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ABSTRACT
Background. Retinoic Acid Induced Protein 14 (Rai14) is an evolutionarily conserved
gene that is highly expressed in the testis. Previous experiments have reported that
small interfering RNA (siRNA)-mediated gene knockdown (KD) of Rai14 in rat testis
disrupted spermatid polarity and transport. Of note, a gene knockout (KO) model is
considered the ‘‘gold standard’’ for in vivo assessment of crucial gene functions. Herein,
we used CRISPR/Cas9-based gene editing to investigate the in vivo role of Rai14 in
mouse testis.
Methods. Sperm concentration and motility were assayed using a computer-assisted
sperm analysis (CASA) system. Histological and immunofluorescence (IF) staining and
transmission electron microscopy (TEM) were used to visualize the effects of Rai14 KO
in the testes and epididymides. Terminal deoxynucleotidyl transferase-dUTP nick-end
labeling (TUNEL) was used to determine apoptotic cells. Gene transcript levels were
calculated by real-time quantitative PCR.
Results. Rai14 KO in mice depicted normal fertility and complete spermatogenesis,
which is in sharp contrast with the results reported previously in a Rai14 KD rat model.
Sperm parameters and cellular apoptosis did not appear to differ between wild-type
(WT) and KO group. Mechanistically, in contrast to the well-known role of Rai14 in
modulating the dynamics of F-actin at the ectoplasmic specialization (ES) junction
in the testis, morphological changes of ES junction exhibited no differences between
Rai14 KO andWT testes. Moreover, the F-actin surrounded at the ES junction was also
comparable between the two groups.
Conclusion. In summary, our study demonstrates that Rai14 is dispensable for mouse
spermatogenesis and fertility. Although the results of this study were negative, the
phenotypic information obtained herein provide an enhanced understanding of the
role of Rai14 in the testis, and researchers may refer to these results to avoid conducting
redundant experiments.
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INTRODUCTION
Spermatogenesis is a complex process of germ cell proliferation and differentiation, and
is associated with the extensive restructuring of cell junctions at the Sertoli-Sertoli cell
and Sertoli-germ cell interfaces (Upadhyay et al., 2012). Of the various junctions in the
seminiferous epithelium, the ectoplasmic specialization (ES) junction is a testis-specific
adherens junction. It is an atypical actin-based junction at the blood–testis barrier (BTB)
between adjacent Sertoli cells and is referred to as the basal ES, and between Sertoli cell and
spermatid near the luminal surface of the seminiferous epithelium and is termed as the
apical ES (Cheng & Mruk, 2010). The ES junction consists of hexagonal bundles of actin
filaments sandwiched between cisternae of the endoplasmic reticulum and the plasma
membranes (Lee & Cheng, 2004). During spermatogenesis, the ES primarily facilitates
germ cell transport, polarity, and spermiation (Qian et al., 2014).

The Retinoic Acid Induced Protein 14 (RAI14) gene is a developmentally regulated gene
that is induced by retinoic acid. RAI14 was originally identified in human retinal pigment
epithelial cells (Kutty et al., 2001). In human tissues, RAI14 is predominantly expressed
in the placenta and testes (Kutty et al., 2006a). The RAI14 protein comprises six ankyrin
repeats and a long coiled-coil domain near the N-terminal region and the C-terminus,
respectively. These domains are involved in protein-protein interactions (Kutty et al.,
2006b). Qian et al. demonstrated that RAI14 is expressed at both the Sertoli and germ cells
in rat testes (Qian et al., 2013b). They also demonstrated specific distribution of RAI14 at
both the basal ES and the apical ES in rat testes. They found that RAI1 regulated F-actin
organization at the ES. In another study, Qian et al. found that small interfering RNA
(siRNA)-mediated Rai14 KD in Sertoli cells disturbed the permeability of the cell junction
as well as disrupted F-actin in vitro. Moreover, siRNA-mediated Rai14 KD in rat testis in
vivo disrupted spermatid polarity and adhesion as well as spermatid movement, which
were caused by the disruption of the apical ES (Qian, Mruk & Cheng, 2013a).

