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Abstract

Machine learning (ML), a branch of artificial intelligence (AI), where machines learn from big 

data, is at the crest of a technological wave of change sweeping society. Cardiovascular medicine 

is at the forefront of many ML applications, and there is a significant effort to bring them into 

mainstream clinical practice. In the field of cardiac electrophysiology, ML applications have also 

seen a rapid growth and popularity, particularly the use of ML in the automatic interpretation of 

ECGs, which has been extensively covered in the literature. Much lesser known are the other 

aspects of ML application in cardiac electrophysiology and arrhythmias, such as those in basic 

science research on arrhythmia mechanisms, both experimental and computational; in the 

development of better techniques for mapping of cardiac electrical function; and in translational 

research related to arrhythmia management. In the current review, we examine comprehensively 

such ML applications as they match the scope of this journal. The current review is organized in 

three parts. The first provides an overview of general ML principles and methodologies that will 

afford readers of the necessary information on the subject, serving as the foundation for inviting 

further ML applications in arrhythmia research. The basic information we provide can serve as a 

guide how one might design and conduct a ML study. The second part is a review of arrhythmia 

and electrophysiology studies in which ML has been utilized, highlighting the broad potential of 

ML approaches. For each subject, we outline comprehensively the general topics, while reviewing 

some of the research advances utilizing ML under the subject. Finally, we discuss the main 

challenges and the perspectives for ML-driven cardiac electrophysiology and arrhythmia research.
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1. Introduction

Artificial Intelligence (AI) has become ubiquitous in this day and age. We encounter it on a 

daily basis – the recognition of faces and objects in our photos, the delivery of verbal 

commands to Alexa or Siri or to our phones, having our words completed as we type, getting 

those often-annoying suggestions of what to purchase online. The advancement in the speed 

of computing, and the development of new algorithms and techniques that mimic the human 

brain function have led to the widespread implementation of AI-based applications in many 

fields of science and technology.

AI, and particularly machine learning (ML), a subset of AI, is also becoming a rapidly 

growing part of medicine, promising a paradigm shift in the way health care providers treat 

their patients. Modern medicine has seen unprecedented increase in the availability of 

biological and clinical data that represent information at various levels of biological 

complexity, such as multiomics, molecular pathways, biomedical imaging data, electronic 

health records, and data from implantable electronic devices and wearable sensors. ML is 

envisioned to support medical decision-making and to improve diagnostic and prognostic 

performance by identifying actionable insights into disease pathophysiology from this data 

of extraordinary scale, complexity, and rate of acquisition. This requires a close 

collaboration between computer scientists, engineers, biologists, clinical investigators, and 

healthcare professionals, so that strengths of ML are properly utilized, and the limitations 

overcome. The expectation is that as a result, healthcare would become more personalized, 

more democratic, more efficient, and more effective in ensuring society’s well-being.

Cardiovascular medicine is at the forefront of many ML applications, with a few becoming 

part of mainstream clinical practice. Several comprehensive reviews1–3 have been written on 

the subject, focusing on its main applications, potential impacts and challenges, and attesting 

to the fact that the number of research articles on the subject has grown at an exponential 

rate over the last decade. In the field of cardiac electrophysiology, ML applications have also 

seen a rapid growth and popularity, particularly the use of AI in the interpretation of pulse 

irregularities and ECGs, the latter being a major diagnostic tool. For instance, the Apple 

Heart Study4 tested the ability of a smartwatch application to identify atrial fibrillation (AF); 

the ML algorithm was able to identify AF with a positive predictive value of 0.84. 

Accordingly, a few reviews have been recently published on the application of AI in clinical 

cardiac electrophysiology5,6, discussing the expectations for the implementation of these 

technologies in clinical decision-making and the future of AI in cardiac patient care and 

precision cardiology.

Several aspects of ML application in cardiac electrophysiology have not been covered in 

these recent reviews: these include ML utility in basic science research on arrhythmia 

mechanisms, both experimental and computational; in the development of better techniques 

for mapping cardiac electrical function; and in translational research related to arrhythmia 
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management. In the current review, we examine comprehensively such ML applications, as 

they best match the scope of this journal, while touching only very briefly on ECG 

interpretation. The review is organized in three parts. The first provides an overview of 

general ML principles and methodologies that will afford readers of this journal the 

necessary information on the subject, hopefully serving as the foundation for inviting further 

ML applications in arrhythmia research. The second part is a review of arrhythmia and 

electrophysiology studies in which ML has been utilized, highlighting the broad potential of 

ML approaches; in each of these sections we outline comprehensively the general sub-topics 

and the corresponding references, while reviewing some of the research advances utilizing 

ML under the specific subject. Finally, we touch upon the main challenges and the 

perspectives for ML-driven cardiac electrophysiology and arrhythmia research.

2. General Principles of ML

The concept of ML arose as a paradigm shift in the way humans approached AI. Traditional 

AI required certain input rules (the program) and data to be executed by the program to 

generate answers. ML turned this concept on its head by eliminating the need for 

programmers to craft rules, and instead using data and extracting answers from the data to 

construct the rules. The boom of ML, in great part due to the availability of powerful 

hardware and large datasets, that began in the 1990s7, has solidified ML’s place as one of 

the most popular subfields of AI. Although closely related to several other fields – such as 

mathematical statistics, probability, information theory, decision theory – ML tackles 

problems often involving extremely large and complex data (e.g., millions of images 

consisting of several thousand pixels), for which traditional statistical techniques may be 

impractical. Consequently, with the mathematical and theoretical underpinnings of the field 

still in a nascent state, ML has become a more engineering-oriented approach7.

An ML system needs to be explicitly trained to design rules. Once the system is trained, it 

proceeds to the testing phase in which its ability to generalize – predict answers for never-

before-seen data – is evaluated (see Fig.1). This ability to categorize or predict based on data 

not used in the training phase is the central tenet in ML. To facilitate the training phase and 

increase the ML system’s (i.e., the model’s) ability to generalize, pre-processing steps are 

oftentimes needed8. For example, in a task of predicting whether given images represent cats 

or dogs, such pre-processing steps may aim to eliminate the variability among data by 

cropping all the images to the same size or rescaling the pixel intensities to a fixed range. 

Applying the same pre-processing methods, called feature extraction, developed on the 

training set, to the test set improves the ML model generalizability, facilitating classification 

of new images. Traditionally, the main approach to feature extraction has been feature 
engineering, in which the researcher uses their experience to condense information from the 

raw data into values to be used in ML. For example, instead of using raw ECG data as a 

covariate in a disease prediction ML problem, the researcher may only use the QRS 

duration. More recently, feature learning has taken the role of feature engineering, shifting 

the task of uncovering features to the ML model itself by systematically exploring the 

available training data.
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2.1 ML classification by learning type

ML tasks are typically dichotomized based on whether expected answers (also known as 

“targets” or “labels”) are available for the training input data. For example, in a risk 

prediction task, the inputs would be patient characteristics and the targets would be the 

clinical outcome of whether the patient had/did not have an arrhythmia. If the case where 

targets are available for the input data and the goal is to predict targets for the unseen data, 

the learning task is called supervised. For example, most classification tasks would fall 

under this category, where the ML system’s goal is to learn features of the class (e.g., green 

eyes in pictures of cats and dogs are indicative of the class “cat”) and apply them when new 

data is presented. On the other hand, if target data is not available, the task is called 

unsupervised learning. The aim of such tasks is to find useful representations of the data via 

various transformations such that data can be better visualized by humans, thereby revealing 

simpler or reduced structures. Although beyond the scope of this review, there are also 

hybrid approaches. One such approach is semi-supervised learning, in which labeled training 

data are only partially available, but the presence of non-labeled data can better guide the 

supervised task. Finally, reinforcement learning9 is a type of ML in which programs go 

through a process of trial and error to pick actions that maximize rewards. Unlike supervised 

learning, there is no need to provide labels for this ML learning type, as the system uses its 

environment and the reward function to guide itself. A particularly noteworthy application of 

this method is DeepMind’s Alpha Go10 algorithm, which gained such a deep understanding 

of the game Go that it would set up counter-intuitive (for humans) strategies in the short 

term, only to capitalize on them tens of moves later.

2.2 ML classification by task type

Attempting a comprehensive taxonomy of ML algorithms is beyond the scope of this review 

and is bound to do disservice to many algorithms which have been adapted for multiple 

tasks. Instead, we discuss four of the most important types of tasks that ML tackles (see 

Fig.2): classification, regression, clustering, and dimensionality reduction. In the next 

section, we will give examples of ML algorithms in each category and highlight some of 

their advantages. Classification tasks typically fall under the supervised learning category 

and deal with the assigning each input data point to one of a finite number of discrete 

categories (e.g., “given a raw ECG signal, is it indicative of AF?”). Regression tasks are also 

supervised and expand on the classification problem by predicting one or more continuous 

variables (e.g., “Given a stack of cine MRIs, what is the predicted left ventricular ejection 
fraction?”). The forecasting role that regressions play in ML should be contrasted with that 

of regressions in applied statistics, which is to establish causal relationships between 

dependent and independent variables.

