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Abstract

Single cell sequencing (SCS) has impacted many areas of cancer research and improved our 

understanding of intratumor heterogeneity, the tumor microenvironment, metastasis and 

therapeutic resistance. The development and refinement of SCS technologies has led to massive 

reductions in costs, increased cell throughput and improved reproducibility, paving the way for 

clinical applications. However, before translational applications can be realized, there are a 

number of logistical and technical challenges that must be overcome. This review discusses past 

cancer research studies, emerging technologies and future clinical applications that are bound to 

transform cancer medicine.

Introduction

The field of single cell genomics has progressed rapidly over the last 10 years, since the 

development of the first single cell DNA sequencing (scDNA-seq) method (Navin et al., 

2011) and single cell RNA sequencing (scRNA-seq) method (Tang et al., 2009) for 

mammalian cells. While initial studies were limited to sequencing only a few cells at a time, 

the development of high-throughput systems including nanowells (Fan et al., 2015a; Gierahn 

et al., 2017), microdroplets (Lan et al., 2017; Macosko et al., 2015) and microfluidic 

platforms (Wang et al., 2012) have made it possible to sequence thousands of cells in 

parallel, while reducing costs to less than $1 per cell (Svensson et al., 2018). Developments 

in whole-genome amplification (WGA) and whole-transcriptome-amplification (WTA) 

chemistries, as well as the use of unique molecular identifiers (UMIs) (Islam et al., 2014) 
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have greatly improved SCS data quality and reproducibility (Gawad et al., 2016; Wang and 

Navin, 2015). Over the last decade, a major shift in the field has been the transfer of these 

technologies from a few expert laboratories, into the hands of cancer research groups around 

the world (Stuart and Satija, 2019; Tanay and Regev, 2017). The democratization of SCS 

methods has been facilitated both by the open sharing of protocols and the 

commercialization of technologies (eg. 10X Genomics, Illumina, Mission Bio, Takara 

Biosciences). SCS methods offer many advantages over traditional ‘bulk’ DNA-seq and 

RNA-seq approaches, that are limited to providing a mixed signal that represents many cell 

types in the microenvironment or an amalgamation of tumor clones with different genotypes. 

Although computational methods exist to deconvolute bulk sequencing data, these 

approaches can only provide ‘rough estimates’ of cell type mixtures or tumor clones present 

in a tumor sample. Although SCS has been used widely in cancer research studies, 

implementation in clinical studies remains limited, where issues such as costs, throughput 

and reproducibility are paramount (Navin and Hicks, 2011). This review will discuss 

logistical issues related to clinical SCS, as well as emerging technologies and past research 

studies that have impacted many areas of cancer research over the last 10 years.

Current and Emerging Technologies

The recent commercialization of SCS now provides stable platforms that can be applied 

widely to cancer research and clinical applications (Table 1). Microdroplet systems have 

emerged as the most widely used platform for high-throughput 3’ scRNA-seq (eg. 10X 

Genomics) and are capable of profiling up to 10,000 cells in a single experiment (Klein et 

al., 2015; Macosko et al., 2015; Zheng et al., 2017b). However for research applications, 

alternative platforms such as nanowells (Fan et al., 2015b; Gao et al., 2017; Gierahn et al., 

2017), combinatorial indexing (Cao et al., 2017) and high-throughput FACS (Patel et al., 

2014) can provide additional features, including cell imaging, cell selection, reduced costs 

and multi-step chemistry. For example, to perform full-length mRNA profiling in single 

cells, FACS based methods using smart-seq2 (Ramskold et al., 2012) or nanowell-based 

platforms (Goldstein et al., 2017) can be used to study alternative splicing. Other platforms 

such as combinatorial indexing (sci-RNA-seq) can achieve very high scalability (millions of 

cells) for detecting rare cell subpopulations (Cao et al., 2017; Cao et al., 2019) such as 

circulating tumor cells (CTCs), cancer stem cells or minimal residual disease. Overall, 

scRNA-seq approaches represent the most mature SCS methods, however they still have 

several technical limitations including high transcript drop-outs for low expressed genes, low 

total gene counts per cell and high bias for 3’ coverage.

