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Abstract

In vivo confocal microscopy (IVCM) allows the evaluation of the living human cornea at the 

cellular level. The non-invasive nature of this technique longitudinal, repeated examinations of the 

same tissue over time. Image analysis of two-dimensional time-lapse sequences of presumed 

immune cells with and without visible dendrites at the corneal sub-basal nerve plexus in the eyes 

of healthy individuals was performed. We demonstrated evidence that cells without visible 

dendrites are highly dynamic and move rapidly in the axial directions. A number of dynamic cells 

were observed and measured from three eyes of different individuals. The total average 

displacement and trajectory speeds of three cells without visible dendrites (N = 9) was calculated 

to be 1.12 ±0.21 and 1.35 ± 0.17 μm per minute, respectively. One cell with visible dendrites per 

cornea was also analysed. Tracking dendritic cell dynamics in vivo has the potential to 

significantly advance the understanding of the human immune adaptive and innate systems. The 

ability to observe and quantify migration rates of immune cells in vivo is likely to reveal 

previously unknown insights into corneal and general pathophysiology and may serve as an 

effective indicator of cellular responses to intervention therapies.
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1. Introduction

In the healthy human, the presence of resident dendritic cells (DCs) has been confirmed in 

the corneal epithelium, with a higher number residing in the peripheral area compared to the 

center (Zhivov et al., 2005). Upon corneal infection, an increased number of DCs has been 

reported in central and peripheral cornea concomitant with morphological changes such as 

increased size and elongation of dendrites (Mastropasqua et al., 2006).

Research in mice suggests that the paucity of resident DCs in the central cornea is thought to 

support immune privilege (Niederkorn., 1990), as explained by higher transplant success 

upon transfer of grafts with low numbers of “passenger” DCs, which reduces the likelihood 

of triggering a graft-destroying adaptive immune response (Williams and Coster., 1997). In 

addition to their presumed role as professional antigen presenting cells, evidence from 

mouse studies suggest that corneal DCs dynamically perform immune surveillance of the 

corneal epithelium by retracting and extending their dendrites (Lee et al., 2010; Ward et al., 

2007). Furthermore, in vivo studies in mouse models have demonstrated that DCs increase 

migration speed under inflammatory conditions (Lee et al., 2010; Seyed-Razavi et al., 2019; 

Ward et al., 2007). Despite the relative ease of acquiring static in vivo images of DCs in 

humans, dynamic corneal DC behavior has never been reported in living human eyes.

In humans, in vivo confocal microscopy (IVCM) has been used to describe the 

morphological and cell density changes of epithelial DCs in local and systemic conditions 

(Alzahrani et al., 2016; Mastropasqua et al., 2006; Rosenberg et al., 2002; Su et al., 2006; 

Zhivov et al., 2005), with an increased number of DCs with elongated processes reported in 

both non-Sjogren’s and Sjogren’s syndrome dry eye disease (Machetta et al., 2014). More 

recent studies have also proposed a grading scale where the morphology of corneal DCs has 

been included as an indication of the inflammatory state of the cornea. This scale suggests 

that healthy corneas predominantly display DC bodies without dendrites while in diseased 

inflammatory corneas the cell bodies include long processes (Choi et al., 2017; Marsovszky 

et al., 2013). Thus, while the unstained cells visible by IVCM in healthy humans could, in 

theory, be any phenotype, the morphology, and lack of dendrites, suggest that these cells are 

likely immature dendritic cells (Cruzat et al., 2011; Hamrah et al., 2002).

Recent animal work using corneal explants suggest that during wound healing of bovine 

corneas, bone marrow-derived cells from the stroma move at a displacement speed (distance 

from start to end point) of around 0.18 μm/min and an average trajectory speed (migratory 

path) of 0.83 μm/min. These same parameters increased dramatically when cells were 

isolated from their niche in a planar culture dish (4.28 and 7.45 μm/min, respectively) (Zhao 

et al., 2003). The difference in these findings suggests that these dynamic cells behave 

differently depending on their environmental conditions. This study also provided evidence 

that cells with dendrites moved within and between focal planes (Zhao et al., 2003), 

indicating that these cells travel in X, Y, Z directions throughout the corneal stroma, in the 

absence of the epithelium, during wound healing. In contrast, another study suggests that 

isolated dendritic shaped cells from the cultured human stroma move in a centripetal manner 
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in serum-containing media as observed with time-lapse differential interference contrast 

imaging (Lin et al., 2010).