In certain ML problems, input training data is available without associated labels. The goal 

here may be identify sub-groups of the data which display some degree of similarity, i.e., 
clustering. For example, used on a diverse set of patients, clustering may help identify 

certain sub-cohorts that help clinicians better understand the population. Additionally, one 

may be interested in reducing the dimension of the data for various purposes, including 

visualization in 2 or 3 dimensions, or as part of a feature extraction task.

Trayanova et al. Page 4

Circ Res. Author manuscript; available in PMC 2022 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3 Most common ML algorithms

We now highlight several widely used ML algorithms, briefly describe them, and provide 

some of their advantages and disadvantages (for additional algorithms, refer to Table 1).

Regressions.—Despite pre-dating the field of ML by almost two centuries11,12, the 

general idea is the same – assume the data can be fitted by a given (usually, linear) function, 

but may deviate due to noise, and find the function’s parameters which minimize the sum of 

squared distances to the observed data (Fig.3A). However, different regression variants have 

brought significant enhancements: ridge regression13 partially addresses multicollinearity in 

the data by shifting the diagonal elements of the data matrix; LASSO regression14 adds a 

penalty proportional to the absolute value of the regression weights, helping with 

generalization and variable selection; elastic net regression15 expands on LASSO with an 

additional penalty on the sum of squares of the weights for better generalization. One of the 

main benefits of regressions is their straightforward interpretability, however they lose 

practicality in the case of large, high dimensional datasets.

Support Vector Machines (SVM).—This algorithm originally developed by Vladimir 

Vapnik and his colleagues at AT&T Bell Lab16 for binary classification in a supervised 

setting, has since been expanded to regressions and unsupervised problems. The core idea is 

to locate a decision boundary based on a subset of data points (support vectors) that 

maximizes the margin, i.e., the perpendicular distance between the decision boundary and 

the closest of the data points (Fig.3B). Although effective in high dimensional spaces, this 

method can lead to severe overfitting (inability to generalize)8.

k-Nearest Neighbors (k-NN).—Introduced by Cover and Hart17, k-NN is a non-

parametric model for classification and regression problems, in which the idea is to use a 

vote (for example, majority) of the k closest neighbors to inform a new point’s predicted 

value/label (Fig.3C). This is one of the few algorithms for which there is a known bound on 

the probability of misclassification.

k-Means Clustering (kMeans).—The goal of this unsupervised clustering algorithm is 

to split the available data into k clusters18. This is done iteratively by re-assigning each point 

to different clusters until some distance (typically, Euclidean) is minimized between all 

points and the respective cluster’s centroid (Fig.3D).

Principal Component Analysis (PCA).—One of the most ubiquitous unsupervised 

dimensionality reduction techniques, PCA dates back to the early 1900s19, but has been re-

discovered under many names throughout the last century: proper orthogonal decomposition 

in mechanical engineering, singular value decomposition or eigenvalue decomposition in 

linear algebra, Karhunen-Loève transform in signal processing, etc. Consequently, there 

have been many improvements and generalization to the method, but they all share the same 

idea: given a high-dimensional set of input variables, in which some or all variables are 

related to one another (multicollinear), decrease the number of input variables while 

retaining the information contained in them. This is accomplished by changing coordinates 

for the data to an orthogonal basis (perpendicular axes) that maximizes the variance of the 
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data along these new principal component directions (Fig.3F). Each principal component is 

an eigenvector of the data matrix; these are ordered according to the amount of explained 

variance. While there are initially the same number of principal components as input 

variables, the latter can be truncated by taking the first few principal components which 

explain most of the variance in the data, thereby reducing the dimensionality of the input.

Decision Trees and Random Forests (RF).—Decision trees are a supervised approach 

to classification and regression problems in which input data is sequentially classified 

through a flowchart-like structure, where the features to be learned are questions about the 

data (e.g., “Is patient age less than 40?”). RFs20 use many decision trees to construct an 

ensembled output, offering a more robust learning algorithm (Fig.3E). Gradient boosting 
machine are like RFs as they combine weak classifiers, typically decision trees. They are 

one of the most successful algorithms today7.

Artificial Neural Networks (ANNs or NNs).—Originally proposed as a model for 

biological neural networks21, ANNs consist of artificial neurons (or nodes) organized in 

layers, sharing weighted, directed connections amongst themselves, each being responsible 

for combining inputs via a propagation function and generating outputs to be passed further 

in the network (Fig.3G). Historically, two major breakthroughs renewed interest in NNs: 

(re)discovery of the backpropagation algorithm in the 1980s that made training them 

practical; and in 2011, Dan Ciresan’s implementation of a many-layer (deep) neural network 

(DNN) on graphics processing units (GPUs)7. Specialized layers and architectures, such as 

convolutional NNs (CNNs) for image data, recurrent NNs (RNNs) for time-series data, 

generative adversarial networks (GANs) for unlabeled data, have propelled NNs to the top of 

ML algorithms7, excelling at supervised and unsupervised tasks in classification, regression 

and dimensionality reduction problems.

2.4 Training and validation

For most of the algorithms discussed, the process of training, particularly in the case of 

supervised learning, is based on defining a loss function which will be minimized, typically 

through an iterative process (e.g., the loss for a simple linear regression is the mean squared 

error). Some algorithms may have additional degrees of freedom (e.g., number of layers in 

an ANN), which are chosen by the researcher. These model design parameters – as opposed 

to parameters resulting from the loss minimization algorithm – are called hyperparameters. 

Prior to performing any training or optimization, a test set should be identified and 

sequestered from the training data. Depending on the problem and amount of available data, 

this could be a percentage (10–30%) of the training data or an entirely separate “external 

validation” cohort from a different source.

In practical applications, the goal is to use available training data and select a model 

(algorithm and hyperparameters) that will have the best predictive performance on new 

data8. The performance may be assessed using the loss function or other intuitive metrics 

chosen by the researcher – e.g., true/false positive/negatives and other measures derived 

from them. If the training data is plentiful, one easy solution is to carve out a percentage of 

the training data and use it as a validation set. This will serve as an estimate for the model’s 
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performance on the test set and is often used to optimize hyperparameters of the algorithm 

by choosing the hyperparameters which maximize performance on the validation set. 

Unfortunately, there are no rigid rules on what constitutes “enough” data, as this can depend 

on the difficulty of the learning task, the algorithm used, the desired statistical confidence, 

etc. In real applications, however, there is usually a scarcity of training and testing data, and 

more rigorous validation techniques are needed. One staple technique is k-fold cross-
validation. This requires the researcher to split the training data in k (typically, 5 or 10) 

subsets and repeatedly set one subset for validation and train on the remaining k – 1. The 

performance for this split of the data will be the average across the k different folds, and this 

process can be further repeated with other random splits, followed by an average across all 

the runs. One of the downfalls of this approach is that, despite giving more stable 

performance estimates, the number of times the model needs to be trained can be 

computationally expensive.

Another popular validation method is the bootstrap22. The main idea behind this method is 

to sample the training set with replacement, train the model on this bootstrapped set (which 

may contain duplicates), and estimate the “generalization error” as the discrepancy between 

performance on the bootstrapped set compared to the whole set, averaged over many 

repetitions of this process. Although various estimates have been proposed for the bootstrap 

generalization error, one of the main drawbacks remains that the estimates tend to be overly 

optimistic, especially in models that are prone to overfit. It is important to note there are no 

universal validation methods and analysis of these methods remains a very hard problem23.

Table 1 provides detail on the common ML algorithms and their advantages and 

disadgvantages.

2.5 Pitfalls

It is undeniable that there has been tremendous optimism for the dawn of ML techniques in 

the biomedical field in recent years, but periods of unbridled optimism followed by intense 

skepticism are not new. Symbolic AI in the 1960s and expert systems in 1980s offered 

promises of “human-level general intelligence”, but failed to deliver, prompting interest to 

switch away from the field7. It may be beneficial to moderate expectations for the short term 

and avoid the cognitive bias of treating everything like a nail to be tackled with the ML 

hammer. To apply ML techniques correctly, their limitations need to be understood. As 

mentioned above, a major concern for ML systems is whether they are truly learning from 

the training data, or merely memorizing, affecting their ability to generalize to new samples. 