RAI14 has also been found to be predominantly expressed in mouse testis (Kutty et al.,
2006b). However, little is known about its function during mouse spermatogenesis. In the
present study, we aimed to uncover the physiological role of RAI14 in mouse testis through
CRISPR/Cas9-based gene editing.

MATERIALS AND METHODS
Mice
CD-1 mice were obtained and maintained in a temperature and humidity-controlled
room at the Experimental Animal Center of Nanjing Medical University with food and
water provided ad libitum. Mice were randomly divided into cages. All individualized
ventilated cages were capable of hosting 4–5 mice. Cages density, bedding, and sanitation
frequency was similar in all cages. At the end of the study, mice were anesthetized with
carbon dioxide. This study was carried out in strict accordance with the guidelines of the
Institutional Animal Care and Use Committee of Nanjing Medical University (China).
Animal use was approved by the Animal Ethical and Welfare Committee (AEWC) of
Nanjing Medical University (Permit Number: IACUC-2004020). For the generation of
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Rai14 KO mice, Cas9 plasmid (Addgene, Watertown, MA, USA) was linearized and
transcribed into mRNA in vitro using a T7 Transcription Kit (Ambion, Austin, TX, USA).
The sgRNAs were designed based on exon 3 of Rai14. The target sgRNA sequence was
5′-CCGTCTGCTGCAGGCTGTGGAGA -3′ and 5′-GAGAAGGTGGCCTCACTGCTGGG
-3′, respectively. Cas9 mRNA and sgRNA were microinjected into CD-1 mouse
zygotes and transferred into the oviducts of pseudopregnant CD-1 females. The Rai14
genotype was verified by PCR amplification (Vazyme, Nanjing, China) using the
following primers: (forward 5′- GGAGTTTGCTGATGGCTGGTATT-3′ and reverse 5′-
CTCCATCGCCAACACTGTAAGAA-3′).

Western blot
Western blot analysis was performed according to our previously reported method with
minor modifications (Shen et al., 2019; Zheng et al., 2018). Briefly, testis lysates were
separated through electrophoresis and electro-transferred to polyvinylidene difluoride
(PVDF) membranes (Bio-Rad, Hercules, USA). The PVDF membranes were blocked with
5% nonfat milk for 2 h at room temperature (RT) and incubated overnight at 4 ◦C with the
primary antibodies: anti-RAI14 rabbit antibody (17507-1-AP; Proteintech, Chicago, IL,
USA) at a dilution of 1:2,000 and anti-Tubulinmouse antibody (AT819; Beytime, Nantong,
China) at a dilution of 1:20,000. Blots were then washed and incubated at RT for 2 h with
horseradish peroxidase- conjugated secondary antibodies at a dilution of 1:2,000 (Thermo
Scientific, Waltham, USA). The signals were visualized using enhanced chemiluminescent
(Thermo Scientific, Waltham, USA).

Immunofluorescence
Testes were dissected and fixed in modified Davidson’s fluid (MDF) for at least 48 h
before being embedded in paraffin. The sections were deparaffinized in xylene, hydrated
in graded ethanol and boiled in sodium citrate buffer for antigen retrieval as previously
described (Shen et al., 2018; Zhao et al., 2019). Sections were then blocked with 1% bovine
serum albumin at RT for 2 h and incubated overnight at 4 ◦C with the primary antibodies:
anti-RAI14 rabbit antibody (17507-1-AP; Proteintech, Chicago, IL, USA) at a dilution of
1:200, anti-Lin28 rabbit antibody (ab46020; Abcam, Cambridge, MA, USA) at a dilution of
1:500, anti-γH2AXmouse antibody (ab26350; Abcam, Cambridge, MA, USA) at a dilution
of 1:1000, anti-Vimentin mouse antibody (sc-6260; Santa Cruz Biotechnology, Santa Cruz,
CA, USA) at a dilution of 1:200, anti- HSD-3β (sc-515120; Santa Cruz Biotechnology,
Santa Cruz, CA, USA) at a dilution of 1:500, anti-β-catenin mouse antibody (610153;
BD Sciences, Franklin Lakes, NJ, USA) at a dilution of 1:200, anti-Espin (611656; BD
Sciences, Franklin Lakes, NJ, USA) at a dilution of 1:300 and anti-Palladin rabbit antibody
(10853-1-AP; Proteintech, Chicago, IL, USA) at a dilution of 1:400. Slides were rinsed
before incubation with Alexa-Fluor secondary antibodies (Thermo Scientific, Waltham,
USA) for 1 h at 37 ◦C. Finally, the slides were stained with Hoechst (Invitrogen, Carlsbad,
CA, USA) and images were captured using a confocal microscope (Zeiss LSM800, Carl
Zeiss, Oberkochen, Germany).
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Fertility test
Adultmales ofRai14wild-type (WT, +/+) and knockout (KO, -/-) were housed individually
with two WT CD-1 females for 16 weeks. The numbers of vaginal plugs and pups were
counted, and the dates of birth were recorded in detail for each litter.