There is little evidence of corneal dendritic and other immune cell behavior in vivo, as the 

methodology to study in situ “time-lapse” cell dynamics in animal and cadaveric human 

eyes are mostly ex vivo, and have only recently been developed (Seyed-Razavi et al., 2013; 

Steven et al., 2011; Zhou and Petroll, 2010; Lee et al., 2010). Most investigations with 

IVCM have visualized a variety of cell types and neural structures in the human living 

cornea at a single time point (Patel and McGhee, 2007; Tavakoli et al., 2008; Villani et al., 

2014). However, the opportunity to non-invasively perform repeated imaging over time 

allows observation of in-vivo immune cell dynamics in human corneas. There are other 

established methods for visualising cellular dynamics in human organs such as lymph nodes 

and skin. However, these techniques requires biopsy samples and are relatively invasive and 

non-repeatable.

This novel observational report illustrates for the first time dynamic immune cell kinetics 

using “time-lapse” imaging of 12 cells in the corneas of three healthy individuals. Cell 

displacement and trajectory speeds, as well as directional persistence ratio and cell area in at 

least three cells without visible dendrites and one without visible dendrites of each cornea 

over a short time-period was calculated.

2. Material and methods

2.1. Study design and participants

The study was approved by the Queensland University of Technology, Human Research 

Ethics Committee and was conducted in accor-dance with the tenets of the Declaration of 

Helsinki.

This was an exploratory, observational investigation. The three volunteers were females 

between 21 and 41 years of age and at the time of enrollment had no history of contact lens 

wear, current pregnancy, ocular trauma or surgery, ocular surface dysfunction, current or 

long-term use of topical ocular medication, or ocular or systemic disease that may affect the 

ocular surface.

After written informed consent was obtained from the participants, the ocular surface 

integrity was examined using the slit-lamp bio-microscope, yellow observation filter; 

fluorescein-impregnated strip and Efron grading scale (Efron, 1998) for corneal staining. 

Grading scores under 2 scale-points were required before IVCM.

2.2. In vivo corneal confocal microscopy

The Heidelberg Retina Tomograph 3 (HRT3) with Rostock Cornea Module (Heidelberg 

Engineering, Germany) was used. The microscope operates by scanning a laser beam spot of 

less than 1 μm in diameter sequentially over each point of the examined area. This 

instrument has a field of view of 400 μm × 400 μm using a fixed 63X objective lens that has 

a numerical aperture of 0.9. It uses a 670 nm red wavelength Helium–Neon diode laser as 

the illumination source. This is a class 1 laser system and therefore does not pose any ocular 
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safety hazard; however, the manufacturer recommends a maximum period of exposure of 45 

min in a single examination period.

2.3. Examination procedure

To prevent blinking and patient discomfort during image acquisition, local anesthetic 

(benoxinate hydrochloride 0.4%, Chauvin, France) was applied to the cornea. The contact 

duration time between the ocular surface and the front lens of the microscope, the 

Tomocap™, did not exceed 5 min per session and a single drop of anesthetic was required on 

four separate occasions during the entire 50-min examination, by approximately 12 min 

apart or when the participant reported corneal sensitivity at the time of contact. A minimum 

of 33 images of the same location from the central cornea were captured at the same depths 

in X and Y direction using the sequence mode of the Heidelberg Program. A large drop of 

GenTeal Gel (carbomer 940, Ciba Vision Ophthalmics) was applied onto the tip of the lens, 

then the Tomocap™ was placed over the objective lens.

The head of the participant was placed in the head and chin rest, and the participant was 

instructed to look straight ahead and gaze at the target located on the wall. The target was 

aligned to the central corneal red reflex of laser projected in the center of the pupil (Fig. 1).