Similarly, there exists the underlying, often untested, assumption that the new test data will 

be sampled from the same distribution from which the training data originated. General 

mathematical theory of advanced ML algorithms is not sufficiently developed, and it can be 

proven that, for example, for any fixed neural network, there exists a distribution of the data 

which makes the performance arbitrarily poor23. Therefore, there exists a constant trade-off 

between controlling bias (broad enough model to fit the data well) and variance (not too 

broad that the model overfits). Concerns using ML systems are further amplified when, for 

example in classification tasks, there is a significant class imbalance – that is, at least one of 

the classes is disproportionately represented. Unfortunately, this is often the case in 
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biomedical applications and much care is needed to account for this during both training and 

evaluating.

The existence of limitations should not, however, obscure the vast progress ML algorithms 

have achieved in the last few years. Tasks such as image classification, speech recognition, 

handwriting transcriptions, and autonomous driving are performed at near-human-level7. In 

complex strategy games, such as Go, their performance is superhuman. As will be discussed 

in this review, although only at the beginning of a long path, ML has also reached or even 

surpassed humans in certain disease-related classification and prediction tasks.

3. Applications of ML in cardiac electrophysiology and arrhythmia 

research

The exposition in this part of the review presents studies utilizing ML from basic research on 

ion channels to applications in organ-level electrophysiology research and even touching 

upon arrhythmia management. For each section, we provided a bulleted list of the research 

sub-areas where ML has been applied, and then review the main applications.

3.1 Use of ML in ion channels and action potential research

• Predict functional changes in sodium current INa from mutations in SCN5A, the 

gene encoding the cardiac sodium channel24

• Identify structure/function relationships in voltage-gated potassium channels25,26

• Classify action potentials from stem-cell derived cardiomyocytes27,28

• Engineer “designer” channelrhodopsin for optogenetics studies29

In biophysical studies of ion channels and cardiac cell electrophysiology aimed at 

uncovering mechanisms for arrhythmias, ML techniques usage is at its nascent stage. ML 

has seen early use as a research tool, enabling better classifications and uncovering 

structure-function relationships. A notable study in this area of research is the paper by 

Clerx et al,24 which addressed prediction of pathogenicity of variants in SCN5A, the gene 

encoding the cardiac sodium channel. Predictors of SCN5A variant pathogenicity have 

typically suffered from poor performance. The study took an intermediate step in improving 

such prediction, by predicting the functional changes to the sodium current INa from known 

non-synonymous missense mutations in the SCN5A gene; the authors suggested that the INa 

functional changes could later then be used in the final (i.e. two-step) assessment of SCN5A 
variant pathogenicity. For each SCN5A variant, a set of features was extracted on which a 

supervised ML algorithm was trained. The substituted residues’ location on the protein 

correlated with channel function and strongly contributed to predictions, while 

conservedness and physico-chemical properties did not. The study demonstrated that using 

this approach, the complexity of SCN5A variant pathogenicity prediction can be reduced, 

leading to improved predictions.

An example of using ML to identify structure/function relationship is the study of Li and 

Gallin25 who trained an ML algorithm on available voltage-gated potassium channels 

amino-acid sequence and electrophysiological data to predict the half-activation voltage of 
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the channel, a central electrophysiological parameter. The optimal model’s predictions were 

validated by comparison to independently obtained experimental results.

Further, to resolve the uncertainty in classifying the phenotype (ventricular-like, atrial-like, 

nodal-like, etc.) of human embryonic stem cell-derived cardiomyocytes (hESC-CMs), an 

unsupervised ML algorithm was employed to cluster (separate) a population of these 

cardiomyocytes into distinct groups based on the similarity of their action potential shapes, 

the latter obtained from optical recordings.27 The study found that while there were clusters 

in the dataset with just one phenotype, majority of cell clusters exhibited multiple 

phenotypes. The results suggest that hESC-CMs action potentials varied as a continuum 

from one phenotype to another. These initial results led to a subsequent study28 which 

conducted a systematic analysis of heterogeneity and phenotypes of populations of hESC-

CMs, analyzing 23,000 action potentials. Such analysis could be used in evaluating 

strategies to improve the quality of human pluripotent stem cell-derived cardiomyocytes 

(hPSC-CMs) for use in diagnostic and therapeutic applications and in drug screening.

An interesting ML application29 in this research field but in a different direction is the use of 

ML to guide engineering of light-gated channelrhodopsins (ChRs), which have been 

extensively used in recent years for optical modulation of cardiac electrical function.30,31 

While a large diversity of ChRs exists, with variants from nature or engineered through 

recombination and mutagenesis, it is still not possible to predict functional properties of 

uncharacterized ChR sequences. In the study, an ML algorithm used training data to learn 

how sequence and structural elements map to ChR function. Once known, that mapping can 

be used to predict the behavior of untested ChR variants. The trained models were used to 

engineer 30 ‘designer’ ChR variants with specific combinations of properties, several which 

have unprecedented photocurrent strength and light sensitivity.

3.2 Use of ML in investigating the effects of drugs on cardiac electrical function:

• Predict (mostly) hERG channel blockade32–37 and QT prolongation38–40 liability 

of compounds

• Evaluate the torsadogenic (causing TdP arrhythmias) potential of drug 

candidates41–43 and drug-induced ventricular repolarization dispersion44

• Analyze drug effects on stem cell-derived cardiomyocytes45–48

In drug development, the assessment of the proarrhythmic potential of a compound, and 

specifically, the risk of torsades de pointes (TdP) arrhythmia occurrence, is an integral part 

of establishing the drug’s safety profile. QT prolongation is considered the most common 

risk factor leading to TdP. At the early stages of the drug research and development process, 

the compound’s blocking potency of the human ether-à-go-go-related gene (hERG) channel 

is regarded as a surrogate marker of proarrhythmic risk. AI has been used in all these aspects 

of evaluating a compound’s cardiotoxicity.

There is a large body of research in using ML to predict hERG-related cardiotoxicity; here 

we point to only a few of the studies. Using training data from a number of international 

consortia, an ML platform has been developed33 for rapid prediction of compounds’ 
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maximal inhibitory concentration (IC50) values; the capability of the platform was assessed 

by comparison to IC50 data from automated patch clamp for a large dataset of hERG 

blocking and non-blocking drugs, demonstrating superior capabilities. Lee et al32 generated 

a large experimental dataset of hERG assay results and trained an ANN to predict hERG-

related cardiotoxicity, achieving area under the curve (AUC) of 0.764 and accuracy of 

90.1%. As structurally diverse molecules bind or inhibit the hERG channel, various 

molecular features and ML methods have been used to construct prediction models. Studies 

have attempted to find the pharmacophore pattern of hERG blocking compounds using 

various conventional ML approaches.49–51 Cai et al. proposed the first DL-based hERG 

blocker prediction model,52 followed by a DL model with a self-attention approach35 that 

provides increased interpretability. In their sweeping “from the atom to the rhythm” 

computational pipeline to predict hERG blocker proarrhythmic risk from the drug chemistry, 

Yang et al37 applied ML (RFs) to discern the necessary and sufficient parameters that predict 

arrhythmia vulnerability for two drugs, dofetilide and moxifloxacin.

Assessing the risk of TdP occurrence, Sharifi et al41 build an ANN-based predictive model 

for drug-induced torsadogenic and non-torsadogenic drugs based on 55 compounds, and 

successfully tested the model in 38 external drugs. An interesting two-step approach to TdP 

risk classification was proposed by Parikh et al43, termed the Multi-channel Blockage at 

Early After Depolarization, which allowed the authors to isolate the effects of hERG and 

non-hERG channels in the classification problem. The authors used both direct features 

(values of drug-induced block of ion channels) as well as derived features (extracted from 

output of the drug-induced multi-channel blockage simulations in in-silico models). The 

study also demonstrated that TdP risk for the drugs highly correlates with the likelihood to 

produce early afterdepolarizations in the computational model. Finally, Cruces et al44 used 

ML to determine potential drug-induced ventricular repolarization dispersion markers that 

could define proarrhythmic risk. The studies reviewed in this section highlight that, as the 

compound attrition rate due to cardiotoxicity remains high, there persists an unmet need to 

develop further ML approaches capable of efficient drug safety testing with high 

generalizability and interpretability.

