- −1.4 -- -- -- -- -- -- --

Geophysical

LAT -- -- -- -- -- -- -- 1.9† --

LON -- −1.2 0.30 -- -- --† -- -- 0.53†

ELEV 5.3 6.2 8.3† 35 -- -- -- 4.1 −6.1†

WSAREA 4.0† −4.8 −3.2†† --† −4.6†† 5.1 −2.4 −4.5†† --

DEPTH -- 3.6 -- 4.3 4.3 -- -- -- --

SLOPE -- --†† --† -- -- -- 4.9† -- 3.3

Model Intercept −77.2 125 134 −131 93.0 118 77.5 10.5 35.9
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Table 5.

Variables predicting macroinvertebrate MMI scores by ecoregion that were either BIC selected for inclusion in 

the regression model or had random forest model percent importance >5% (†) or >10% (††). Numeric values 

are the regression coefficients, variable units and transforms are listed in Table 2, and -- indicates the variable 

was not selected in the regression.

Variable CPL NAP SAP UMW TPL NPL SPL XER WMT

Water Quality

TN −7.9† -- -- -- -- -- -- −12† −8.4†

TP −7.3 -- -- -- -- -- -- -- --

COND -- −27 −8.5 -- -- -- -- -- --

DOC -- -- --† -- -- −15† −15 -- --

CL -- -- −7.5 -- -- −7.2† −5.1 -- --

SO4 -- -- -- -- -- -- -- −3.6 --

TURB -- -- −8.6 −6.8† −8.7 -- -- 5.7 --

PH -- 19 8.2 -- 7.7 -- -- -- --

Physical Habitat Condition

RIPCOV -- -- -- -- 9.0† 4.0 -- -- --

FASTPCT -- 0.11†† 0.19† -- -- -- -- --† --†

POOLPCT −0.08 -- -- −0.12 -- −0.10 -- -- --

RIPDIST -- −2.5 −3.0 -- -- -- -- -- --

Substrate

FINES −0.12† -- -- -- -- -- -- −0.23 --

SANDFINE -- --†† −0.12† -- −0.18 −0.19† −0.16† --† −0.33†

SUBSIZE --†† 7.4†† --† --† --† --†† --† --† --††

RBS -- -- -- 3.2 -- -- -- -- --

Watershed Land Use

AGR_WS -- -- -- −0.15 -- -- -- -- --

DEVL_WS -- -- -- -- −0.26 -- -- -- --

ROADDEN -- -- -- -- -- 28 -- -- --

DAM -- -- −20 -- -- −12 -- -- −21

Climate

PRECIP -- -- -- -- 64 -- -- 27 --

RUNOFF -- -- -- -- -- --† -- -- --

TEMPMAX -- -- −1.2 -- −1.8 −1.9† -- -- --

TEMPMIN -- 1.8 -- -- -- -- -- -- 1.4

Geophysical

LAT -- -- -- -- -- -- -- -- 1.2

LON −0.45 −2.2 -- -- -- -- -- -- --

ELEV 9.3 8.0 -- -- 28 -- -- 11 12

WSAREA -- -- 4.5 4.3† 5.6†† 5.2 -- -- --

DEPTH -- -- -- -- 8.3† -- -- -- --

WIDTH -- -- -- -- -- -- 7.9 −4.1 --
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Variable CPL NAP SAP UMW TPL NPL SPL XER WMT

SLOPE --† -- -- 9.3† -- -- -- -- --

ERODE -- -- --† -- -- -- -- -- --

Model Intercept 107 117 27.2 52.9 −224 119 63.2 −16.5 −24.3
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Table 6.

Statistics for the model predicted versus observed fish and macroinvertebrate (Macr) MMI score relationship 

by ecoregion (Eco). Results include the Pearson correlation coefficient (r) and slope for both the BIC variable 

selection multiple regression model (BIC) and random forest model (RF) predictions for both the first visit 

data (First) and repeat visit validation data (Valid).