2.4. Imaging strategy

As obtaining the same field of view repeatedly over time using IVCM is challenging, an 

imaging strategy was developed by identifying the centre of the cornea based on the 

alignment of nerve fibers (vertical orientation) and the geographical position relative to the 

sub-basal nerve plexus whorl. The whorl of the sub-basal nerve plexus in the inferocentral 

cornea is a reliable, stationary landmark during imaging due to its unique location. 

Therefore, the fixation target of the IVCM was manually aligned for each participant with 

the central corneal reflex while capturing images immediately after identifying nerve fibres 

in vertical direction located upper the sub-basal nerve plexus whorl (Fig. 1A).

2.5. Image analysis

Tracking cell movement was made possible by using neighboring nerve junctions as 

stationary landmarks relative to the center of the cell body. A custom-written software 

program, previously used to measure corneal nerve migration rate, was used (Edwards et al., 

2016). Corneal nerve fibres have a minimal migration rate of approximately 0.004 μm/min 

(Al Rashah et al., 2018) and therefore nerve landmarks were relatively static landmarks 

against which the movement of a given migrating cell was measured. As part of the image 

analysis a nerve junction in each selected image was used as a control in order to explore the 

accuracy and variability of the measurement technique.

Images with repeatable and re-identifiable corneal nerve landmarks were chosen for 

analysis. The image selected for each session needed to include the in-focus area of interest, 

at approximately the same depth in order to measure cell displacement, trajectory and 

persistence. About 3% of images were successfully included in the time-lapse analysis and 

at least three cells without visible dendrites and one with visible dendrites per session were 

able to be tracked within the overlapped images selected for each session in the right eye of 
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three different subjects. To create short time-lapse videos, images sequences were registered 

using the ‘Register Virtual Stack’ Plugin in FIJI/ImageJ.

The cell area was measured using the area selection tools of the ImageJ software (Schneider 

et al., 2012). The trajectory speed was calculated as the total length traveled by the cells 

divided by time; displacement speed was calculated as the straight-line distance between the 

start and end positions of a cell divided by time and migration efficiency (persistence) was 

calculated as the ratio of displacement speed and trajectory speed, which indicates how 

persistent a cell moves in one direction at a given time (Beltman et al., 2009).

3. Results

3.1. Participant characteristics

Corneas of three female participants of 25, 35 and 41 years of were examined using the 

Efron scales (Efron, 1998). Corneal was graded as 0.5 ± 0.3 points and ocular surface 

integrity was markable prior to in vivo imaging.

3.2. In vivo confocal microscopy

A total area of approximately 650 × 650 μm of the central cornea was successfully re-

imaged over the single 50-min observation. The images selected for analysis were 

overlapped by at least 25% of the fixed 400 × 400 μm frames obtained using this technique. 

The cell density in central cornea was typical for healthy patients, (12 ± 3 cells/mm2). In 

each of the five sessions per visit, a mean of 63 ± 32 images were captured from the central 

cornea at the level of the sub-basal nerve plexus, between 45 and 55 μm depth from the 

corneal surface (Alzahrani et al., 2017; Colorado et al., 2019) (Fig. 1).

3.3. Image analysis

During each session, a region of interest of approximately 280 × 280 μm coverage was 

identified in five selected images in order to track a single cell. This area was selected from 

the total scanned area (650 × 650 μm), as shown in Fig. 2 A–E. Each frame contained a re-

identified moving cell without visible dendrites (approximately 10 min apart over a 50-min 

period, including time zero) as well as re-identifiable static landmarks (main corneal nerve 

fiber junctions).

3.4. Time-lapse imaging of corneal DCs

Over the 50 min time-lapse period, a total of 12 individual cells were observed (Table 1). 

Nine cells without visible dendrites, three cells with visible dendrites and three stationary 

nerve junctions were identified, in the three separate eyes, and followed at each time-point. 

A total number of four cells per individual were included in the image analysis. During the 

observations, the cells without visible dendrites appeared to dynamically change location 

and size relative to the neighboring nerve landmarks, whereas cells with visible dendrites 

presented no movement as compared to control nerve junctions.