Computer-assisted sperm analysis (CASA)
Sperm were collected from the cauda epididymis and suspended in human tubal fluid and
maintained at 37 ◦C. Sperm samples were then diluted, placed on an 80-µm chamber slide,
and analyzed using Oval Head Toxicology software and the Hamilton Thorne’s Ceros II
analyzer (Beverly, MA, USA). The parameters analyzed included sperm concentration and
motility.

Histological analysis
The testes and epididymides were obtained from Rai14 WT and KO mice, fixed in MDF
for at least 48 h, dehydrated in graded ethanol, embedded in paraffin, and finally sectioned
into 5-µm thickness. After deparaffinization, the epididymis and testis slides were stained
with hematoxylin and eosin (HE) and periodic acid Schiff (PAS) reagent, respectively. For
electron microscopy analysis, testis and sperm were fixed in 4% and 2% glutaraldehyde,
respectively. The samples were embedded in araldite and sectioned into 80-nm thickness.
Images were examined under a transmission electron microscope (JEM-1010, JEOL).

Terminal deoxynucleotidyl transferase-dUTP nick-end labeling
(TUNEL)
Apoptotic cells were identified using a TUNELBrightRedApoptosis DetectionKit (Vazyme,
Nanjing, China), as described in our previous study (Gao et al., 2020). In short, sections
were deparaffinized, rehydrated, and incubated with proteinase K for 20 min at RT. The
slides were then treated with equilibration buffer for 1 h before labeling with BrightRed
Labeling Buffer for 1 h at 37 ◦C. The sections were then washed twice with phosphate-
buffered saline (PBS), and stained with Hoechst for 5 min at RT to prepare mounting.

RNA extraction and Real-time quantitative PCR
Total RNA was extracted from the testicular tissues using TRIzol reagent (Vazyme,
Nanjing, China), according to the manufacturer’s instructions. RNA was reverse-
transcribed into cDNA using a PrimeScript Reverse Transcription Mix (Vazyme,
Nanjing, China). Thereafter, cDNA was then analyzed by SYBR Green-based real-
time quantitative PCR in an Applied Biosystems 7500 real-time PCR system (Applied
Biosystems, Foster City, CA, USA) with 18S rRNA as an internal control. The primers
used are as follows: β-catenin, forward 5′-GGCGGCCGCGAGGTA -3′ and reverse 5′-
GTGGCTGACAGCAGCTTTTC -3′; Espin, forward 5′- CTTTGGAGCTGGGCAGTTGA
-3′ and reverse 5′- TTGAAAGATTTGGTGCTGGGT -3′; Palladin, forward 5′-
GCTGGATGTCTACATTTCCCGA -3′ and reverse 5′-CCAGCCAGCCTAAGAAACCA
-3′; 18sRNA, forward 5′- AAACGGCTACCACATCCAAG -3′ and reverse 5′-
CCTCCAATGGATCCTCGTTA -3′.
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Statistical analysis
Data were presented as the means ± SD from at least three replicates for each experiment.
The differences betweenRai14WTandKOmice were calculated using unpaired Student’st -
test with statistical significance set at ap value of <0.05. The differences among the WT,
KO and heterozygous were calculated using one-way ANOVA significance set at ap value
of <0.05. Microsoft Excel or GraphPad Prism 6.0 software were used for the statistical
analyses.