The advent of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) 

created the possibility of an improved in vitro model of the human myocardium for drug 

screening. ML techniques have been used in addressing the need to develop a high-

throughput, sensitive and non-invasive detection platform for iPSC-CMs. Lee et al46 

constructed a platform that utilizes optical flow analysis of brightfield images of iPSC-CMs 

to measure drug effects on cardiomyocyte motion. They paired an optical flow method with 

SVM algorithm to discern between normal and abnormal cardiomyocyte contractile profiles, 

detecting changes in a manner that is more sensitive and thus superior to traditional 

fluorescence methods. Juhola et al47 used data from a drug study in catecholaminergic 

polymorphic ventricular tachycardia-specific iPSC-CMs and trained an ML algorithm for 

fast recognition of peaks of calcium transient signals, achieving a classification accuracy of 

79%. In an earlier study by Lee et al48, ML has also been used to analyze functional 

parameters derived from force readouts of hPSC-CM tissue strips electrically paced at a 

range of frequencies and exposed to a library of compounds, demonstrating that the model 

could automatically predict the mechanistic action of an unknown cardioactive drug. Finally, 
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Aghasafari et al45 used a long short-term memory NN to predict adult ventricular 

cardiomyocyte activity from in vitro iPSC-CM activity, thus allowing estimation of drug 

effects on mature cardiomyocytes without the need of an in vitro drug study. These initial 

results point to future developments where analysis of iPSC-CM drug effects together with 

ML could create efficient platforms for drug screening and cardiotoxicity studies, and 

importantly, platforms for individualizing medication.

3.3 Use of AI in computational research on cardiac electrophysiology and arrhythmia

• Investigate the factors that underlie emergent electrophysiological behaviors and 

reentrant dynamics in cardiac tissue53–56

• Classify phenotypes from in-silico electrophysiological activity in cardiac 

disease3,57

• Create activation maps from sparse data58

• Link AF spatial pattern to re-entrant driver localization59

• Personalize cardiac models60–65

• Localize atrial ectopic beats from simulated body surface P-wave maps66 and 

predict AF ablation outcome67

Computational modeling of the heart has been a widely-used research tool in the study of 

arrhythmia mechanisms, complementary to experimental measurements, and lately has made 

its first forays into clinical decision-making for arrhythmia prediction and treatment 

guidance.68–70 AI approaches have naturally begun to be used on data generated by 

computational modeling, as such data is noise-less. In this subsection we review studies that 

have used only in-silico (synthetic) datasets to train algorithms. Hybrid studies utilizing ML, 

which include both synthetic and experimental or clinical data are reviewed in the respective 

sections below.

An example of the use of ML in computational research on cardiac electrophysiology and 

arrhythmia is the utilization of unsupervised algorithms to identify how variability in in-
silico cell electrophysiology, particularly in the kinetic properties of ion channel recovery, 

modulates the dynamics of arrhythmias.53 ML has also been used to detect reentrant activity 

and its termination in tissue models55 and to locate reentrant drivers from electrograms in a 

model of AF.56 In these studies, ML provides means of identifying emergent phenomena at 

the organ level and highlights how these phenomena can be best interrogated to provide new 

mechanistic understanding and identification of arrhythmia. An interesting use of ML is the 

classification of simulated electrophysiological data, such as classifying clinical phenotypes 

in simulated ECGs for patients with hypertrophic cardiomyopathy53,56. Physics-informed 

ANNs accounting for the underlying wave propagation dynamics have also been used to 

generate full electrical activation maps from sparse synthetic activation data58.

Using patient-specific computational models of the atria to analyze how the atrial fibrosis 

sustains reentrant drivers in AF, Zahid et al59 employed ML to determine the characteristics 

of fibrosis distribution that are most predictive of the locations of reentrant drivers in the 

atrial substrate. The study found that locations in the atria with a combination of high 
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fibrosis density and high fibrosis entropy were the most likely to sustain reentrant drivers. 

Such findings have important consequences for clinical decision-making as they indicate 

how imaging or signal processing of electrical signals can be used to determine the locations 

of the culprits of arrhythmogenic propensity. The studies reviewed in this section 

demonstrate how ML can be an integral part in the quest for understanding the causes of 

human arrhythmias.

Personalization of whole-heart models has been an active avenue of research that utilizes 

ML approaches60–65. Personalization entails the incorporation, within a model of cardiac 

electrical activity, features and characteristics that are extracted from the patient’s clinical 

records, imaging data, or invasive or non-invasive electrophysiological measurements. By 

personalizing models of cardiac electrical function, the expectation is that simulations using 

such models would be able to predict outcome of anti-arrhythmia therapies, or stratify 

patients for risk of adverse cardiac outcomes. For example, Giffard-Roisin et al64 aimed to 

personalize a set of ventricular electrophysiology modeling parameters for prediction of 

individual responses to different pacing protocols, in an attempt to assist in decisions 

regarding the optimal personalized cardiac resynchronization therapy. Synthetic body 

surface potential maps (BSPMs) resulting from ventricular activation were calculated and 

features extracted from them, on which a supervised ML algorithm was trained to predict 

several electrophysiological dysfunction events, among which premature ventricular 

contractions.

As atrial arrhythmias are the most common human arrhythmias, a large body of simulation 

research using personalized atrial models has addressed issues ranging from determining the 

origin of abnormal activations to predicting outcome of AF ablation. The study by Ferrer-

Albero et al66 localized atrial ectopy from simulated BSPMs. ML was used to spatially 

cluster and classify ectopic atrial foci into distinct atrial regions by using maps of the 

integral of the P-wave as a biomarker. The results (Fig.4) demonstrated that ectopic foci with 

similar integral maps cluster into differentiated atrial regions and that new ectopic activity 

patterns could be correctly classified into 2 ectopy clusters with an accuracy of 97% and into 

4 ectopy clusters with 96% accuracy. In another example, a recent computational study used 

ML in predicting the outcome of AF ablation. Roney et al67 conducted simulations of AF in 

personalized left arial (LA) models reconstructed from late gadolinium-enhanced cardiac 

MRI (LGE-MRI) images of 20 paroxysmal AF and 30 persistent AF patients with atrial 

fibrosis. Model ablation approaches based on clinical standards were tested, but success was 

limited. To develop an optimal AF ablation approach for each patient, a RF ML algorithm 

was trained to predict simulated ablation outcome for several input variables that included 

imaging metrics and well as simulated electrophysiological and lesion metrics. The results 

demonstrated that achieving optimal outcomes may require employing different AF ablation 

strategies in different patients.

3.4 Use of ML in assessing cardiac activation from electroanatomical and body-surface-
potential mapping

• Reconstruct epicardial maps from endocardial catheter recordings71,72
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• Estimate activation patterns from cardiac cine73 and 3D echocardiographic74 

images

• Reconstruct surface ECGs from implantable cardioverter-defibrillator (ICD) 

device intracardiac electrograms75

• Reconstruct heart surface potentials from BSPM76–80

In one of the early ML applications, where electroanatomical maps were used to estimate 

cardiac activation, ML reconstructed epicardial maps from endocardial catheter recordings 

in the ventricles71,72 using experimental data from a dog animal model, in an attempt to 

localize the onset of focal ventricular activations. AI has also been used to reconstruct 

ventricular activation maps from images.73,74 The studies by Prakosa et al73 deduced 

activation maps from observation of the resulting motion patterns, as electrical activation 

controls mechanical contraction. To do so, the authors created a patient-specific database of 

synthetic time series of cardiac cine images using simulations with a personalized cardiac 

electromechanical model. The database was then used to train an ML algorithm, which 

estimated the depolarization times of each cardiac segment from global and regional 

kinematic descriptors based on displacements or strains and their derivatives. The trained 

algorithm then estimated the patient’s electrical activation times using the acquired clinical 

images. The approach was first assessed on synthetic sequences and next evaluated on 

clinical data, showing promising results, with the error between prediction and the invasive 

intracardiac mapping “ground truth” found to be around 10ms for ischemic patients and 

20ms for a nonischemic patient. The approach suggests the possibility of noninvasive 

activation pattern estimation using cardiac motion imaging. Similar approach was applied to 

non-invasive activation times estimation using 3D echocardiographic data74. Finally, a 

method was developed to facilitate the remote follow up of patients with ICDs75. A time-

delay ANN, which uses past values of the input, was trained on simultaneously recorded 

intracardiac and surface ECG signals from a patient cohort to be able to synthesize the 12-

lead surface ECG from device intracardiac electrograms. Inverse electrographic imaging, 

which involves calculating potentials or activation maps on the heart surfaces from BSPMs, 

is a promising non-invasive tool to detect abnormal electrical activity on the surfaces of the 

heart. It has also seen its share of ML applications76–80 providing data-driven approaches in 

lieu of inverse problem calculations in determining ventricular surface activations from 

BSPMs.