The average cell area of cells without visible dendrites and with visible dendrites was 42 ± 9 

μm2 and 80 ± 6 μm2, respectively. Persistence (ratio) of the cells moving in one direction 

Colorado et al. Page 5

Exp Eye Res. Author manuscript; available in PMC 2021 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the start to the end position was observed in all cells without visible dendrites, 

indicating linear trajectory in the migratory path (0.84 ± 0.17) (Fig. 3). Cell movement was 

observed in the space between visible nerve fibres as well as crossing main nerve fibers and 

branches.

3.5. Cell displacement, trajectory and directional persistence speed

The three nerve junctions used in the analysis presented minimal variation over the five 

sessions in the three different corneas in displacement speed (0.05 ± 0.02 μm/min), 

trajectory path (0.14 ± 0.05 μm/min) and directional persistence (0.40 ± 0.02). Similar to the 

stationary nerve junctions, cells with visible dendrites were limited in movement with 

displacement speed (0.04 ± 0.01 μm/min), trajectory path (0.14 ± 0.02 μm/min) and 

directional persistence (0.29 ± 0.11). In contrast, the displacement trajectory and directional 

persistence speeds of corneal cells without visible dendrites (N = 9) was rapid and highly 

dynamic compared to cells with visible dendrites (N = 3). Displacement speed was 1.12 ± 

0.21 μm/min. The trajectory (migratory path) speed was similar to displacement speed 

indicating a fairly linear path (1.35 ±0.17 μm/min). The cells showed a migration efficiency 

with a directional persistence ratio (displacement/trajectory) of 0.84 ± 0.17.

4. Discussion

This observational, quantitative study demonstrates for the first time corneal immune cell 

dynamics in healthy individuals. We showed that cells without visible dendrites moved 

rapidly at the sub-basal nerve plexus level and that cell movement is likely in three 

dimensions in the healthy corneal epithelial niche.

In animal studies (Zhao et al., 2003; Zhou and Petroll, 2010), corneal DCs have been 

describe as tridimensional structures with extending and retracting protrusions that move 

actively during wound healing as observed using three-dimensional time-lapse imaging in 

unstained cells (Zhou and Petroll, 2010). In humans, IVCM has been used for the 

quantification of corneal DCs with (Mastropasqua et al., 2006; Zhivov et al., 2005) and 

without cell dendrites (Marsovszky et al., 2013) in healthy and diseased cornea. The 

increased number of these cells in the central cornea has been used as clinical indicators of 

inflammatory conditions of the ocular surface (Lin et al., 2010). Interventional studies have 

also demonstrated changes in DC numbers in central cornea. However, the time frames used 

to measure this cell density is lapsed by hours (Alzahrani et al., 2016) weeks (Alzahrani et 

al., 2017) and years (Fagerholm et al., 2014). Given the results of this study, it would be 

reasonable to conclude that cells without visible dendrites are able to migrate to the central 

cornea at a significant high speed during both homeostasis and inflammatory conditions, and 

therefore cell density within the cornea could increase within minutes rather than hours or 

days apart.

IVCM has been used to study corneal nerve migration rate in healthy and diabetic conditions 

(Edwards et al., 2012), but has never been used before to create time-lapse image sequences 

of cellular movement in the living human cornea. The novel measure of immune cell 

dynamic has the potential to improve understanding of the inflammatory changes associated 

with ocular insult. However, its greatest potential may lie in its ability to quantify non-

Colorado et al. Page 6

Exp Eye Res. Author manuscript; available in PMC 2021 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



invasively changes during inflammatory conditions such as systemic rheumatological 

diseases (Marsovszky et al., 2013; Villani et al., 2013), dry eye disease (Labbe et al., 2007; 

Lin et al., 2010), allergic responses (Hu et al., 2008; Villani et al., 2014), and drug induced 

toxicity (Liang et al., 2008). Another strength is the potential to study basic immunology and 

cellular responses to drug delivery and noxious stimuli.

There are technical challenges utilizing IVCM in human eyes. For example, the human eye 

makes small involuntary movements during ocular fixation and while the individual is 

breathing, therefore, obtaining good quality images and re-capturing those images at the 

same topographical location is difficult. Considering the 400 × 400 μm image area (160,000 

μm2) compared to the total size of the cornea (approximately 137 mm2), the ability to 

identify and collect consecutive images from identical areas is technically challenging. 