Eco MMI BIC First r BIC Valid r RF First r RF Valid r
BIC First 
Slope

BIC Valid 
Slope

RF First 
Slope

RF Valid 
Slope

CPL Fish 0.76 0.71 0.75 0.72 0.58 0.50 0.47 0.45

CPL Macr 0.60 0.50 0.63 0.66 0.36 0.31 0.36 0.40

NAP Fish 0.84 0.80 0.85 0.90 0.71 0.70 0.66 0.74

NAP Macr 0.76 0.72 0.75 0.82 0.58 0.52 0.53 0.59

SAP Fish 0.75 0.71 0.76 0.76 0.56 0.56 0.50 0.57

SAP Macr 0.69 0.66 0.66 0.72 0.47 0.45 0.37 0.43

UMW Fish 0.58 0.57 0.65 0.71 0.33 0.34 0.35 0.46

UMW Macr 0.61 0.47 0.58 0.64 0.37 0.25 0.28 0.31

TPL Fish 0.78 0.80 0.77 0.87 0.60 0.69 0.55 0.66

TPL Macr 0.66 0.46 0.65 0.64 0.44 0.28 0.34 0.35

NPL Fish 0.72 0.79 0.70 0.89 0.53 0.68 0.45 0.73

NPL Macr 0.75 0.70 0.72 0.74 0.56 0.57 0.47 0.54

SPL Fish 0.68 0.64 0.60 0.70 0.46 0.44 0.34 0.42

SPL Macr 0.48 0.55 0.43 0.71 0.23 0.25 0.18 0.30

XER Fish 0.79 0.78 0.77 0.83 0.63 0.66 0.51 0.61

XER Macr 0.65 0.58 0.68 0.74 0.42 0.48 0.42 0.52

WMT Fish 0.66 0.71 0.58 0.74 0.44 0.45 0.33 0.43

WMT Macr 0.68 0.69 0.71 0.79 0.46 0.48 0.46 0.55
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Table 7.

Logistic regression model results for predicting poor versus good fish MMI condition. The numbers in the 

table are the regression coefficients (odds ratios) for the significant predictor variables identified from the 

stepwise model selection process. Ecoregion codes are given in Table 1, variable codes are given in Table 2. 

Model R2 is McFaddens R2 for logistic regression.

Variable CPL NAP SAP UMW TPL NPL SPL XER WMT

TN 22.8 9.19 -- -- -- 19.9 -- -- --

TP -- -- -- -- 59.7 -- 11.4 -- --

CL -- -- 9.70 -- -- -- 3.46 10.6 --

SO4 -- -- -- -- 6.51 -- -- -- 2.06

TURB -- 8.38 4.13 3.76 -- -- -- -- --

FINEPCT 1.33 -- 1.40 1.22 2.61 -- -- -- 1.49

RBS -- 2.23 -- -- -- -- -- -- --

DEVL_WS -- -- -- -- -- -- -- -- 0.05

POPDEN -- 7.68 -- -- -- -- -- -- --

DAM -- 1.92 1.54 1.23 -- -- -- -- --

ERODE -- -- -- -- 0.16 5.73 -- -- --

Model R2 0.295 0.511 0.350 0.151 0.391 0.289 0.303 0.315 0.156
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Table 8.

Logistic regression model results for predicting poor versus good macroinvertebrate MMI condition. The 

numbers in the table are the regression coefficients (odds ratios) for the significant predictor variables 

identified from the stepwise model selection process. Ecoregion codes are given in Table 1, variable codes are 

given in Table 2. Model R2 is McFaddens R2 for logistic regression.

Variable CPL NAP SAP UMW TPL NPL SPL XER WMT

TN 15.9 6.63 -- 5.47 -- -- -- 5.68 7.23

TP -- -- -- -- -- -- 3.54 -- --

CL -- -- 2.94 -- -- -- -- 2.57 --

SO4 -- -- -- -- -- -- 2.96 -- --

TURB -- 9.77 5.02 5.03 2.39 -- -- -- 3.17

RIPCOV -- -- -- 9.46 4.58 -- -- -- --

FINEPCT 1.4 -- -- -- -- 1.33 -- 1.52 2.21

RBS -- 4.97 2.55 -- 2.44 -- -- -- --

POPDEN -- 2.23 -- -- 0.22 -- -- --

ROADDEN -- -- -- -- 2.80 -- -- -- --

DAM -- -- 1.15 -- -- -- 0.76 1.33 1.27

ERODE -- -- 3.29 -- -- 6.69 -- -- --

Model R2 0.273 0.371 0.253 0.232 0.256 0.304 0.185 0.318 0.358

Ecol Indic. Author manuscript; available in PMC 2021 May 01.


	Abstract
	Introduction
	Methods
	Study Design
	Fish Data
	Macroinvertebrate data
	Environmental data
	Data Analyses
	Fish & macroinvertebrate MMI development
	Statistical analyses


	Results
	Data Distribution
	Fish MMI-environmental relationships
	Macroinvertebrate MMI-environmental relationships
	Composite variable models
	Model Performance
	Predicting Poor MMI Condition Class

	Discussion
	MMI-Environmental Relationships
	Model Performance
	Predicting Risk of Poor Condition
	Conclusions

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.
	Table 8.