RESULTS
Generation of Rai14 KO mice
To investigate the physiological function of Rai14, we generated Rai14 global KO mice
using CRISPR/Cas9 technology. Two gRNAs were designed to target gene sites in exon
3 of the Rai14 gene, resulting in a 56-bp deletion of exon 3 (Fig. 1A). PCR amplification
was performed to rapidly identify the genotypes from Rai14 WT (+/+), KO (-/-), and
heterozygous (+/-) mice (Fig. 1B). Furthermore, western blot and immunofluorescence
analyses were carried out to evaluate the absence of RAI14 at the protein level (Figs. 1C
and 1D). As shown in Fig. 1C, western blot analysis could not detect RAI14 or truncated
RAI14 in Rai14- KO testis. Additionally, immunofluorescence staining showed specific
distribution of RAI14 in the cytoplasm of elongating spermatids inRai14WT testis, whereas
no such obvious signal was observed in spermatids of Rai14 KO testis (Fig. 1D). In one
previous in vivo study in rats, RAI14 was found to be distributed at the ES junction in rat
testis; however, in our study, RAI14 was not found at the ES junction in the testis of Rai14
WT mice (Fig. 1D).

Normal fertility and sperm parameter in Rai14-KO mice
Rai14 KO mice were viable and exhibited normal development. A 4-month-long fertility
test revealed that Rai14 KO adult males had normal fertility (Fig. 2A). The testicular weight
of Rai14 KO andWTmice were comparable (Figs. 2B and 2C). Moreover, Rai14 KOmales
exhibited normal sperm concentration, motility, and morphology, compared with WT
males (Figs. 2D–2H).

Complete spermatogenesis in Rai14 KO testis
Histological analysis of Rai14WT and KO mice revealed that the morphology of the testis
and epididymis of Rai14 KO and WT male mice was indistinguishable from each other
(Figs. 3A and 3B). Similar conclusions were drawn on the basis of the normal expression
and counts of the spermatogonial stem cell maker Lin28 (Rode et al., 2018) (Figs. 3C and
3D); the spermatocyte marker γH2AX (Wang et al., 2016) (Figs. 3E and 3F); Sertoli cell
marker Vimentin (Alsemeh, Samak & El-Fatah, 2020) (Figs. 3G and 3H); and the Leydig
cell marker HSD-3β (Cen et al., 2020) (Figs. 3I and 3J). Moreover, based on the results
of the TUNEL analysis in our study, the number of apoptotic cells showed no significant
difference between the two groups (Figs. 3K and 3L). Altogether, our results strongly
demonstrate that Rai14 is not essential for spermatogenesis or fertility in male mice.
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Figure 1 Generation of Rai14−/− mice. (A) Schematic diagram of CRISPR/Cas9-mediated Rai14 edit-
ing; (B) PCR amplification of genomic DNA in Rai14+/+,−/− and+/− mice; (C) Western blot analysis of
RAI14 in Rai14+/+ and −/− testes; (D) Co-immunostaining of RAI14 and PNA in Rai14+/+ and−/− testes.
The epithelial cycle is divided into 12 stages recognized by PNA-labeled acrosomes. RAI14 is specifically
located in spermatids at steps 11–14. Rai14−/− tubules are used as the negative control. Scale bar: 20 µm.

Full-size DOI: 10.7717/peerj.10847/fig-1

ES junction is not disturbed in Rai14 -KO testis
As RAI14 showed highest localization at the ES junction in adult rat testis, and siRNA-
mediated Rai14 KD led to the mis-localization of ES-associated proteins (Qian, Mruk
& Cheng, 2013a), we sought to assess the localization of basal ES (β-catenin and Espin)
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Figure 2 Rai14−/− mice are fertile. (A) Fertility test of Rai14+/+,−/− and +/− males. For Rai14+/+, n= 6;
for Rai14+/−, n= 7, for Rai14−/−, n= 7 , P > 0.05; (B) Testes of Rai14+/+ and −/− mice; (C) Testis/body
weight, n = 3, P > 0.05; (D) Sperm concentration in Rai14+/+ and−/− mice, n = 5, P > 0.05; (E) Sperm
motility in Rai14 +/+ and −/− mice, n = 6, P > 0.05; (F) Sperm abnormality in Rai14+/+ and −/− mice,
n = 4, P > 0.05; (G) HE staining of cauda epididymal sperm from Rai14 +/+ and −/− mice. Scale bar: 50
µm; (H) Ultrastructural analysis of cauda epididymal sperm from Rai14+/+ and −/− mice. Note the nor-
mal head and axoneme with typical ‘‘9 + 2’’ microtubule structure (nine pairs of peripheral and two cen-
tral microtubules, arrows) in Rai14+/+ and −/− mice. Nu, nucleus; Ac, acrosome.