Another challenge with the technique depends on the capability of participants to fixate on 

same point for a period of time while the other eye is being scanned (loss of fixation can 

occur due to visual accommodative issues). Another caveat of using this technique in 

humans is that laser exposure should not be over 45 min as safety measure suggested by 

manufacturer. This explains why we only followed the cells over 50 min with breaks of 

approximately 5–10 min between the observations of approximately 4 min long.

Despite these limitations, the identification of corneal nerve landmarks (nerve fiber 

junctions), at the sub-basal nerve plexus, as well as using an adequate instrument set up, 

well-positioned targets at each examination and clinical expertise in the acquisition of 

images can make the re-identification of a given location possible. The feasibility of 

successful re-imaging of the same corneal area has been demonstrated in this study in each 

of the five sessions lapsed by approximately 5–10 min in three individuals.

The cell somas of cells lacking visible dendrites, appeared to change in curvilinear shapes, 

moving across the focal plane in a X and Y direction. Fig. 2D shows how the tracked cells 

changed dramatically in size and shape, possibly due to Z displacement to either more 

superficial layers in the corneal epithelium or more posteriorly towards the underlying 

stroma. The Z migration is assumed by the change in cell area due to the cell leaving the 

plane of focus (Fig. 4).

Corneal DCs have been described as tridimensional structures with fast movement attributed 

to retractive protrusions (Metruccio et al., 2017; Ward et al., 2007; Zhao et al., 2003). As 

such, when using IVCM to image tridimensional structures, it is most likely that the changes 

in cell shape and size are a result of the two-dimensional focal plane and coronal view of the 

instrument capturing a different part of the cell as it migrates away from the plane of focus. 

Capturing Z movements by acquiring volume scans could potentially increase the accuracy 

of cell migration analysis, however the constant small movements by participants during 

image acquisition and the longer duration of collecting volume scans would reduce the 

capacity to collect the large number of sequence scans needed to track the same cells across 

time.

Bone marrow DCs from the stroma of bovine corneas move at a displacement speed 

(distance from start to end point) of around 0.18 μm/min and an average trajectory speed 
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(migratory path) of 0.83 μm/min (Zhao et al., 2003). In the present observational study, we 

found that human cells without visible dendrites, imaged in vivo, have a displacement speed 

of 1.12 μm/min, nearly five times faster than bone marrow-derived cells in ex vivo bovine 

corneas. These discrepancies in rates of movement could be explained by the capturing of 

these cellular dynamics in a living human compared to using cadaveric, ex vivo bovine 

corneas. Furthermore, another report of immune cell dynamics in limbal neovascularization 

induced by suture placement in mice, suggest that immune cell migration into stromal 

lymphatic vessels is around 9 μm/min (Steven et al., 2011). This indicates that immune cell 

migration in mice is faster in lymphatic vessels during injury compared to the healthy, 

avascular cornea in humans.

IVCM offers the advantage of live cell imaging of corneal structures and cellular processes 

in real time, and across time in patients. However, there are a number of limitations of in 

vivo imaging that can be difficult to avoid, especially when making inferences about 

immune cell subsets such as identifying their ontogeny, function or phenotype, all of which 

are now possible using extensive ex vivo analytical techniques such as single cell sequencing 

(Guilliams et al., 2016). One study has attempted to correlate IVCM images with ex vivo 

immunohistochemistry, to demonstrate the immunological phenotype of cells to confirm 

their identity as “dendritic cells” (Mayer et al., 2012). They provided evidence that the 

hyperreflective cells visible in vivo expressed the APC markers Langerin and HLA-DR 

(Mayer et al., 2012). However, it was not clear if the cells visible by IVCM were the same 

cells imaged ex vivo. It is clear that the precise identification of resident immune cells in 

human corneal epithelium, which are visible by IVCM, is an area in need of further 

investigation. Live cell imaging provides morphological identification and tissue location, 

and therefore most studies refer to these cells as dendritic cells with and without processes.