For epigenomic profiling, scATAC-seq has become the most widely used assay to measure 

chromatin accessibility of single cells. In early versions of scATAC-seq technologies, 

experiments were performed using FACS and tagmentation chemistry (Buenrostro et al., 

2015) or microfluidic platforms (eg. Fluidigm) at low cell throughput (96 cells). However 

the development of microdroplet platforms for scATAC-seq (10X Genomics) have emerged 

as the most popular platform for profiling over 10K cells in a single experiment (Satpathy et 

al., 2019). The scATAC-seq methods have also been adopted for combinatorial indexing 

(dscATAC-seq) to achieve very high scalability to profile hundreds of thousands of cells at 

low cost (Cusanovich et al., 2015; Lareau et al., 2019). A major advantage of scATAC-seq 
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compared to scRNA-seq, is that it can provide deeper insights into gene regulation and 

transcription factors or other, as well as more information on cell lineages and identity. 

However scATAC-seq methods are still challenged by technical errors, including low library 

complexities and high sensitivity to tissue dissociation. Another approach is to measure 

cytosine methylation of DNA in single cells, using methods such as single-cell bisulfite 

sequencing (scBS-seq) and single-cell reduced-representation bisulfite sequencing 

(scRRBS) (Guo et al., 2013; Mooijman et al., 2016; Smallwood et al., 2014; Zhu et al., 

2017). While DNA methylation in single cells is highly desirable for epigenomic profiling 

and lineage tracing, current methods remain challenged by technical issues including low 

cell throughput and poor genomic coverage. Thus, these scEpigenomic methods still 

represent the least mature platforms for profiling single cancer cells, but they are under 

active development.

For high-throughput scDNA-seq several commercial platforms have been developed (10X 

Genomics, Mission Bio) using microdroplet systems (Andor et al., 2018; Lan et al., 2017). 

Additionally, a number of research platforms including high-density FACS assays (Baslan et 

al., 2015; Leung et al., 2016), microfluidic platforms (Zahn et al., 2017a), nanowell systems 

(Laks et al., 2019) and combinatorial indexing methods (Vitak et al., 2017; Yin et al., 2019) 

have also been developed and offer higher scalability, enable cell selection, have lower costs 

and provide more flexibility for custom chemistry steps. Currently, the most common 

application of scDNA-seq is copy number aberration (CNA) profiling. While high-

throughput systems such as microdroplets (10X Genomics) and combinatorial indexing can 

achieve very high-throughput (up to 10K cells) for single cell CNA profiling, they are 

challenged by lower data quality and limited genomic resolution. In contrast, nanowells, 

FACS and microfluidic platforms that utilize tagmentation chemistry (Laks et al., 2019; 

Zahn et al., 2017a) can provide very high-quality copy number data at single molecule 

resolution, but have modest throughput (hundreds to one thousand cells). Another major 

application of scDNA-seq is mutation detection, which requires higher coverage depth of the 

mutation sites of interest. While initial studies performed whole genome or exome 

sequencing of single cells using whole-genome amplification (WGA) methods (Hou et al., 

2012; Wang et al., 2014b; Zong et al., 2012), these studies were limited to profiling a small 

number of cells due to high costs. To reduce costs and increase throughput, subsequent 

approaches have focused on sequencing targeted regions of the genome, such as cancer gene 

panels (Leung et al., 2017a; Leung et al., 2016) to increase depth and reduce costs. To 

further scale up scDNA-seq to over 10K cells for mutation detection, a two-step 

microdroplet approach was developed (Lan et al., 2017) and commercialized (Mission Bio) 

that performs PCR amplicon profiling of single cells at hundreds of targeted genomic 

regions. These highly targeted approaches are ideal for clinical applications but have limited 

applications in research for unbiased discovery and inferring cancer evolution. Technical 

errors that must still be overcome include high allelic dropout rates for mutational profiling 

(10-20%), high false-positive error rates for unbiased detection and non-uniform coverage 

depth due to WGA over and under amplification (Filbin et al., 2018; Gawad et al., 2016).