Full-size DOI: 10.7717/peerj.10847/fig-2
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Figure 3 Normal spermatogenesis in Rai14−/− mice. (A) Periodic Acid Schiff (PAS) staining of tes-
ticular sections from Rai14+/+ and −/− mice. The epithelial cycle is divided into 12 stages recognized by
PAS, according to changes of the acrosome and nuclear morphology of spermatids. Scale bar: 20 µm; (B)
HE staining of the cauda epididymis obtained from Rai14+/+ and −/− mice. Scale bar: 100 µm; (C) Im-
munostaining of Lin28 from Rai14+/+ and −/− testes; (D) Quantification of (C), n = 5, P > 0.05. Thirty
tubules were counted per sample. Scale bar: 20 µm; (E) Immunostaining of γ H2AX from Rai14+/+ and
−/− testes; (F) Quantification of (E), for Rai14+/+, n = 5; for Rai14−/−, n = 4; P > 0.05. Thirty tubules
were counted per sample. Scale bar: 20 µm; (G) Immunostaining of Vimentin from Rai14+/+ and −/−

testes; (H) Quantification of (G), n = 5, P > 0.05. Thirty tubules were counted per sample. Scale bar:
20 µm; (I) Immunostaining of HSD-3 β from Rai14+/+ and −/− testes; (J) Quantification of (I), n = 3,
P > 0.05. Three slides were counted per sample. Scale bar: 50 µm; (K) TUNEL assay of Rai14+/+ and −/−

testes; (L) Quantification of (K), n = 4, P > 0.05. Thirty tubules were counted per sample. Scale bar: 20
µm.

Full-size DOI: 10.7717/peerj.10847/fig-3
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Figure 4 Expression and distribution of ES-associated genes/proteins. Real-time quantitative PCR
analysis of β-catenin (A), Espin (B) and Palladin (C) from Rai14+/+ and −/− testes. n = 3, P > 0.05; Im-
munostaining of basal ES protein β-catenin (D, E) and Espin (F, G) from Rai14 +/+ and −/− testes. Scale
bar: 20 µm; Immunostaining of apical ES protein Espin (F, G) and Palladin (H, I) from Rai14+/+ and −/−

testes. Scale bar: 20 µm.
Full-size DOI: 10.7717/peerj.10847/fig-4

and apical ES (Espin and Palladin) proteins (Mruk & Cheng, 2004; Qian et al., 2013b)
in both Rai14 WT and KO testes. Both real-time quantitative PCR (Figs. 4A–4C) and
immunofluorescence (Figs. 4D–4I) analyses revealed no measurable alterations in the
transcript or protein levels of ES-associated genes between the two groups.

Wu et al. (2021), PeerJ, DOI 10.7717/peerj.10847 9/16

https://peerj.com
https://doi.org/10.7717/peerj.10847/fig-4
http://dx.doi.org/10.7717/peerj.10847


Rai14 is not required for F-actin organization in mouse testis
As an actin-binding protein, RAI14 participates in F-actin organization at the ES junction in
rat testis (Qian, Mruk & Cheng, 2013a). Here, we used phalloidin-labeled F-actin staining
to observe actin filaments surrounding the heads of elongating spermatids. In both Rai14
WT and KO testes, the actin filament bundles were intact and organized so that they
tightly surrounded the spermatid heads (Fig. 5A). Furthermore, transmission electron
microscopy (TEM) of the apical ES was performed in both the groups to better visualize
the actin bundle organization. Ultrastructurally, the apical ES junctions in both groups
consisted of actin filaments bundles sandwiched between the cisternae of the endoplasmic
reticulum and the apposed Sertoli-spermatid plasma membranes (Fig. 5B). These data
indicate that Rai14 is not essential for the assembly of actin filaments at the apical ES in
mouse testis.

