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Abstract

The ability of nanopore sequencing to simultaneously detect modified nucleotides
while producing long reads makes it ideal for detecting and phasing allele-specific
methylation. However, there is currently no complete software for detecting SNPs,
phasing haplotypes, and mapping methylation to these from nanopore sequence
data. Here, we present NanoMethPhase, a software tool to phase 5-methylcytosine
from nanopore sequencing. We also present SNVoter, which can post-process
nanopore SNV calls to improve accuracy in low coverage regions. Together, these
tools can accurately detect allele-specific methylation genome-wide using nanopore
sequence data with low coverage of about ten-fold redundancy.
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Introduction
Somatic cells of diploid organisms comprise two alleles for each gene, and most genes

are expressed from both alleles [1]. However, some genes only express from one allele,

often in a lineage- or tissue-specific manner [1]. Various mechanisms can control

mono-allelic expression (MAE), including DNA polymorphisms at regulatory regions,

and differential epigenetic modifications [1, 2]. Imprinting is a specific type of MAE in

which the expressed allele is defined based upon the parent of origin through epigen-

etic modifications, primarily DNA methylation at CpG sites located in imprinting con-

trol regions (ICRs) [2]. In addition to imprinting, MAE can be a result of random

mono-allelic expression (RME) where allelic choice randomly occurs somatically in a

tissue- and cell type-specific and non-parent of origin manner, and X chromosome in-

activation (XCI) is a well-established RME [3]. Both RME and imprinting have sub-

stantial roles in normal growth and development, behavior, and metabolism [3, 4].

Aberrant DNA methylation at ICRs results in various developmental disorders and loss

of imprinting is frequently observed in human tumors [2, 5, 6].

Detection of allele-specific methylation (ASM) requires profiling both allele-specific

SNPs and DNA methylation on the same or linked data. The current gold standard

approach to study DNA methylation is whole-genome bisulfite sequencing (WGBS)
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[7, 8]. Discrimination of methylated and unmethylated CpGs in WGBS is based on

bisulfite conversion. During bisulfite treatment, unmethylated cytosine converted to

uracil which then replaced by thymidine through downstream PCR reactions prior

to short-read sequencing. Subsequent short-read sequencing and mapping of reads

to the reference genome can detect DNA methylation genome-wide [7, 8]. How-

ever, short-read pairs typically cannot span adjacent allele-specific SNPs in regions

of low variant density. Moreover, bisulfite conversion is a challenging molecular

protocol, which introduces errors both from the harsh chemical treatment and the

difficulty of mapping converted reads to the reference genome [7, 9]. Third-

generation long-read sequencing provided by Oxford Nanopore Technologies

(ONT) and Pacific Biosciences single-molecule real-time sequencing not only se-

quences DNA but can also detect DNA methylation through picoampere signal in-

tensities and polymerase kinetics, respectively [10, 11]. Long reads produced by

these technologies can span over several kilobases and can resolve the phasing

problem at regions of low SNP density. However, the higher sequencing error rate

can impede the accurate detection of SNPs and the haplotype phasing of long

reads. Additionally, Pacific Biosciences is prohibitively expensive as it requires very

high coverage (250× per strand) to confidently detect 5-methylcytosine which

makes it impractical on a mammalian size genome [12].

In nanopore sequencing, as nucleic acids are propelled through a protein nanopore

embedded in an electrically resistant membrane, the chemical composition of the ap-

proximately five nucleotides (5-mers) present in the narrowest region of the pore de-

fines the measurable current signal across the membrane (pore version R9.4) [13].

These distinctive signal characteristics are interpretable by a trained artificial neural

network during typical base calling. A similar approach is used to call 5-methylcytosine

at CpG sites by tools such as Megalodon [14], Nanopolish [10], DeepSignal [15], Deep-

Mod [16], and SignalAlign [17]. Therefore, in nanopore sequencing, both DNA se-

quences and modifications are detectable using raw signal information and there is no

need for bisulfate conversion and PCR amplification prior to sequencing [16, 18]. Sta-

tistically based approaches are also available to detect base modifications using com-

parative tests on signals from pairwise samples (e.g., wild-type and knock out),

Nanoraw [19] and NanoMod [20]. Statistically based approaches typically call all de-

tectable base modifications between the samples without distinction of the specific type

of modification [20]. Model approaches can potentially differentiate several types of

modification assuming the model used was trained accordingly. These sets of tools can

be used together on the same signal data to generate both DNA sequence and CpG

methylation, which is ideal for detecting ASM. Using these features, Gigante et al. [21]

successfully used known SNPs from parental mice to phase methylation in the F1 and

detect ASM. However, there is a lack of a straightforward workflow and software tools

to phase both reads and methylation data from nanopore sequencing. More import-

antly, an approach which can phase nanopore reads using only nanopore sequencing,

without having to detect SNVs using other platforms or known parental SNVs, has not

been previously shown.

Here, we have developed a workflow and associated software, SNVoter and Nano-

MethPhase, to detect ASM from a single sample using only nanopore sequence data

with redundant sequence coverage as low as about 10×. We called SNVs from
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nanopore sequencing data using Clair [22]. Clair is designed to call germline small vari-

ants from nanopore reads based on pileup format, and the authors demonstrated its su-

periority over other pileup-based tools [22]. We demonstrated that we can improve

SNV detection significantly by using SNVoter. Subsequently, we phased the SNVs de-

tected from nanopore reads using WhatsHap [23] v 0.18 and used our tool, NanoMeth-

Phase, to phase both the sequence reads and the CpG methylation. Using a normal

human B-lymphocyte cell line (NA19240), we demonstrated that NanoMethPhase can

accurately detect ASM and parent of origin when trio data (i.e., using known SNPs

from mother, father, and child) is available. Moreover, NanoMethPhase detected ASM

for this sample using only nanopore sequence, showing high concordance with the

trio-based phasing. We further demonstrated the detection of ASM with about 10×

coverage using a Colo829BL B-lymphoblast cell line.