Several emerging technologies are on the horizon and have potential to transform the field of 

SCS. Multiomic SCS methods are designed to interrogate multiple layers of molecular 

information from the same single cells, such as DNA & RNA, RNA & ATAC, or all three 
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layers combined (‘triple-omics’) (Stuart and Satija, 2019). These methods can provide 

deeper insights into the genotype-phenotype relationship and the regulation of gene 

expression by epigenomics. While initial technologies have demonstrated the technical 

feasibility of sequencing DNA and RNA in the same cell (Dey et al., 2015; Macaulay et al., 

2015), they are currently low-throughput, expensive and labor intensive. The future 

development of these methods using nanowell systems, microdroplet platforms and 

combinatorial indexing (Yin et al., 2019) hold promise for overcoming many of these 

technical obstacles, which may lead to their widespread adoption in cancer research in the 

near future.

Another emerging technology is spatially-resolved SCS. A major limitation of standard SCS 

methods is that they require cell suspensions as input materials, and therefore inherently lose 

all spatial information of the location of the cell in its native tissue context during 

dissociation. To preserve spatial information, Laser Capture Microdissection (LCM) can be 

combined with scDNA-seq (Casasent et al., 2018) or scRNA-seq (Nichterwitz et al., 2016). 

However LCM methods are low-throughput (< 100 cells) and labor intensive. Other methods 

such as Spatial Transcriptomic (ST) microarrays (Stahl et al., 2016) and Slide-Seq 

(Rodriques et al., 2019) are high-throughput and can profile small groups of cells (eg. 

10-100 cells) across thousands of spatial locations, but do not have single cell resolution 

(they require a tissue lysis step). In contrast in situ sequencing technologies, have single cell 

resolution, including FISSEQ (Lee et al., 2014), MERFISH (Chen et al., 2015) and seqFISH 

(Shah et al., 2017) but can only image limited spatial areas and are restricted to smaller sets 

of gene targets. The further development of these spatial technologies will greatly improve 

our understanding of cancer biology and are expected to revolutionize clinical pathology, by 

linking qualitative and morphological features of tissues to genomic data at single cell 

resolution.

Cancer Research Studies

Cancer research studies published to date using SCS can roughly be categorized into five 

main areas: (1) invasion in premalignant disease, (2) clonal evolution and intratumor 

heterogeneity (ITH) in primary tumors, (3) reprogramming of the tumor microenvironment, 

(4) metastatic dissemination, and (5) therapeutic resistance (Figure 1A). In these studies 

scRNA-seq and scATAC-seq methods have often been used to resolve cell types and cell 

states (i.e. expression/epigenomic programs) in the TME, as well as the expression programs 

and subtypes of tumor cells. Analysis of cell states in the TME can reveal how different 

stromal and immune cell types are reprogrammed, reflecting different biological functions 

that may promote or suppress tumor growth (Figure 1B). Similarly, scRNA-seq methods can 

provide insight into the phenotypic diversity of tumor cells through the analysis of gene 

signatures for proliferation, stemness, hypoxia, EMT, metabolism and other cancer 

hallmarks. An advantage of scRNA-seq over bulk RNA-seq is the ability to perform cell-

type specific differential expression (DE) analysis, to determine if cell types in the TME 

have different genes expressed under conditions such as treatment or progression. Other 

analyses may include reconstructing differentiation lineages or identifying tumor expression 

subtypes (eg. PAM50) at single cell resolution (Figure 1B). Several groups have also shown 

that it is possible to infer low-resolution genomic information from scRNA-seq data by 
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inferring DNA copy number information to distinguish aneuploid tumor cells from the TME 