DISCUSSION
Previousmicroarray analyses have identified over 2,300 genes that are enriched inmale germ
cells (Schultz, Hamra & Garbers, 2003). Thereafter, many studies have been performed to
characterize testis-enriched genes/proteins based on transcriptomics and proteomics
(Bonilla & Xu, 2008; Clement et al., 2007; Djureinovic et al., 2014; Pineau et al., 2019; Uhlen
et al., 2015). In addition to housekeeping genes, testis-enriched genes have, for a long
time, been thought to play a crucial role in spermatogenesis. However, using gene-KO
approaches, Miyata et al. have revealed 54 testis-enriched genes that are dispensable for
male fertility in mice (Miyata et al., 2016). Since then, several studies have established
a number of KO mice models without obvious fertility phenotypes (Feng et al., 2018;
Holcomb et al., 2020; Lu et al., 2019; Park et al., 2020; Wang, Chen & Liu, 2018a; Wang et
al., 2018b; Zhang et al., 2019). Similarly, we used CRISPR/Cas9-based gene editing in our
study and identified Rai14, which was enriched in the testis and was dispensable for
spermatogenesis and fertility in mice. Considering these findings, we believed that the
phenotypic information obtained in our study can inform other researchers and prevent
them from conducting redundant experiments. Moreover, these results can serve as a basic
resource for genetics studies on human fertility.

RAI14 has been previously considered as an actin cytoskeleton-associated protein
purified from rat liver tissue (Peng et al., 2000). Several studies have revealed that RAI14 is
expressed in various tissues and cells, but is highly expressed in both human and mouse
testes (Kutty et al., 2001; Kutty et al., 2006b; Yuan et al., 2005). In rat testis, RAI14 was
found to be exclusively located at the ES junction, most abundantly at the apical ES.
SiRNA-based Rai14 KD in rat testis led to defects in elongating spermatid polarity and
transport, and finally caused spermiation failure. Mechanistically, RAI14 physiologically
interacts with actin and another actin cross-linking protein, Palladin. As suggested in
previous studies, the altered phenotype caused by the loss of RAI14 may be associated with
the mis-localization of F-actin and Palladin at the apical ES (Qian, Mruk & Cheng, 2013a;
Qian et al., 2013b). However, in this study, RAI14 distribution occurred specifically in the
cytoplasm of elongating spermatids, but not at the ES. Meanwhile, RAI14 fluorescence
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Figure 5 Rai14 is not required for F-actin organization. (A) Phalloidin-labeled F-actin staining of
Rai14+/+ and −/− spermatids at steps 13–14. Scale bar: 20 µm; (B) TEM analysis of the apical ES from
Rai14+/+ and −/− spermatids at steps 13–14. ES synchronously stretches along with the acrosome, and
is characterized by the presence of actin filament bundles (arrows). Nu, nucleus; Ac, acrosome; ER,
endoplasmic reticulum.

Full-size DOI: 10.7717/peerj.10847/fig-5

signals were undetectable in Rai14 KO testis, further supporting the specificity of the
antibody against RAI14. Furthermore, Rai14 KO mice displayed normal spermatogenesis
and fertility. Histological analysis revealed no difference in the ES structure, actin filament
bundle organization, as well as ES associated protein distribution between the two groups.

Wu et al. (2021), PeerJ, DOI 10.7717/peerj.10847 11/16

https://peerj.com
https://doi.org/10.7717/peerj.10847/fig-5
http://dx.doi.org/10.7717/peerj.10847


Thus, the question of the reasons for the phenotypic differences in KD versus KO arises. In
our opinion, at least two possibilities contribute to them. First, the different distributions of
RAI14 in rat and mouse testis suggest that RAI14 plays different roles in various species. In
addition, these phenotypic differences could also be explained by functional compensation
from paralogs in KO model or off-target effects in KD.

CONCLUSIONS
In summary, we achieved Rai14 global KO mice by using Cas9/sgRNA-mediated gene
editing. Our results provide proof-of-principle evidence to show that Rai14 is neither
required for the ES junction nor spermatogenesis in mice.
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