Results
Benchmarking of nanopore methylation calling software

We benchmarked three tools able to detect CpG methylation from nanopore sequen-

cing using a pre-trained model: Nanopolish [10], Megalodon [14], and DeepSignal [15].

The CpG methylation calls obtained were compared to matching data from WGBS and

Illumina Infinium HumanMethylation 27 BeadChip (henceforth, 27k methylation

array). We used 12 MinION flow cells (~ 12× coverage) of publicly available nanopore

sequencing data for NA12878 [24] (Additional file 1) to compare with ENCODE

WGBS data (ENCFF835NTC) and 27k methylation array [25] (GSM670984) data for

this cell line. DeepSignal, Nanopolish, and Megalodon were able to call methylation for

~ 30M, ~ 29.7M, and ~ 29.2M CpG sites, respectively. Because ENCODE WGBS work-

flow used an index generated from the GRCh38 assembly with alternative contigs re-

moved, only called CpG sites on the main chromosomes (1–22 and X) were

considered. DeepSignal, Nanopolish, Megalodon, and WGBS were able to call methyla-

tion for 28.827M, 28.825M, 28.186M, and 28.159M CpG sites on the main chromo-

somes, respectively (Fig. 1a). Nanopolish and DeepSignal showed a higher correlation

with WGBS (Fig. 1b, 0.89 for Nanopolish and 0.90 for DeepSignal; Additional file 2:

Fig. S1a-f) and 27k methylation array (Fig. 1c, 0.88 for Nanopolish and 0.89 for Deep-

Signal) compared to Megalodon (0.83 with WGBS and 0.81 with 27k array). The correl-

ation with WGBS was also evaluated based on CpG density and at each genomic

region (Additional file 2: Fig. S1g, h). These analyses showed that the correlation is

lower at low- and high-density CpG sites (< 4% CpG per 2 kb and > 8% CpG per 2 kb)

and DeepSignal works better at low dense CpG sites while Nanopolish gives better cor-

relation at high-density CpG regions. Moreover, the best correlation with WGBS is ob-

tained at enhancers and promoters, while repeats and intergenic regions had the lowest

correlation. In agreement with correlation analysis based on CpG density, Nanopolish

showed slightly better correlation at CpG islands while DeepSignal worked better in

other regions. The distribution of methylation levels obtained from Nanopolish and

DeepSignal closely followed the trend of WGBS values across CpG islands (CGIs,

Fig. 1d). They also outperformed Megalodon around transcription start (TSS) and end

sites (TES) (Fig. 1e), with Nanopolish showing closer concordance with WGBS near

TSS. Consequently, we selected Nanopolish as the most appropriate tool to call
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methylation, with the added benefits that were faster processing time and also fewer

pre-processing steps.

To further validate methylation calling using Nanopolish, we compared methylation

calling for NA19240 (ERR3046935 or run 1; Additional file 1) [26] with the 27k methy-

lation array (GSM671076) [25]. They showed 0.93 Pearson correlation between methy-

lation frequencies from Nanopolish and beta-values from 27k methylation array data

(Fig. 1f). The distribution of methylation calls showed the same close concordance

across CGIs (Fig. 1g) and TSS-TES (Fig. 1h).

As shown in Fig. 1a, Nanopolish and DeepSignal called methylation at considerably

more CpG sites compare to WGBS. Nanopolish and DeepSignal had ~ 945,000 and ~

871,000 CpGs not present in WGBS, respectively, and ~ 843,000 of them were common

to both Nanopolish and DeepSignal. Approximately 50% of these nanopore-specific

Fig. 1 Methylation calling from nanopore data and comparison to gold standard platforms. a UpSet plot of
the intersections of CpG sites detected using DeepSignal, Nanopolish, Megalodon, and whole-genome
bisulfite sequencing (WGBS) for NA12878. Because Encode WGBS workflow used index generated from
GRCh38 assembly with alternative contiguous removed, only CpG methylations on main chromosomes (1–
22 and X) were considered. b, c Pearson correlation matrix of methylation levels from the tools with WGBS
(b) and Illumina’s 27k methylation array (c). For comparison to WGBS, only CpGs with at least 5 calls were
considered. The number represents common CpGs in all methods. d Distribution of methylation over CpG
islands (CGIs). e Distribution of methylation at transcription start (TSS) and end sites (TES). f Scatter plot of
methylation level obtained from Nanopolish and Illumina’s 27k methylation array for NA19240 sample.
Pearson correlation coefficient presented as r. g–h Distribution of methylation over common CpGs between
Nanopolish and 27k array at CpG islands (CGIs) (g) or transcription start (TSS) and end sites (TES) (h). Gold
standard methods for CpG methylation detection are indicated by an asterisk
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CpGs mapped to satellite repeats (Additional file 2: Fig. S2a) which are complex repeats

mostly found in centric and pericentric regions. Of satellite repeat types, approximately

98% of the nanopore-specific CpGs mapped to ALR/Alpha repeats (Additional file 2:

Fig. S2b). This demonstrates the advantages of nanopore sequencing in mapping to

complex repeat regions.

High false positives in variant calling results

SNPs are the most commonly occurring variants and are routinely used to phase reads

between haplotypes. Thus, to phase nanopore reads and CpG methylation, detection of

SNPs is first required. In order to evaluate single-sample variant calling from nanopore

data, we used Clair [22] to call SNVs on 20 flow cells of the NA12878 sample (24×;

Additional file 1) described above and compared these calls to gold standard SNVs

from the Genome in a Bottle database (GIAB, V3-3-2) [27]. Clair detected 6.712M

SNVs, 3.711M of which exceeded the variant call quality filtering threshold of 730

(Additional file 2: Fig. S3a). We then counted false positives (943,304), false negatives

(223,581), true positives (2,768,084), and true negatives (2,777,463) to calculate accur-

acy, precision, recall, and F1 score, measured at 82.6%, 74.6%, 92.5%, and 82.6%, re-

spectively. The majority (90%) of true SNVs were determined in Clair as high-quality

SNV calls. However, there were still a considerable number of false positives which can

confound downstream analysis such as phasing. Therefore, we sought to improve the

accuracy and the precision and reduce the false-positive rate as much as possible while

retaining true positives.