3.5 Use of ML in ventricular arrhythmia research and ventricular arrhythmias clinical 
decision support

• Predict risk of ventricular arrhythmias (VAs) using texture analysis of LGE-

MRI81,82, analysis of electronic health records83, device-measured physical 

activity,84 and ventricular monophasic action potential recordings85

• Predict acute hypotension and ventricular fibrillation (VF) from ICU-recorded 

signals time series86

• Locate ventricular tachycardia (VT) exit site or the origin of ventricular 

activation87–93
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• Learning from images to predict VT ablation targets94

Predicting risk of sudden cardiac death due to VAs is a major avenue of research. In patients 

at high risk for VA, mortality is prevented by the prophylactic deployment of an ICD device.
95–97 However, ICD deployment comes with a significant risk of adverse events (infections, 

device malfunctions and inappropriate shocks).98,99 As a result, many patients who undergo 

implantation of an ICD will never have appropriate ICD therapies, while others, who would 

benefit from an ICD, do not receive one.99,100 This necessitates a precise VA risk assessment 

in patients with heart disease. There is a strong hope in the electrophysiology community 

that ML would be able to make major contribution to accurate VA risk stratification in 

patients. Attempts have been already made. As structural remodeling (scar, fibrosis) 

characterizes a number of heart diseases that result in VA, texture feature analysis of LGE-

MRI scans has been used to assess VA risk81 in hypertrophic cardiomyopathy (HCM); in a 

small cohort of 64 patients, a number of supervised ML models were tested, achieving 

diagnostic accuracy ranging from 82.8% to 94.1%. Also assessing structural remodeling as a 

predictor of VA, Okada et al82 used model reduction and ML approaches to construct a 

patient-specific complexity scores for the LGE-MRI scans of 122 ischemic cardiomyopathy 

patients (Fig.5). The average complexity score was found to be significantly higher in 

patients with VA events versus those without. VA risk has been assessed from electronic 

health records of HCM patients83, where ML identified 10 new variables, in addition to 12 

known, as VA risk predictors, and from physical activity time series data of patients with 

ICDs84. In another interesting application86, a probabilistic ANN was used to predict, from 

intensive care unit (ICU) signals (ECGs, non-invasive continuous blood pressure and arterial 

oxygen saturation) hypotension with an accuracy of 92.5%, and the occurrence of VF 5 min 

before it occurs with an accuracy of 82.5%. Finally, in a recent study, Rogers et al85 used an 

SVM to predict risk of VT/VF in patients from recordings of ventricular monophasic action 

potentials acquired during an electrophysiological study; the independent test c-statistic was 

0.90.

Catheter-based ablation, which destroys the ability of cardiac tissue to conduct electrical 

signals, offers the possibility of a permanent cure of VAs, and particularly the life-

threatening fast VT, as it disrupts the propagation of abnormal electrical waves sustaining 

VT. However, eliminating VT with ablation has achieved only modest success, at rates of 

around 50–88%,101,102 due to inaccuracies in determining the ablation targets, which are 

either the VT exit sites, or the origins of abnormal ventricular activation. Recent applications 

of ML to locate these targets consist of both conventional ML and DL approaches. 

Yokokawa and co-workers87 were the first to demonstrate the feasibility of using ML in 

localizing the exit site of a scar-related VT from paced 12-lead ECGs during the ablation 

procedure’s pace-mapping. SVM was trained on the digitized pace-map ECGs combined 

with the pacing sites, to learn to predict VT exit site location from the clinical VT ECG, so 

that the location can then be targeted by ablation. However, the algorithm was limited to 

predicting the exit site in only one of 10 segments on the left ventricular (LV) endocardial 

surface. Sapp et al. presented two independent methods based on multiple linear regression 

model to progressively approach the site of origin of early LV activation: the non-invasive 

population-derived regression methodology and the intra-procedural patient-specific linear 

regression approach88. The population-derived regression approach localized the site of 
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origin of early LV activation onto one of 238 triangular area elements of a generic LV 

endocardial surface88 using a training dataset containing ECGs from pacing at 1012 

ventricular sites, achieving a mean localization accuracy of 10mm in a prospective study89. 

The intra-procedural patient-specific linear regression approach89,90 used 120-ms 3 lead 

QRS integrals (leads III, V2, and V6) of pace-mapped activations at known pacing sites to 

predict the site of earliest LV activation from the same 3-lead clinical VT ECG. Extending 

the latter ML approach to localization of idiopathic VA origin on the patient-specific 

geometry of LV, RV and neighboring vessels, Zhou et al89 achieved, in a recent study, a 

mean localization accuracy of 3.6 mm.

DL to localize the origin of ventricular activation remain in its infancy. Yang et al. utilized 

DL to localize the premature ventricular contraction origin onto one of 25 segments of the 

entire ventricles and to distinguish endocardial from epicardial ventricular activation 

origin89. Gyawali et al91 trained DL to localize LV activation origin; however, their 

classification was onto only 10 LV segments that are not used clinically92. Another type of 

ANN, a self-organizing map based on unsupervised competitive learning, was trained on 

BSPM distributions obtained during ventricular pacing to enable localization of the 

endocardial VT origin sites93.

3.6 Use of ML in AF research and AF clinical decision support

• Predict which patients will experience AF from electronic health records 

(EHRs)103,104 and by using a smartphone camera105

• Predict stroke risk from a daily AF burden signature106

• Define AF clinical phenotypes with various treatment patterns and outcomes107

• Classify intracardiac activation patterns during AF to detect regional rotational 

activity108,109

• Predict AF recurrence after catheter ablation from clinical records,110–112 from 

atrial shape changes,113,114 and from the combination of AF simulation results 

and imaging features115

• Identifying patients who may benefit from AF cardioversion response116

Early detection of AF could lead to significant improvements in outcomes through 

administering appropriate anticoagulation. It is no surprise that a significant number of ML 

approaches have been employed in both AF clinical decision support and AF research, and 

here we review both. For identifying patients at risk of AF, an automated prediction 

algorithm applied to patient EHR data would be highly desirable. The recent study by Tiwari 

et al104 represents a major initial step in this direction. The authors developed and tested an 

ML model to predict 6-month incidence of AF using EHR data. The time period chosen 

represented a clinically relevant period of prediction, during which patients could undergo 

screening tests (ECGs, ICDs and/or wearable monitors) before a clinical decision. The study 

used EHR data sampled from over 2.2 million individuals and found that a single-layer 

(shallow) ANN using the 200 most common EHR features provided the optimal 

classification of AF risk (AUC of 0.8). Hill et al103 sought to evaluate novel and 

conventional statistical and ML models for risk-predication of AF in a cohort study of nearly 
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3 million adults without a history of AF, identifying time-varying ANNs as the optimal 

model with an AUC of 0.827; the model’s predictive performance was greater than existing 

AF risk models and reflected both known and new patient risk factors for AF. These two 

studies offer hope that ML can be used directly to guide targeted screening of patients at risk 

of AF. In that vein, an interesting approach for AF screening used an iPhone camera105 to 

detect and analyze photoplethysmographic signals from the face and index finger of 217 in-

hospital patients by extracting subtle beat‐to‐beat variations of skin color that reflect the 

cardiac pulsatile signal. The patterns in the photoplethysmographic waveform were 

classified using a previously trained SVM.

ML classification algorithms have also contributed to better understanding of AF 

heterogeneity.107 AF is typically classified on the basis of disease subtype, however, such 

characterization does not fully capture AF heterogeneity. An ML cluster analysis on 9749 

patients with AF revealed different classifications of patients: (1) a cluster with low 

comorbid burden; (2) a younger/behavioral disorder cluster; (3) a cluster who resembled 

patients with tachycardia-bradycardia and had ICDs; and (4) a cluster defined by 

atherosclerotic comorbidities. The authors underscored that the groupings were not driven 

by conventional classifications and had different risks for adverse clinical outcomes.

AF ablation offers the hope for a permanent cure for AF, however, the success of the therapy 

remains at 40% to 70% despite advances in AF mechanisms knowledge and ablation 

technology.117 A potential source of suboptimal procedure performance is the difficulty in 

interpreting maps of intracardiac activation patterns. An automated method of superior 

interpretation of AF electrograms could guide ablation therapy. Alhusseini et al108 trained 

CNN on regional intracardiac voltage time-series data from basket catheters positioned in 

left then right atrium to detect regions in the atria containing sites of rotational activity, 

which can then be targeted for ablation, as shown in Fig.6A. Achieving accuracy of 95.0%, 

CNNs improved the classification of intracardiac AF maps, while operating with a decision 

logic similar to rules used by experts, even though these rules were not provided in training. 

Additionally, in a recent study, Zolotarev et al118 extended the ML usage to intracardiac 

electrograms for automated AF driver detection, this time using atrial electrogram frequency 

spectra instead of the actual signals. The approach was tested on recordings from explanted 

human atria and validated by comparison to subsurface near-infrared optical mapping 

signals from the same atria, considered the “gold-standard”.