(Durante et al., 2020; Tickle T, 2019), and that prior knowledge of mutation sites (eg. from 

exome sequencing) can be used to genotype full-length mRNA data in single cells (Filbin et 

al., 2018; Petti et al., 2019). However these data are highly sparse and CNAs detected in 

RNA data often do not correlate with DNA data, hence the best application of the RNA copy 

number approach is for classifying tumor cells from normal cells, rather than inferring 

clonal substructure in tumors. Another layer of genomic information that can be gained from 

the 5’ or full length single cell RNA data is to sequence the clonotype of the T-cell receptor 

(TCR), which has important applications in understanding the expansion of T-cells in 

tumors(Azizi et al., 2018; Stubbington et al., 2016) and this approach has recently been 

commercialized (10X Genomics). In contrast, scDNA-seq methods can be used to resolve 

clonal substructure and reconstruct clonal lineages during tumor evolution in the context of 

premalignant disease, metastasis and therapeutic resistance (Figure 1C). Methods for 

scDNA-seq are particularly useful for resolving mutation co-occurrence and mutual 

exclusivity in different tumor clones, which are difficult to resolve in bulk sequencing data 

using deconvolution methods that provide only a rough estimates of the clonal 

subpopulations (Leung et al., 2017b; Wang et al., 2014b). Below we discuss several areas of 

cancer research in which SCS approaches have been used to illuminate cancer biology.

Insights into Premalignant Disease

A major question is how premalignant cancers progress to invasive malignancies. Two 

studies using scDNA-seq have focused on understanding this problem in the most common 

form premalignant breast cancer, called ductal carcinoma in situ (DCIS). By developing a 

spatially resolved scDNA-seq method called Topographic Single Cell Sequencing (TSCS), 

genomic copy number aberrations (CNAs) were linked to spatial information in 10 cases of 

synchronous DCIS-IDC tissues, which showed that multiple clones co-migrated from the 

ducts into the invasive regions (Casasent et al., 2018). In a smaller study of four DCIS-IDC 

patients, scDNA-seq data showed that in situ tumor cells underwent a population bottleneck 

during invasion leading to the expansion of a selected genotype (Martelotto et al., 2017b). 

While both studies showed evidence for direct genomic lineages from the DCIS to IDC 

regions, they reported different results on the selection of clonal genotypes during invasion. 

In Barrett’s oesophagus and early gastric cancers, two studies used scRNA-seq to identify 

marker genes in premalignant tumor cells that were associated with progression (Owen et 

al., 2018; Zhang et al., 2019). In another study, scRNA-seq was used to compare the TME 

between premalignant and advanced pancreatic cancer, which showed a loss of pro-

inflammatory immune cells and gain of reprogrammed myofibroblasts during progression 

(Bernard et al., 2019a). These studies highlight the utility of using SCS to understand the 

progression of premalignant to invasive disease, in which tumor cells are often rare 

populations that cannot easily be profiled with bulk genomic methods.

Decoding the Tumor Microenvironment

The TME is largely divided into the immune and stromal components, which can both be 

resolved using scRNA-seq and scATAC-seq methods. In the stromal TME, fibroblasts have 

been a cell type of considerable interest since they are often reprogrammed as carcinoma 

associated fibroblasts (CAFs) that have been shown to interact with tumor cells to promote 
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or suppress tumor growth (Kalluri, 2016). In several cancers, scRNA studies have revealed 

heterogenous CAFs subtypes with different functions in matrix construction, angiogenesis 

and immune-regulation (Bartoschek et al., 2018; Elyada et al., 2019; Lambrechts et al., 

2018; Puram et al., 2017). Another stromal cell type of interest is endothelial cells, which 

can be reprogrammed as tumor endothelial cells (TECs) that can promote tumor progression 

by recruiting vasculature and regulating immune cells (Hida et al., 2018). Methods for 

scRNA-seq can resolve subtypes of endothelial cells and reveal signaling pathways that can 

be targeted (Goveia et al., 2020; Lambrechts et al., 2018; Zhao et al., 2018). The immune 