Base qualities and mutation frequencies are informative

Studies have demonstrated that in nanopore sequencing the signal distribution is driven

mostly by the five to six bases that occupy the narrowest part of the pore [28]. During the

base-calling process, base callers segment signals and translate them to the appropriate 5-

mer using a pre-trained model. We hypothesized that if an SNV is a false call, the base

caller must have been mistaken in calling the 5-mer, and therefore, additional sequencing

errors should be found in the 5-mer windows adjacent to that SNV. Moreover, the Phred

quality of called bases should be affected. To test this, we extracted Phred scores, mis-

match, deletion, and insertion frequencies for SNVs where the Clair output agreed with

the GIAB standard (true positives), and compared these with the false-positive SNVs. In-

deed, higher mutation frequencies and lower base quality scores were observed in the ad-

jacent 5-mer windows of false SNVs compared to true SNVs (Fig. 2a). Moreover, in a

PCA analysis, they separated into two distinct groups where mismatch frequencies and

base qualities seemed to have the highest effect on discriminating true-positive SNVs

from false positives (Fig. 2b). These results demonstrate that base qualities and mutation

errors in 5-mer windows are informative and can be used to further discriminate true pos-

itives and false positives in order to improve SNV calling from nanopore data.

A neural network SNV classifier improves Clair SNV calls

We then used base quality and mutation frequencies to train an artificial neural net-

work to discriminate true-positive SNVs from false calls (see the “Materials and

methods” section), which we packaged into a tool we called SNVoter. Three different
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models were trained using various fold coverages from three datasets including

NA12878 [24] (20 flow cells, 24×), NA12878 [24] (all flow cells, 44×), and HG003 [29]

(80×). See additional file 1 for a full description of datasets used in our study. SNVoter

classifies each 5-mer that includes an SNV. Since each base represents itself in five 5-

mers (e.g., ATCGACGTC will be represented in ATCGA, TCGAC, CGACG, GACGT,

and ACGTC), the final prediction for each SNV is an average of all five predictions. Fi-

nally, we used the predictions from our classifier as weights, and for each SNV, we

Fig. 2 Improvement in Clair SNV calls from nanopore data. a Base quality and mutation frequencies
obtained for 1 million randomly selected 5-mers with SNV in the base 3 position (1:1 true positives to false
positives). b PCA analysis of the reference 5-mer GTACT shows separation of true positive from false
positives based on quality scores and mismatch frequencies. c Clair variant calling quality distribution for
the NA19240 run 0 sample. d Quality distribution upon normalization of Clair’s qualities using the weights
given by SNVoter to each SNV. The highlighted region represents the optimal threshold area to filter out
low-quality calls. e Receiver operating characteristic curves for SNV calling using Clair or using Clair+SNVoter
for different coverage depths. NA19240 run 1, NA19240 run 0, and Colo829BL are processed by SNVoter
using the model trained on NA12878 20FCs (24×). NA19240 runs 0&1 and NA19240 runs 1&2 is processed
using the model trained on NA12878 whole dataset (44×)
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multiplied the variant call quality from Clair with its weight from our model to produce

normalized quality scores.

To test the classifier and to obtain optimal quality threshold for normalized base quality

scores, we used the NA19240 run 0 (whole dataset includes five PromethION runs, Add-

itional file 1) basecalled nanopore sequencing dataset [26] (ERR3219853, 18× coverage)

and variant calling data from the 1000 Genomes Project (1KGP) phase3 [30]. As pre-

sented in Fig. 2c and d, there is an obvious shift toward the low-quality region of the qual-

ity distribution plot after using SNVoter. This is largely due to the false-positive SNVs

with high variant call quality from Clair that were assigned low weights by SNVoter. We

plotted receiver operating characteristic curves (ROC) across a range of thresholds for

normalized quality and used these to obtain the new optimal threshold (Fig. 2e). The

ROC curve analysis demonstrates an improvement in discriminating true-positive SNV

calls from false positives, and we determined the new optimal threshold to be the end of

the first peak and the start of the valley (highlighted region in Fig. 2d. This threshold was

further confirmed by more datasets we used that explained below). Other important met-

rics including accuracy, precision, recall, and F1 score are presented in Table 1 (for a

complete table of different thresholds, see Additional file 3).

Finally, to comprehensively test SNVoter on different coverages, we used a Colo829BL

sample which we sequenced (~10×), NA19240 run 1 [26] (ERR3219854

or ERR3046935. ~22×), NA19240 runs 1&2 (ERR3219854-5. ~32×), NA19240 runs 0&1

(ERR3219853-4. ~40×), and NA19240 4 runs (ERR3219854-7. ~65×). As presented in Fig. 2e

and in Table 1, SNVoter can significantly improve SNV calls in data with up to 30× coverage

(Clair variant call quality and normalized quality distributions are shown in Additional file 2:

Fig. S3c). We used different models and random down-sampling of coverage for NA19240

4 runs (ERR3219854-7. ~ 65×), which did not provide any improvement when using SNVoter

(Additional file 2: Fig. S3b). Overall, using SNVoter, we could raise the accuracy, precision, re-

call, and F1 using low coverage data to be comparable to that from high coverage data.