A series of research articles focused on using ML to predict risk of AF recurrence after the 

first catheter ablation procedure110–115. Identifying patients who are unlikely to remain in 

sinus rhythm after the ablation is an important pathway towards improving ablation success 

rates and avoiding ineffective procedures. One approach was to develop an AF relapse risk 

score post pulmonary vein isolation (PVI) from the patients’ laboratory and clinical 

parameters using ML110–112. Another approach was to predict risk of AF recurrence based 

on the pre-procedure shape of the patient’s atria113,114, as alterations in atrial chambers have 

been linked to worse outcomes of AF ablation. The study by Varela et al114 constructed 3D 

geometrical models from pre-procedural MRI of 144 AF patients and build a statistical atrial 

shape model. ML, in this case a discriminant analysis, was used to distinguish between 

patients with and without AF recurrence. The authors proposed a new shape metric, vertical 
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asymmetry, which measures the imbalance of size along the anterior to posterior direction 

between the superior and inferior left atrial hemispheres. Vertical asymmetry was found, in 

combination with sphericity, to be the best predictor of post-ablation recurrence at both 12 

and 24 months, with AUCs of 0.71 and 0.68, respectively. DNNs were also utilized to 

estimate AF recurrence from shape descriptors directly from the MRI images with no image 

pre-processing113, eliminating the need for expensive pre-processing pipelines and 

associated manual labor. Finally, the study by Shade et al115 predicted recurrence of AF 

post-PVI by conducting simulations of AF induction in atrial models reconstructed from 

paroxysmal AF patients with fibrosis on LGE-MRI, and trained an ML classifier on 

simulated AF episodes and on imaging features to predict, pre-procedurally, the outcome of 

the clinical procedure. Fig.6B summarizes the study. This study is important, as if this 

approach is confirmed to predict failure of PVI pre-procedurally, the patient’s ablation plan 

could then be adjusted to include targeting of the patient-specific extra-PVI areas of 

arrhythmogenic driver propensity using the simulation-driven OPTIMA ablation approach70.

3.7 Use of ML in arrhythmia management:

• Reduce false arrhythmia alarms in the ICU119 and in ICD therapy120,121

• Identify which implantable anti-arrhythmia device a patient has122

• Provide kinematic control of robotic flexible ablation catheter123

There are broad applications of ML in patient management. A few studies related to 

arrhythmia management that do not fit in the other sub-section reviewed above are listed 

here. In one of them, Howard et al122 developed an ML system which identifies the 

manufacturer and even the model group of a pacemaker or defibrillator from a chest 

radiograph. The rationale for this study was that medical staff often need to determine the 

model of an implanted device quickly and accurately. Using radiographic images of 1,676 

devices, a CNN classified the images with 99.6% and 96.4% accuracy (manufacturer and 

model, respectively). This system may help speed up the diagnosis and treatment of patients 

with heart rhythm devices.

3.8 Use of ML in ECG interpretation and ECG-based diagnosis:

• Classify heart rhythms124–131 and detect subtle changes in ECG 

morphology132,133

• Detect AF134–137

• Predict VT 1 hour before occurrence138

• Predict cardiac resynchronization therapy outcomes139–142

• Identify (hidden) disease state signatures138,143–148, mortality149,150, and clinical 

deterioration151

• Estimate blood pressure152, and age (“physical age” vs. chronological) and 

sex153

Most of the AI applications in cardiac electrophysiology and arrhythmias are based on the 

analysis of time-series recordings reflecting cardiac electrical activity, with the signal 
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varying depending on the type of sensor. The most used signal is the ECG. ECG signal 

recording modalities include standard 12-lead ECG, single or multi-channel Holter 

recordings, ECG patches, automated external defibrillators, intracardiac leads in pacemakers 

or defibrillators, and implantable loop recorders. Computerized ECG interpretation has been 

introduced to clinical settings to aid physician interpretation, and ML has found a firm 

footing in classifying heart rhythms and detecting rhythm disorders124–131. Various 

supervised ML algorithms (including decision trees, Wavelet transformations, Hidden 

Markov Models, SVM, and ANN) have all been employed in these studies. The early 

applications of ML resulted in high sensitivity and specificity for detecting normal sinus 

rhythm, however, in identifying arrhythmia of various types, such approaches had performed 

worse that the judgement of expert cardiologists, hindered by the presence of noise and poor 

quality of ECG recordings, as well as by previously untrained rhythm disorders. With the 

advent of noise reduction techniques and advanced feature extraction, including the use of 

the unsupervised DNN, arrhythmia detection approaches have achieved much improved 

performance. For example, the study of Lee et al138 was able to predict from the ECG, using 

ANNs, VT one hour before occurrence.

Particularly fascinating are developments in detecting AF134–137, including the 2019 

landmark study of 0.65 million ECGs by Attia et al137 which used CNN for the 

identification of patients with AF during sinus rhythm. The results demonstrated that AF 

may be preceded by structural changes in the heart reflected in subtle ECG changes. The 

success of ML-enabled ECG in identifying patients with undetected AF has important 

practical implications for management of patients with unexplained stroke. The use of ML in 

ECG interpretation and rhythm disorder detection has been widely reviewed in the recent 

literature and we offer here only a brief and incomplete view on this extensive subject; for 

more in-depth reviews we refer the reader to these publications3,5,6,154. Efforts to increase 

the level of interpretability of ML models in ECG interpretation have also been made148 

with notable success.

ML-enabled ECG technology has also been used to predict outcomes of cardiac 

resynchronization therapy139–142; advancements in this field are discussed in depth in some 

of the review publications listed above5,6. The utilization of unsupervised DNN has led to 

the ability to identify, from the 12-lead ECG, signatures (often hidden from the human eye) 

of many diseased states, such as contractile and relaxation dysfunction143,144,155, PVCs156, 

hyperkalemia145, and nocturnal hypoglycemic events147, and to estimate blood pressure152, 

and “physical age” (vs. chronological) and sex153.

4. Challenges and perspectives for ML in electrophysiology and 

arrhythmia

As this review demonstrates, ML is making rapid inroads in electrophysiology and 

arrhythmias, from biophysics research at the level of the ionic channel to research on 

arrhythmias in patient populations. Although there is a palpable exuberance in the research 

community regarding the potential of ML, it is important to understand the limitations of the 

various approaches (as described here in section 2.5) and what are the main issues and 
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challenges in ensuring proper application and advancement in the use of ML in our research 

field. Below we touch on some of these issues.

ML algorithms require significant amounts of data for proper training and validation. Data, 

with its many aspects, presents challenges to ML adoption in both basic-science and clinical 

research. Data availability remains a significant roadblock, as data is typically acquired in a 

particular laboratory or health center and has not been traditionally shared between 

institutions; democratizing access to data and improving the public’s understanding of ML 

to dispel fear surrounding use of personal health data is thus of paramount importance. ML 

algorithms can only learn patterns present in the data on which they are trained, so if data 

sets do not account for a wide variety of population-based characteristics and regional 

anomalies, ML algorithms will be more likely to fail when applied on a global scale, which 

may further contribute to lack of trust in ML. The recent push for data sharing is getting 

traction, particularly for data from clinical trials, but it requires infrastructure developments 

to store and analyze big data. Data sharing is also intertwined with the issues of intellectual 

property and privacy, which remain sizeable barriers to data sharing.

Before training a model, a data analysis step needs to be performed first. The analysis might 

uncover abnormal samples, outliers, or missing values, which will need to be corrected -- 

removing the outliers, filling missing values (using median, mean, or estimated values with a 

sophisticated iterative approach) or simply removing from consideration parameters with 

missing values. Datasets with poor data organization and/or management, and particularly, 

with significant inaccuracies affect the performance of ML algorithms. Low-quality data 

with unbridled noise coupled with insufficient data for training poses one of the critical 

challenges to ML, overfitting -- we touched upon it in section 2.5 -- where the model learns 

the noise in training data as (false) relationships, failing to then generalize on another 

dataset. Finally, if the input data in a study poorly reflects the characteristics of other 

datasets, the model would not generalize well. By using a non-representative training set, the 

trained model is not likely to make accurate classifications and predictions. Researchers 

need to account for that in their study design and adjust expectations accordingly. 

Furthermore, even a previously “accurate” model may no longer be accurate as more data is 

collected in the study dataset. This may be particularly important in cases where the system 

under study changes rapidly and past data no longer fully characterize the processes, 

resulting in a diminished ML accuracy.

Supervised ML algorithms are often presented with a specific challenge: labels must be 

available for the input data. Annotation of data with labels is labor-intensive (and often 

manual). Sometimes data that would best be described with continuous labels might need to 

be dichotomized, resulting in arbitrariness in the labeling, which could also affect ML 

performance and generalization. Semi-supervised techniques, which combine a small 

amount of labeled data and a large amount of unlabeled data to train a model, have 

attempted to solve this problem. However, they rely on underlying assumptions that do not 

hold true for all datasets. Even with clean and well-labeled data, class imbalance in the data 

poses challenges. For instance, when predicting risk of arrhythmia in a population cohort, it 

might be that only 10% of the training data has a positive label for arrhythmia occurrence. In 

some instances, datasets could be resampled to be more balanced by removing negative 
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cases and/or replicating positive cases; additional techniques such as augmenting the loss 

function to more strongly weighting error for the minority class are often employed.