This novel study demonstrates that the displacement, trajectory and directional persistence 

speed of immune cells without visible dendrites was similar in three human corneas. Animal 

studies suggest that corneal DCs move faster in inflamed corneas (Seyed-Razavi et al., 

2013). Using the methodology developed in this report, future studies could be done in eyes 

of patients with a range of local and systemic conditions that are known to cause DC 

activation in the central cornea (Jun et al., 2008;Schӧllhorn et al., 2015; Shetty et al., 2016). 

Future studies using this novel approach should include a bigger scanned region in order to 

increase the number of cells tracked and also explore the potential differences between 

central and peripheral corneal cell behavior.

5. Conclusions

Despite the challenges of image acquisition in live individuals, the present study provides 

novel evidence of the feasibility to re-identify the same area and location over time by using 

corneal nerve landmarks in the sub-basal nerve plexus. Using this approach, this study 

demonstrated the migration and morphological alterations of cells without visible dendrites 

imaged over a 50-min period. This finding and technical approach could have implications 

for basic ophthalmic and immunology/cell biology research in human eyes and also serve as 

a gateway to investigate basic cellular immunology in a minimally invasive manner.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
In vivo confocal microscopy viewing mode on the monitor during the acquisition of images. 

A) subbasal nerve plexus of the central cornea (400 × 400 μm2). Dotted and solid arrows 

represent immune cells with and without visible dendrites, respectively. Chevron arrows 

indicate the location of nerve fibres immediately superior to the whorl of the sub-basal nerve 

plexus. B) Camera live image during image acquisition with guidance for alignment of the 

laser beam on the centre of the anterior corneal surface. Dotted line indicates the laser beam. 

The solid arrow shows the reflex of the laser beam on the central cornea.
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Fig. 2. 
Cell movements in the sub-basal nerve plexus. Time sequence of optical section coronal 

view and trajectories of migratory cells. Migratory cells (cells without visible dendrites, 

chevron arrows) and static cells (defined cells with visible dendrites, doted arrows). (a–e) 
41-year-old. Sequence of migratory cells (a) to (b) are moving crossing a main nerve fibre, 

therefore (a) appear to be part of the nerve. b,c,d,e shows a cell trajectory between nerve 

bundles. In image (d) cell changes dramatically in shape possibly due to Z movement. Area 

280 × 280 μm. (f–j) 35-year-old and (k–o) 25-year-old. The area was reduced to 200 × 200 

μm.
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Fig. 3. 
Cell trajectory paths. (a, b, c) cell trajectory showing a crossed way directional persistence 

for 41, 35 and 25-year-old participants, respectively.
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Fig. 4. 
The cell areas of mature and immature dendritic cells was relatively stable over the imaging 

sessions.
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Table 1

Dendritic cells size, displacement speed, trajectory path and persistence.

Participant and cell without 
visible dendrites

Cell size (μm2) Displacement speed 
(μm/min)

Trajectory Path 
(μm/min)

Persistence (ratio) Track Length 
(μm)

Px 1 (41yo)

cell 1 44 ± 12 0.8 1.4 0.5 53

cell 2 33 ± 10 1.3 1.5 0.9 55

cell 3 39 ± 10 1.0 1.1 1.0 51

Average 38 ± 10 1.0 1.3 0.8 53

with visible dendrites

cell 4

80 ± 5 0.0 0.1 0.1 n.a

Px 2 (35 yo)

cell 1 45 ± 4 1.0 1.4 0.7 48

cell 2 44 ± 10 1.2 1.4 0.9 50

cell 3 47 ± 4 1.4 1.4 1.0 49

Average 45 ± 2 1.1 1.4 0.8 49

with visible dendrites

cell 4

80 ± 6 0.0 0.2 0.2 n.a

Px 3 (25 yo)

cell 1 49 ± 8 1.0 1.3 0.8 52

cell 2 39 ± 12 1.1 1.4 0.8 51

cell 3 48 ± 6 1.0 1.2 0.8 52

Average 45 ± 5 1.0 1.3 0.8 52

with visible dendrites

cell 4

82 ± 7 0.0 0.1 0.1 n.a
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