Phasing of SNVs detected by nanopore sequencing

After normalizing Clair qualities using SNVoter and filtering out low-quality calls based

on an optimized threshold (Table 1; Additional file 2: Fig. S3c) for NA19240 run 1 and

Table 1 Different metrics for SNV calls using Clair and Clair + SNVoter

Tool Sample QT All TP TP FP Acc Pre Rec F1

C Colo829BL 725 3,638,416 2,664,923 774,123 0.88 0.77 0.79 0.78

C+S Colo829BL 160 3,638,416 2,851,683 336,594 0.93 0.89 0.84 0.87

C NA19240 Run0 755 3,973,249 2,997,917 1,462,313 0.86 0.67 0.81 0.74

C+S NA19240 Run0 170 3,973,249 3,160,297 956,846 0.90 0.77 0.86 0.81

C NA19240 Run1 780 3,973,249 3,465,350 990,793 0.84 0.78 0.92 0.84

C+S NA19240 Run1 350 3,973,249 3,436,275 658,067 0.88 0.84 0.91 0.87

C NA19240 runs 1&2 800 3,973,249 3,644,703 812,335 0.84 0.82 0.96 0.88

C+S NA19240 runs 1&2 180 3,973,249 3,595,674 683,727 0.86 0.84 0.94 0.89

C NA19240 runs 0&1 820 3,973,249 3,639,922 750,137 0.85 0.83 0.95 0.89

C+S NA19240 runs 0&1 170 3,973,249 3,592,467 653,594 0.85 0.85 0.94 0.89

C Clair, S SNVoter, QT quality threshold, TP true positive, FP false positive, Acc accuracy, Pre precision, Rec recall. All TP
refers to all high-quality SNVs from 1KGP for NA19240 and from Strelka for Colo829BL Illumina sequencing
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Colo829BL samples, these SNVs were leveraged to phase nanopore reads. We phased

SNVs using WhatsHap [31]. In the Colo829BL sample, ~ 37.5% of haplotype blocks

were > 1Mb (mean = 1116.5Kb, median = 588.3Kb), and in the NA19240 sample,

~ 9.25% of haplotype blocks were > 1Mb (mean = 315.9Kb, median = 82.2Kb)

(Fig. 3a, b). While the median read lengths were 8Kb and 12Kb for Colo829BL and

NA19240 run 1, respectively, Colo829BL had numerous large reads. For example,

23% (678,900) of Colo829BL reads were > 20Kb while in NA19240 8.8% (513,373)

of reads were > 20Kb, which resulted in a higher average read length in Colo829BL

compared to NA19240 (Additional file 2: Fig. S4a and S4b). This can explain the

numerous larger haplotype blocks in Colo829BL and highlights the value of longer

reads, specifically in the proportion of all reads, for having a larger haplotype

length.

NanoMethPhase detects allele-specific methylation

The phased SNVs, alignment file, methylation call file from Nanopolish, and the refer-

ence genome are supplied to our tool, NanoMethPhase, to phase reads and CpG meth-

ylations (Fig. 3c; the “Materials and methods” section). In NA19240 run 1, out of 4.165

M reads which tagged with at least one phased SNV, 1.883M were assigned to the first

haplotype (reference haplotype, HP1) and 1.871M were assigned to the second haplo-

type (alternative haplotype, HP2) (Fig. 3d). In the Colo829BL sample, out of 1.9 M reads

which tagged with at least one phased SNV, 0.743M reads were assigned to HP1 and

0.738M reads were assigned to HP2 (Fig. 3f). In terms of speed, using 48 CPU cores, it

took 10 h for NanoMethPhase to process the NA19240 run 1 sample (22×) and 5 h for

the Colo829BL sample (10×).

We used two approaches to evaluate the phasing results. Firstly, we used trio data

(parental and child variants) for NA19240 from 1KGP [30] to create a mock phased vcf

file to use as input for NanoMethPhase (software code in the repository https://github.

com/vahidAK/NanoMethPhase). Out of 4.075M reads assigned to at least one SNV,

1.802M reads assigned to maternal and 1.797M reads to paternal haplotypes (Fig. 3e).

3.464M reads (96.3% of phased reads using trio data and 92.3% of phased reads using

nanopore sequencing alone) were congruent between trio and nanopore phasing alone.

Trio phasing itself was confirmed by examining the methylation status of paternal and

maternal haplotypes at established and putative ICRs. This includes 43 known regions,

as well as 14 novel regions from Court et al. [32] and 34 novel regions from Joshi et al.

[33] (Additional file 4). As presented in Fig. 4a and b (first two heatmap columns and

Additional file 4), NanoMethPhase correctly detected ASM using trio data. The differ-

ences in methylation level and correct parental origin is captured at known and novel

ICRs. The only obvious inconsistency with the reported parent of origin was DLX2-AS1

from Joshi et al. but this ICR is only supported by four CpGs. Joshi et al. used a 450k

methylation array to study ASM and parent of origin in uniparental disomic subjects

[33], and ~ 90% of their reported ICRs are supported by less than seven probes within

differentially methylated regions (DMRs). Court et al. used WGBS and high-density

methylation microarrays to study ASM [32]. We then compared the phased status of

reads from the trio to nanopore sequencing alone. The human genome reference is not

completely contiguous, and it is represented by chromosome scaffolds with gaps of
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Fig. 3 NanoMethPhase workflow and read phasing. a, b Haplotype block sizes following phasing of
NA19240 and Colo829BL detected high-quality SNVs using WhatsHap. c NanoMethPhase workflow
representing inputs, processing steps, and outputs. The output options can be requested independently to
fit the needs. d–f Number of reads that were phased, filtered out, or could not be assigned to any phased
SNV (left panel) and their length distribution (right panel, for ease in visualization reads with length < 50 kb
are shown). d Obtained from NA19240 run 1 using nanopore phasing alone, e NA19240 run 1 trio phasing,
and f Colo829BL sample. *NanoMethPhase phasing step ignores duplicated, QC failed, unmapped, and
secondary reads. Supplementary reads also excluded by default but can be included as an optional
parameter. The plots represent reads using default parameters
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unknown sequence (represented by “N” in the reference). Moreover, the sequence

coverage across the genome is not evenly distributed and there are regions lacking

reads. Therefore, when using SNVs from a single sample to phase reads for that sam-

ple, we would not expect consistent correct haplotype assignment (i.e., all reads that