With proper ML application, research in electrophysiology and arrhythmia is poised to gain 

significantly from the integration of multiple datasets representing processes at different 

levels of physiological complexity. For instance, models can be trained to learn important 

characteristics of a particular cardiac disease or condition from disparate data sources, such 

as genetic biomarkers, cellular imaging, and organ-level optical or electroanatomical 

mapping data. This will allow to obtain important insights into and interpretations of 

relationships across the spatial and temporal scales and facilitate optimization of therapy 

targets. Similarly, various diagnostic data for patients with heart rhythm disorders (e.g. blood 

tests, MRI, ECG, echocardiography) can be used in an ML model to support clinical 

decision making and optimize patient treatment.

DL is particularly well-suited for analyzing complex raw data as it does not require manual 

feature engineering. However, DL algorithms have minimal transparency (i.e. they are 

“black boxes”) and lack interpretability as it is difficult to identify which aspects of the input 

influence a DL model’s decision the most. They are also susceptible to adversarial attacks, 

or inputs designed to trick a classifier into assigning an incorrect label, which are virtually 

indistinguishable from a true sample. Such attacks are not easily detected due to the 

uninterpretable nature of most DL models, but adversarial training strategies have evolved to 

strengthen DL models against them. Further, in recent years, there has been a growing body 

of research into increasing the explainability of DL by translating the millions of parameters 

in a neural network into a human-interpretable reason for each decision, such as highlighting 

a particularly influential region of a medical image or displaying ECG parameters that were 

most influential in classification. These strategies have potential to overcome many of the 

research/medical community’s reservations about DL by opening the “black box” and 

providing much-needed insight into these models.

In this review article, we highlighted the major achievements of ML in electrophysiology 

and arrhythmias, attesting to the fact that AI is becoming a major research approach in our 

field. Despite the described above potential pitfalls, there is ample evidence, with many 

examples reviewed in this article, that the best way to characterize a process or a system on 

the basis of data is through the application of ML techniques. ML provides unparalleled set 

of tools in augmenting and extending the effectiveness of cardiac electrophysiology 

research. Overall, it is poised to enable rapid acceleration in all aspects of biomedical 

research, from testing hypotheses to translating proof-of-concept studies into real-world 

technologies. AI is also rapidly promoting a significant paradigm shift in diverse areas of 

medicine, including clinical cardiac electrophysiology, with its enormous potential to 

support clinical decision-making and improve diagnostic and prognostic performance. In 

envisioning the future of both arrhythmia basic research and clinical practice, a close 

collaboration between basic science biomedical researchers, bioengineers, computer 

scientists, and clinical investigators will emerge, in the hope that utilization and even 

deployment of ML approaches would become increasingly seamless.
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Of course, in all these advances, it is paramount that we make careful and pragmatic choices. 

And while we should temper short-term exuberance, the long-term prospects of AI are 

outstanding, promising to change the world.
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Nonstandard Abbreviations and Acronyms:

AF Atrial fibrillation

ML Machine learning

AI Artificial intelligence

DL Deep Learning

LASSO Least absolute shrinkage and selection operator

SVM Support vector machines

k-NN k nearest neighbors

kMeans k means clustering

PCA Principal component analysis

RF Random forest

(A)NN (Artificial) neural network

CNN Convolutional neural network

DNN Deep neural network

RNN Recurrent neural network

GAN Generative adversarial network

hESC-CMs Human embryonic stem cell-derived cardiomyocytes

hPSC-CMs Human pluripotent stem cell-derived cardiomyocytes

ChR Channelrhodopsin

TdP Torsades de pointes

hERG Ether-à-go-go-related gene

IC50 maximal inhibitory concentration

AUC Area under the curve
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iPSC-CMs Human induced pluripotent stem cell-derived cardiomyocytes

AF Atrial fibrillation

BSPM Body surface potential maps

MRI Magnetic Resonance Imaging

LGE-MRI Late gadolinium-enhanced cardiac MRI

VA Ventricular arrhythmia

VF Ventricular fibrillation

VT Ventricular tachycardia

HCM Hypertrophic cardiomyopathy

ICU Intensive care unit

LA Left atrial

LV Left ventricular

EHR Electronic health record

PVI Pulmonary vein isolation

ICD Implantable cardioverter-defibrillator
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Figure 1. Typical workflow of the machine learning approach.
After the data gathering step, data is split into a train set and a test set. Features (useful 

representations of the data) are then extracted from the training data, either by performing 

researcher-defined transformations of the data (feature engineering) or using machine 

learning techniques (feature learning). Depending on the availability of targets (expected 

answers from the data) and the desired machine learning task, features can be used in either 

a supervised or unsupervised setting. In the supervised setting, a model is trained by 

iteratively minimizing a loss function, which adjusts the model’s parameters such that 

predictions and targets match. The resulting best model is then used on the test data. In the 

unsupervised setting in which there are no targets available, data can be used for 

visualization or identifying sub-groups with common characteristics, i.e., clusters.
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Figure 2. Classification of machine learning algorithms by task type.
UpSet plot165 showing algorithms (columns) that can be used for a given task type (rows: 

regression, classification, dimensionality reduction, and clustering) using black filled-in 

circles. Gray circles denote algorithms not typically used for the respective task. Connected 

circles denote algorithms which are used for multiple tasks. Algorithms in blue rectangles 

are typically supervised, those in red ellipses are typically unsupervised, and algorithms in 

red and blue can be either supervised or unsupervised.
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Figure 3. Commonly used machine learning algorithms. A. Least square regressions.
For these models, assume the data can be fitted by a given (usually, linear) function 

(regression line), but may deviate due to noise, and find the function’s parameters which 

minimize the sum of squared distances (errors) to the observed data. B. Support Vector 
Machines. Typically using binary classification in a supervised setting, the model aims to 

locate a decision boundary based on a subset of data points (support vectors) that maximizes 

the margin, i.e., the perpendicular distance between the decision boundary and the closest of 

the data points. C. k-nearest neighbors. These are non-parametric models for classification 

and regression problems, in which the idea is to use a vote (for example, majority) of the k 
closest neighbors to inform a new point’s predicted value/label. D. K means clustering. The 

goal of this unsupervised clustering algorithm is to split the available data into k clusters by 

re-assigning each point to different clusters until some distance (typically, Euclidean) is 

minimized between all points and the respective cluster’s centroid. E. Random forests. 

Decision trees are a supervised approach to classification and regression problems in which 
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input data is sequentially classified through a flowchart-like structure, where the features to 

be learned are questions about the data (e.g., “Is patient’s age less than 40?”). Random 

forests use many decision trees to construct an ensembled output, offering a more robust 

learning algorithm. F. Principal component analysis. The goal is to change coordinates for 

the data to an orthogonal basis (principal components, in red) that maximizes the variance of 

the data along these new principal component directions. This allows for a truncation after a 

suitable number of principal components, reducing the dimensions of the data. G. Neural 
networks. Shown here is a neural network autoencoder which consists of artificial neurons 
(or nodes, gray and red circles) organized in layers (shaded in gray), sharing weighted, 

directed connections (thin black lines) amongst themselves, each being responsible for 

combining inputs via a propagation function and generating outputs to be passed further in 

the network. The input data is passed through fully connected layers to produce a low 

dimensional encoding (red circles) during encoding, then decoded using additionally fully-

connected layers to produce the reconstructed image (here the image of the number 5).