Fig. 4 Methylation levels and phased CpGs at human ICRs. a, b Methylation levels of phased CpGs
presented with haplotypes of origin at reported ICRs as heatmaps. a CpGs mapped to known ICRs. b CpGs
mapped to novel ICRs from Court et al. and Joshi et al. The heatmap colors represent the mean of
methylation at the regions. Origin bar indicates known or reported origin from previous studies, and
heatmap column labels represent assigned haplotype by NanoMethPhase. In trio phasing, Pat stands for
paternal and Mat for maternal. c, d Integrative Genomics Viewer screen captures of phased bam files
converted to mock WGBS format for samples NA19240 run 1 and Colo829BL at two well-known ICRs
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are from maternal be always on HP1 or HP2 and vice versa). Rather, we would expect

reads mapped to a region to group together (e.g., reads that are from maternal haplo-

type for a given region all being designated either HP1 or HP2 at that region). There-

fore, to investigate this, we sampled reads at every 10 kb for trio phasing and nanopore

phasing alone and we kept regions with more than two phased reads on one or both

haplotypes. We then compared the read haplotype assignment at each 10-kb region to

check whether reads that belong to paternal or maternal haplotype at a given position

in trio phasing group together as HP1 or HP2 in nanopore phasing alone. We exam-

ined 3.3M reads at 236,478 genomic positions. Of these, only 54,592 reads (1.66%) were

incorrectly phased in nanopore phasing alone compared to the trio phasing.

Secondly, we investigated the methylation status of phased haplotypes at known ICRs

for Colo829BL and NA19240 run 1. In both samples, NanoMethPhase recapitulated

methylation differences at known and novel ICRs (Fig. 4a, b; the last four heatmap

columns and Additional file 4), although, as mentioned earlier, the haplotype switch is

frequent and haplotype assignment is not consistent. We also used Integrative

Genomics Viewer [34] to visualize mock bisulfite-converted phased bam files out-

put by NanoMethPhase. This represents accurate ASM at two well-known ICRs

(Fig. 4c, d). SNRPN and KvDMR1 aberrant imprinting are involved in Prader-

Willi/Angelman and Beckwith–Wiedemann syndromes, respectively [35].

Differentially methylated regions on chromosome X map to known inactive genes

To investigate DMRs genome-wide, we performed differential methylation analysis

(DMA) using the default parameters of the dma module in our tool which uses Disper-

sion Shrinkage for Sequencing data (DSS) [36] R Bioconductor package to found

DMRs. We detected 2205 DMRs in NA19240 run 1 nanopore phasing alone and 2109

in trio phasing (Fig. 5a; Additional file 5). Ninety-three percent (1964 DMRs) of DMRs

in the trio phasing overlapped with DMRs from nanopore phasing alone. In the male

Colo829BL sample, we detected 854 DMRs (Fig. 5a; Additional file 5).

Fig. 5 Differentially methylated regions mapping and imprinted genes. a Number of DMRs detected at
each chromosome in Colo829BL, NA19240 run 1 nanopore alone phasing, and NA19240 run 1 trio phasing.
The numerous DMRs in the X chromosome of NA19240 cell line are explained by its X chromosome
inactivation. b Mapped DMRs to 4 Mb upstream and downstream of known, predicted, conflicting and
provisional imprinted genes from GeneImprint and the catalog of human imprinted gene databases.
NA19240 NA stands for NA19240 nanopore phasing alone
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NA19240 is a female B-lymphocyte cell line and therefore presents XCI [3]. Several

genes escape XCI (express from both alleles) and they are mostly responsible for sex-

specific characteristics in women, while most of the genes are inactivated and display

MAE [37]. CpG methylation is an important mechanism through which cells can

achieve and maintain XCI. Not surprisingly, ~ 40% of all DMRs in NA19240 mapped to

chromosome X. We assessed whether DMRs detected by NanoMethPhase mapped to

any escapee genes. For this aim, data from three previous studies [37–39] on genic XCI

were collected which includes 371, 204, 75, and 71 inactive, variable, escapee, and un-

known genes, respectively (Additional file 6). Given that methylation at the promoter

region has a direct effect on gene silencing, we mapped DMRs 1 kb upstream and 200

bp downstream of a TSS. DMRs were mapped to inactive genes in a greater proportion

than escapee genes (Table 2; Additional file 7). The presence of methylated CpGs in

gene bodies is associated with active genes [40]. Therefore, we would expect to also ob-

serve DMRs mapping to the gene body of inactive genes, because only one of the alleles

is active. We mapped DMRs to the gene body of the 721 genes. DMRs significantly

mapped to inactive genes compared to escapee ones (Table 2; Additional file 7) with

the expected methylation direction for genes with DMRs mapped to their promoter

and body (i.e., inactive genes with hypermethylation at the promoter mostly displayed

hypomethylation at the gene body and vice versa). It is also worth mentioning that the

inactive state for the majority of inactive genes with mapped DMR was supported by at

least two of the studies, while the majority of escapee genes was supported by one of

the studies.

Autosomal DMRs mapped to known ICRs and known imprinted genes

We then mapped autosomal DMRs to known and novel ICRs from Court et al.

[32] and Joshi et al. [33] (Table 3; Additional file 8). In addition to these ICRs, we

mapped DMRs to 166 novel DMRs from Zink et al. [41] from which 83 are on

chr15 and 83 are on other chromosomes (Table 3; Additional file 8). Overall,

DMRs mapped to 60% of known ICRs and novel ICRs from Court et al. and sev-

eral novel ICRs from Zink et al. and Joshi et al. (Table 3). Moreover, the parent of

origin identified from NA19240 trio phasing for DMRs that mapped to ICRs was

Table 2 Mapping DMRs from NA19240 run 1 to genes from chromosome X

Gene category Sample Inactive Escapee Variable Unknown Total*

# of DMRs to GeneBody NA** 396 16 89 28 519

Trio 380 17 86 26 503

# of genes with DMR in body NA 154 9 48 15 226

Trio 151 10 50 15 226

# of DMRs to promoter NA 178 8 68 19 264

Trio 175 9 60 21 257

# of genes with DMR in promoter NA 190 8 69 19 286

Trio 187 9 61 20 277

# of genes with DMR in body and promoter NA 87 2 19 5 113

Trio 88 2 19 6 115

*All number of unique DMRs or genes.**NA nanopore alone, phasing reads only using nanopore sequencing for a
single sample
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consistent with reported parental origin except for DLX2-AS1 from Joshi et al. (see

the section “NanoMethPhase detects allele-specific methylation”) and RP11-33B1.1

from Zink et al. RP11-33B1.1 was reported with a modest increase in methylation

from the maternal allele (0.17) in Zink et al. The consistency in the parent of ori-

gin of DMRs further highlights accurate phasing of CpG methylation and parent of

origin detection using NanoMethPhase and trio information.

Most imprinted genes are located in clusters which can span up to approximately 4

Mb and are controlled by their ICR [42, 43]. Therefore, we investigated the distance of

DMRs to known imprinted genes, those predicted to be imprinted, and those genes

with conflicting or provisional data. We gathered a list of known, predicted, and con-

flicting imprinted genes from GeneImprint (http://www.geneimprint.com/) and the

catalog of imprinted genes (http://igc.otago.ac.nz/) [44] databases which include 107

imprinted, 103 predicted, 14 conflicting, and 6 provisional (Additional file 9) genes. We

mapped DMRs to regions spanning 4Mb upstream and downstream of these genes

(Fig. 5b; Additional file 10). Fifty percent of autosomal DMRs in NA19240 run 1 and

45% in Colo829BL mapped to this window. Eighty percent of known imprinted genes

in NA19240 run 1 and 74% in Colo829BL had at least one DMR mapped within 1Mb

from the gene boundaries.

The best correlation between nanopore CpG methylation calls with WGBS was

obtained at regions with 4–8% of CpG ratio (number of CpGs/region length; Add-

itional file 2: Fig. S1g). We noticed that the known ICRs with CpG ratio 4–8 tend

to be more detected. Overall, 28 of the known ICRs have CpG ratio 4–8% and 15

less than 4% or more than 8%. In Colo829BL, 26 known ICRs were detected from

which 21 have 4–8% CpG ratio. In NA19240, out of 28 detected known ICRs, 21

have 4–8% CpG ratio. However, in the HG002 sample (~50x. Ashkenazi son; see

below and Additional file 1: Section 5), which has higher coverage compare to

NA19240 run 1 and Colo829BL, out of 38 detected known ICRs, 26 have 4–8%

CpG ratio.

As ONT frequently releases new versions of Guppy with claimed higher accuracy, we

aimed to investigate the effect of a new version of the basecaller on ASM detection

(Additional file 1: Section 4). We re-basecalled Colo829BL and NA19240 run 1 using

guppy v4.2.2. Even though more true-positive SNVs were detected at the optimal

threshold, more false positives were also presented (Table 1; Additional file 1: Table

S2). Therefore, no overall improvement in the SNV detection was observed. However,

using guppy v4.2.2, the detection of ICRs slightly improved and we could detect one

more reported ICR [32, 33, 41] in NA19240 and 6 more in Colo829BL (Table 3; Add-

itional file 1: Table S3) and, on average, about 82% of detected DMRs in Guppy 4.2.2

were overlapped with DMRs detected with older Guppy.

Table 3 Mapping DMRs to ICRs

Sample DMRs mapped Known Novel Court Novel Joshi Novel Zink

NA19240 NA* 74 28 8 5 24 (6 on chr15)

NA19240 Trio 69 26 8 4 22 (6 on chr15)

Colo829Bl 60 26 10 5 16 (4 on chr15)

*NA nanopore alone, phasing read only using nanopore sequencing for a single sample
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In NA19240 trio phasing, the SNV calls are obtained from short-read data. To

further investigate ASM detection in trio where SNV calls originating from nano-

pore sequencing, we used nanopore data for GIAB Ashkenazi trio [29] samples

including son (HG002), father (HG003), and mother (HG004) (Additional file 1:

Section 5). This analysis demonstrated the detection of most of the known ICRs

(86%) (Additional file 1: Table S4). Moreover, detected DMRs and phased reads

in phasing using SNVs detected from nanopore data for all samples in trio dem-

onstrated high commonalities with DMRs and phased reads for the trio and phas-

ing using SNVs detected from short-read sequencing (high confidence variant

calls, obtained from short-read sequencing, for Ashkenazi trio is also available in

GIAB).

Discussion
ASM is involved in various processes such as development and tissue differentiation.

Its dysregulation can result in developmental disorders and promotes cancer [2, 5, 6].

Short-read sequencing coupled with bisulfite treatment is used for the detection of

ASM. However, the length of reads and the complexity and biases introduced by bisul-

fite treatment can impede their investigation, especially in low SNP density regions. In

these regions, the length of reads can be insufficient to span multiple SNPs preventing

their association in a contiguous haplotype. This conceptual limit is not shared by

long-read sequencing via nanopore. The span of reads reduces the risk of them not

reaching enough SNP positions. It also enables the filtering of low-quality SNPs, redu-

cing the presence of erroneous SNPs with a minimal impact on the number of reads

that spans multiple SNPs. Long-read sequencing powered by ONT is also applicable to

detect mono-allelic methylation as it offers detection of both DNA bases and their

modifications. Mono-allelic bisulfite-converted C are indistinguishable from a C to T

SNP present in the sample using WGBS alone [8]. The signal from the pore can be

used to get the sequence confirmation that would otherwise require another input for

SNP presents in the sample, a feature that can also be leveraged to investigate cancers

presenting a loss of heterozygosity [45].