Trayanova et al. Page 34

Circ Res. Author manuscript; available in PMC 2022 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Clustering and classification of BSPM integrals.
a) Clustering of 57 patterns of BSPM integrals (30 from right and 27 from left atrium) using 

the K-means algorithm on the torso surface nodes where K is the number of pre-defined 

ectopy clusters (ECs). For each K, all the foci belonging to the same EC have the same 

color. b) For each K, left column shows the color and number of each EC resulting from the 

clustering step (for example blue-k2–0 refers to blue EC, equivalent to class 0, when k=2), 

while right column shows the classification results identifying the ectopic site that is not 

well classified with the color of the correct group, to which it really belongs. Reproduced 

from [66].
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Figure 5. Substrate spatial complexity analysis.
(A) Flowchart of the analysis. Signal intensity patterns from cardiac LGE-MRI were 

analyzed using a Fourier-like technique for assessment of global irregularity. This analysis 

generated features that were used in an ML algorithm, which yielded a complexity score 

ranging from 0 to 1, where 0 represents low arrhythmic risk and 1 represents high 

arrhythmic risk. (B, C) Eigenvectors (sine-like functions) of varying frequencies oscillating 

over graphs encoding patient-specific LV size and geometry were compared with signal 

intensity patterns to generate Fourier coefficients. These coefficients were then used in the 

ML algorithm. Each panel (B and C) shows a different eigenvector frequency. Colors 

represent amplitude of the sine-like function. (D) Example of substrate spatial complexity 

analysis showing LGE-MRI-derived scar pattern from a patient with a low scar burden (12.1 

g) but a high complexity score (CS; 0.99) who ultimately had a VA event. Modified from 

[82].
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Figure 6. 
(A) Detecting regions in the atria containing sites of rotational activity. CNN was trained on 

regional intracardiac voltage time-series data from basket catheters positioned in left then 

right atrium (left-most column). Explainability analysis (Methods column) to probe how 

CNN interprets intracardiac AF patterns. In training, ML uses forward propagation of an 

input tile, creating weights w (red), then backward propagation to update internal weights 

using gradients x (green). This training process matches each input with its known output 

label (0,1). Explainability is applied once the CNN is trained. (a) Weights w and (b) 

gradients x of the output of the fifth convolutional layer are combined by the dot-product 

operation. (c) Gradient-weighted class activation mapping (Grad-CAM) heatmap plots the 

importance of each input pixel to the CNN classification. Brighter (higher value) pixels have 

a greater influence on the CNN. Gradient-weighted class activation mapping (Grad-CAM) 

heatmaps (Results column) of trained CNN empirically detect AF features identified by 
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experts with domain knowledge. Numbered from top to bottom: 1, Input vector showing site 

of interest in AF in a 49-year-old female. The heatmap site in Conv 5 coincides with the 

precise location in the heart coded by experts as a site of rotation. 2, AF in a 63-year-old 

female with AF, showing 2 concurrent regions of interest. 3, AF in a 64-year-old man, 

showing 3 regions of interest. 4, AF in 74-year-old-female showing no region of interest. In 

each case, Grad-CAM heatmaps empirically identified tile regions identified by experts with 

physiological knowledge, although CNN were not explicitly trained in expert rules. 

Reproduced and adapted from [108]. (B) Overview of study by Shade et al in which the 

researchers predicted recurrence of AF post-PVI by conducting simulations of AF induction 

in atrial models reconstructed from paroxysmal AF patients with fibrosis on LGE-MRI, and 

trained an ML classifier on simulated AF episodes and on imaging features to predict, pre-

procedurally, the outcome of the clinical procedure. Modified from [115].
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Table 1.

Common ML algorithms and their advantages and disadvantages

Algorithm Acronyms/
Variations

Description Advantages Disadvantages References

Regressions LASSO, 
Ridge, 
Elastic

Fit a simple 
function’s 
parameters to 
minimize the sum 
of squared 
distances to the 
observed data

• Easily interpretable

• Uncovers causal 
relationships

• Computationally 
impractical for 
large, high-
dimensional 
datasets

Tibshirani14, 
Kennedy13, 
Zou & 
Hastie15

Support 
Vector 
Machines

SVM, SVR Use support 
vectors to identify 
decision 
boundaries in the 
data

• Memory efficient

• Robust, based on 
the Vapnik 
Chervonenkis 
theory

• Not suitable for 
large datasets

• No probabilistic 
interpretation of 
classifiers

Cortes & 
Vapnik16

k-nearest 
neighbor

k-NN Classify new data 
based on labels of 
surrounding 
neighbors

• Strong theoretical 
underpinnings

• Easily interpretable

• Not suitable for 
large datasets

• Large memory 
footprint

Cover & 
Hart17

k-means 
clustering

kMeans Assign each point 
in the dataset to 
one of k clusters to 
minimize within 
cluster- variance 
relative to cluster’s 
centroid

• Requires apriori 
specifying k

• Good convergence

• Not suitable for 
high dimensional 
data

• Sensitive to outliers

Lloyd18

Principal 
Component 
Analysis

PCA, POD, 
SVD, EVD, 
KLT

Change 
coordinates to 
orthonormal basis 
that maximizes the 
variance of the data 
along these new 
coordinates

• Can be used as 
feature extraction

• Computationally 
efficient algorithms 
available

• Extensively studied 
led to many 
generalizations

• Principal 
components can 
depend on all input 
variables.

• Learned subspace 
is linear

Bishop8, 
Wold et al.
157

Decision 
Tree and 
Random 
Forest

RF, 
AdaBoost, 
XGBoost

Build flowchart-
like decision trees 
for which the 
questions are 
learned from data, 
then ensemble 
multiple to form 
random forests

• Very easy to 
interpret, as 
intermediary 
decisions can be 
read directly

• Performs well on 
large data sets

• Requires manually 
crafted features

• Not suitable for 
perceptual data 
(e.g., images)

Breiman20

Artificial 
Neural 
Networks

(A)NN, 
CNN, 
RNN, 
DNN, GAN

Directed, weighted 
acyclic graph of 
neurons arranged 
in layers, using a 
propagation 
function to 
transmit 
information

• Automatic feature 
learning

• Very good 
performance on 
imaging data

• Applicable to a 
wide range of 
problems

• Easy to continue 
training on 
additional data

• May require large 
amounts of data

• Prone to overfitting 
on small datasets

• Hard to interpret

Chollet7, 
Bishop8
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Algorithm Acronyms/
Variations

Description Advantages Disadvantages References

Naïve Bayes N/A Classification 
using Bayes’ 
theorem by 
assuming 
independence 
between features to 
model class 
conditional 
probability

• Requires small 
number of training 
samples imaging 
data

• Easy to interpret

• Assumes features 
are independent

• Not suitable for 
high dimensional 
data

Bishop8

Linear 
discriminant 
analysis

LDA, NDA Find a linear 
combination of 
features that that 
separates input 
data in classes

• Strong performance 
when assumptions 
met

• Independent 
variables assumed 
normal

• Sensitive to outliers

Duda et al.
158

Gaussian 
Mixture 
Model

GMM Assume data 
follows a linear 
combination of 
Gaussian 
distributions with 
parameters 
estimated from 
data

• Fastest algorithm 
for learning mixture 
models

• Simple likelihood-
based optimization

• Covariance matrix 
estimation can be 
difficult

• Number of 
components is 
aproiri specified

Bishop8

Spectral 
Clustering

N/A Use eigenvalue 
decomposition to 
cluster based on 
the similarity 
matrix whose 
entries Aij
express degree of 
similarity between 
points i and j

• Simple to 
implement

• Can be solved 
efficiently with 
linear algebra 
methods

• Number of clusters 
needs to be 
specified in 
advance

Ng et al.159

Mean Shift N/A A centroid-based 
clustering method 
using an iterative 
approach to search 
through 
neighborhood of 
points and locate 
modes of density 
functions

• No need to specify 
number of clusters

• The bandwidth 
parameter has 
physical meaning

• Not scalable, as it 
requires many 
nearest neighbor 
searches

Comaniciu 
& Meer160

Isomap N/A Non-linear 
dimensionality 
reduction using an 
isometric mapping 
(distance-
preserving 
transformation 
between metric 
spaces)

• High computational 
efficiency

• Nonlinear

• Globally optimal

• Sensitive to the 
parameter 
governing the 
connectivity of 
each point

Tenenbaum 
et al.161

Local Linear 
Embedding

LLE, 
HLLE, 
MLLE

Non-linear 
dimensionality 
reduction by using 
linear 
combinations of 
projected 
neighborhood 
points to 
reconstruct data

• Faster than Isomap

• Can take advantage 
of sparse matrix 
algorithms

• Sensitive to 
sampling density 
(i.e., performs 
poorly on non-
uniform densities)

Roweis & 
Saul162

Diffusion 
Maps

N/A Feature extraction 
and dimensionality 
reduction based on 
a nonlinear 
approach, in which 
distances between 
points are defined 
in terms of 

• Nonlinear

• Computation is 
insensitive to 
distribution of the 
points

• Scaling parameter 
ε requires tuning

Coifman et 
al.163
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Algorithm Acronyms/
Variations

Description Advantages Disadvantages References

probabilities of 
diffusion

t-distributed 
stochastic 
neighbor 
embedding

tSNE Data visualization 
tool which defines 
similarity between 
two points as the 
conditional 
probability one 
would pick the 
other as neighbor if 
neighbors were 
picked based on 
Student t 
probabilities 
centered at the first 
point

• Constructs 2- or 3-
dimensional 
representations of 
the data for easy 
visualization

• Nonlinear

• Highly 
computationally 
expensive

• Due to stochastic 
nature, sensitive to 
initial conditions

Roweis & 
Hinton164
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