In this study, we benchmarked methylation calling tools for nanopore sequence data,

improved SNV calling for lower coverage data, and detected ASM. We developed the

required tools, SNVoter and NanoMethPhase, which allow users to detect ASM using a

command-line interface. We demonstrated that nanopore methylation calls are con-

cordant with gold standard platforms (Fig. 1; Additional file 2: Fig. S1) and this technol-

ogy is advantageous in highly repetitive regions, particularly at highly repetitive ALR/

Alpha satellite (Additional file 2: Fig. S2) which their expression is shown to be

enriched in cancer [46]. A drawback of nanopore sequencing is the high cost which in-

creases dramatically when several flow cells need to be run to obtained adequate cover-

age. We determined that our workflow is capable of detecting ASM using low coverage

(~ 10×) of nanopore data from a single PromethION flowcell run (one PromethION

run typically provides a coverage of 10–25× using the r9.4 pore). Therefore, the usage

of NanoMethPhase is advised to leverage the depth of the long-read data. We demon-

strated detection of ASM and parent of origin using trio information (Fig. 4). We were

able to detect ASM by nanopore sequencing exclusively from a single sample which
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was concordant with trio phasing, although the parent of origin labeling is inconsistent

between non-overlapping haplotyped regions (Fig. 4).

Mnimap2 [47] is a widely used aligner for nanopore long-read data; therefore, we also

investigated the possibility of improvement in SNV detection using the recently devel-

oped aligner for nanopore long reads, Winnowmap [48]. We compared SNV detection

for Colo829BL aligned to hg38 using Winnowmap to Minimap2 and no improvement

was observed (Additional file 2: Fig. S8).

ASMs on chromosome X were detected by NanoMethPhase in the NA19240 cell line.

They mostly mapped to known inactive genes on the chromosome X (Table 2; Add-

itional file 7). Previous studies mostly relied on transcriptome analysis to investigate

genic XCI [37–39], but this provides indirect evidence of the inactivation rather than

detecting the actual mechanism of inactivation. Our approach can be applied, along

with expression-based approaches, to further investigate genic XCI and CpG methyla-

tion as a potential mechanism for gene inactivation. We indicated that autosomal

DMRs detected by NanoMethPhase mapped to most of the known ICRs and several

other novel ICRs from previous studies [32, 33, 41] (Fig. 4 and Table 3, Additional file 4

and Additional file 8). The majority of known imprinted genes were also detected with

one or more autosomal DMR mapped inside or in close vicinity to the gene (Fig. 5;

Additional file 10). Numerous autosomal DMRs, which did not map to any known

ICRs, were mapped to the close vicinity of the known imprinted genes (Add-

itional file 10). This is also observed by previous studies [21, 41], and these DMRs could

be secondary ICRs (also known as somatic DMRs) which usually regulated by nearby

germline or primary ICRs and established postfertilization [21, 41, 49]. In addition to

imprinting, a proportion of ASM might result in random MAE. Approximately 22% of

autosomal DMRs from NA19240 and 18% from Colo829BL mapped to the gene body

or the promoter of 251 and 143 MAE genes from Savova et al., respectively [50]

(Additional file 11).

We noticed more than 90% of DMRs mapped to ICRs and promoters of genes

on chromosome X and more than 80% of DMRs that mapped near imprinted

genes had area statistics (the sum of the test statistics of all CpG sites within the

DMR) ≥ |100|, while approximately 40% of DMRs in each sample had area statis-

tics < |100|. This is consistent with the fact that DMRs with higher area statistics

are more likely to be true positives, and demonstrates the positive impact of filter-

ing the numerous detected DMRs. Several regions were lacking high-quality

mapped reads in the original alignment file and phased alignment results. For ex-

ample, five to seven of known and novel ICRs reported by Court et al. [32] and

Joshi et al. [33] lacked mapped reads in the original alignment file and/or the

phased alignment results (Fig. 4a, b; Additional file 4). Moreover, there were sev-

eral ICRs with moderate differences in methylation between haplotypes. For ex-

ample, approximately 15 to 18 ICRs showed 0.1–0.3 delta in mean methylation,

while none of them was captured by the DMA. The Nanopolish algorithm assigns

the same log-likelihood ratio to all CpGs in close vicinity of less than 11 bp.

Therefore, improvements in methylation calling can improve ASM detection, spe-

cifically at dense CpG sites. Although final methylation frequencies obtained by

nanopore are similar to those from WGBS and tools that were developed for

WGBS DMA are expected to be applicable to nanopore, it is advantageous to have
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dedicated software to perform DMA from nanopore data. As discussed by Gigante

et al. [21], WGBS calls are binary while nanopore tools output continuous predic-

tions or log-likelihood ratios. Algorithms that could leverage non-discrete data

present an opportunity to improve DMA. We also noticed that averaging CpG

methylation in genomic bins significantly improves correlation with WGBS, even

when disregarding the coverage filters (Additional file 2: Fig. S5). This suggests that

a sliding window approach might be beneficial for nanopore DMA.

Materials and methods
Nanopore sequencing and datasets

Nanopore sequencing data for NA19240 [26], NA12878 [24], and Ashkenazi trio [29]

human cell lines are publicly available. A complete description of the datasets, their

base calling, mapping, and usage in our study are provided in additional file 1 along

with the link to the sources.

We also sequenced the Colo829BL B-lymphoblast cell line using one nanopore Pro-

methION flow cell and Illumina paired-end sequencing at 30× coverage. A complete

description of nanopore and Illumina sequencing protocols and data obtained is also

provided in Additional file 1.

CpG methylation calling from nanopore data

To call CpG methylation, we benchmarked three model-based approaches: Nanopolish

[10], Megalodon [14], and DeepSignal [15]. Nanopolish uses a hidden Markov model to

call CpG methylations from raw nanopore data while Megalodon and DeepSignal use

neural networks. We called CpG methylation using these tools (with the default param-

eters) for 12 flow cells of NA12878 publicly available data (Additional file 1) and com-

pared the results with WGBS data from ENCODE project (ENCFF835NTC) [51] and

Human Methylation 27 (27k) array from Fraser et al. [25].

Variant calling

We used Clair to call SNVs [22]. We called variants for each chromosome using clair.py

callVarBam --threshold 0.2 and the HG122HD34 model. Indels were filtered out. To evalu-

ate variant calling, we compared SNVs called by Clair from nanopore data to those from

1KGP phase 3 [30] (GRCh37 coordinates). Clair’s variant calls were lifted over to GRCh37

human reference genome coordinates using CrossMap [52] for comparison to 1KGP data.

For our in-house Colo829BL sample, we compared Clair variant calls to Strelka [53]

v 2.9.10 calls made from paired-end Illumina reads (Additional file 1).

Model training to improve SNV calling

We calculated average qualities and mutation frequencies for each position of each 5-

mer window containing an SNV. Mutation frequencies were calculated as the number

of instances over coverage for each genomic position in the 5-mer window. Base qual-

ities for a given position were calculated as the average of all base qualities mapped to

the position. We used these as inputs to a fully connected artificial neural network clas-

sifier composed of four hidden layers with a relu activation function. The first hidden
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layer is six times larger than the input layer and the size of subsequent hidden layers

decreases through a factor two.

We trained three models to compare the classifier using different coverages. NA12878 20

flow cells (24×), NA12878 all flow cells (44×), and HG003 (80×) were used for training. First,

we called variants for each dataset using Clair and then determined true and false positives

using high-quality variants using the Genome in a Bottle database (GIAB) [27]. Using

NA12878 20 flow cell data, a randomly selected balanced dataset of 25 million 5-mers was

used for training and 4 million unseen randomly selected 5-mers were used as the validation

set. For the NA12878 whole dataset and HG003 sample, the training datasets were 18M and

14.9M, respectively, and validation sets were 2.5M and 2M, respectively (Additional file 2:

Fig. S6). The NA12878 20 flow cell model was used for < 30× coverage data, NA12878 all

flow cells for 30×–45× coverage data, and HG003 model for > 45 coverage data.

Phasing single nucleotide variants detected from nanopore sequencing

In order to phase nanopore reads and CpG methylation, we first called SNVs for both

samples (NA19240 run 1 and Colo829BL) using Clair [22], then used SNVoter to

normalize the quality scores and filter out false positives (Fig. 2e and Table 1). Finally,

we used WhatsHap [23, 31] v0.18 with the default parameters and --ignore-read-

groups on to determine haplotype status for each SNV.

Phasing of nanopore reads and CpG methylations

Phased SNVs and CpG methylation calls were leveraged to phase reads along their

CpG methylation to diploid haplotypes. After filtering out a considerable number of

false-positive SNVs using SNVoter, we still noticed 10–20% false-positive SNV calls in

the datasets (Table 1). These unfiltered false-positive calls, in addition to sequencing er-

rors, can result in reads incorrectly mapping to the SNVs from haplotype 1 when the

read would actually belong to the haplotype 2 and vice versa. We noticed reads pre-

senting SNVs from both haplotypes when mapping them to phased SNVs. In NA19240

run 0, out of ~ 3M reads which mapped to at least one phased SNV, ~ 2M reads had

SNVs from both haplotypes (Additional file 2: Fig. S7a). To further overcome false pos-

itives and the sequencing error problem, we made several filtering steps to account for

remnant false-positive SNVs and haplotype ratio (number of SNVs from HP1/HP2 or

HP2/HP1). As we analyzed NA19240 run 0, we noticed a lower base quality distribu-

tion for false-positive SNVs compared to true positives that could not be filtered out by

SNVoter (Additional file 2: Fig. S7b). Therefore, we assigned a minimum base quality

threshold to successfully map each read at a phased SNV position. To manage reads

containing SNVs from both haplotypes, we defined another threshold, the haplotype ra-

tio, which ensures the reads are assigned to a single haplotype. Based on the quality dis-

tribution of SNVs (Additional file 2: Fig. S7b), the proportion of false positives which is

between 10 and 20% (Table 1) and haplotype ratios (Additional file 2: Fig. S7a), and

also based on empirical phasing at a few known imprinted regions, we used seven as

the minimum base quality and 0.75 as haplotype ratio. We also used two as the mini-

mum number of phased SNVs a read must present to be considered for phasing. In

order to assign a read to a defined haplotype, a read must satisfy the following criteria:
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As the reads are separated to different haplotypes, their associated CpG methylations

from processed methylation call file are also separated to the corresponding haplotypes.

We have integrated all the steps and filters in our python3 command-line tool, Nano-

MethPhase. Users can input methylation call data from Nanopolish, phased variant

calling file, alignment file, and reference genome to NanoMethPhase (Fig. 3c). Nano-

MethPhase will output phased reads in aligned format, phased mock WGBS converted

format for visualization (see the “Visualization” section; Fig. 4c, d), phased methylation

calls, and methylation frequency files. The latter can be used for differential methyla-

tion analysis to detect DMRs between haplotypes.

Differential methylation analysis

After phasing reads and CpG methylation to haplotypes, NanoMethPhase can perform

DMA to detect mono-allelic methylated regions. It uses the DSS R package [36] for

DMA. Users can perform all analyses in a command-line interface and directly perform

DMA using the dma module of NanoMethPhase on the output phased methylation fre-

quency data to detect DMRs.

Visualization

NanoMethPhase can convert phased reads into separate mock-WGBS bam files using

the processed methylation call file from its methyl_call_processor module. Each cytosine

in each CpG in each read is converted to a T, A, or N depending on the CpG being

called as methylated, unmethylated, or uncalled. These pairs of files can be loaded into

a genome browser such as IGV [34] in bisulfite mode for visualization (Fig. 4c, d).
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