TME is another area of intense interest in solid tumors, due to the growing use of 

immunotherapy in cancer treatment (Sharma and Allison, 2015). Several studies have used 

scRNA-seq to profile T-cells and show that a suppressive immune microenvironment is 

correlated with poor prognosis, in which increased T-cell exhaustion signatures and 

decreased activated T-cells were associated with progression in a variety of human cancers 

(Guo et al., 2018; Peng et al., 2019; Savas et al., 2018; Tirosh et al., 2016a; Zheng et al., 

2017a). In addition, scRNA-seq methods have implicated tissue-resident memory (TRM) T-

cells as having higher cytotoxic activity in breast tumors and correlated with better prognosis 

for triple-negative breast cancer (TNBC) patients (Savas et al., 2018). Myeloid cells are 

another component of the TME that are associated with patient outcome in several cancer 

types (Engblom et al., 2016). Tumor-associated macrophages (TAMs) have traditionally 

been classified as M1 (inflammatory) or M2 (tumor promoting); however, scRNA-seq data 

has shown that there is a continuum of macrophage expression programs, with a large 

diversity of cell states, challenging this simple classification (Azizi et al., 2018; Song et al., 

2019). Other myeloid subtypes identified by scRNA-seq include myeloid derived suppressor 

cells (MDSCs) and monocytes (Azizi et al., 2018; Cassetta et al., 2019; Song et al., 2019; 

Wang et al., 2019). Notably, two glioma studies using scRNA-seq showed that increased 

peripheral macrophage expression programs relative to microglia in the TME were 

associated with progression and poor survival in glioma patients (Muller et al., 2017; 

Venteicher et al., 2017).

Diversity of Tumor Cell Phenotypes

Tumor cells can exhibit diverse phenotypes in proliferation, stemness, EMT, invasion, 

migration, metabolism, immune evasion, apoptosis and hypoxia (Hanahan and Weinberg, 

2011). This diversity may play an important role in progression, therapeutic response, 

invasion and metastasis. In contrast to bulk genomic methods, scRNA-seq and scATAC seq 

have the ability to resolve the phenotypic diversity and plasticity of tumor cells. In 

glioblastoma (GBM), scRNA-seq identified plasticity in EMT and stemness signatures, 

showing that most tumors consisted of co-existing cells with different GBM subtype 

signatures. Similarly, in TNBC snRNA-seq showed that while a basal-like (PAM50) 

expression subtype usually dominated each tumor, there were also many cancer cells with 

other expression signatures co-existing in the tumor mass (Gao et al., 2017) that did not 

change in response to chemotherapy (Kim et al., 2018). Variation in EMT states have also 

been identified using scRNA-seq in head and neck cancers, where a partial-EMT program 

correlated with invasion and metastatic dissemination (Puram et al., 2017). In breast cancers, 

scRNA-seq has identified phenotypic variation in EMT, angiogenesis and stemness across 

patients (Chung et al., 2017; Karaayvaz et al., 2018). In TNBC, scRNA-seq analysis 
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identified a glycosphingolipid metabolism signature that correlated with treatment resistance 

and metastasis, that predicted patient outcome (Karaayvaz et al., 2018). Methods such as 

scRNA-seq can also be used to infer cell hierarchies, lineage plasticity and developmental 

trajectories in human tumors. Using scRNA-seq methods in brain tumors has provided 

insight into differentiation trajectories of tumor cells in early stage gliomas (astrocytic, 

oligodendrocytic) as well as dynamic plasticity between cell states in invasive GBM (Filbin 

et al., 2018; Neftel et al., 2019; Tirosh et al., 2016b). By spatially sampling GBM tumors, 

another scRNA-seq study showed less hypoxia, lower proliferation and less adhesion in the 

invasive tumor cells near the tumor margins compared to the inner cores (Darmanis et al., 

2017). Single cell multiomics studies have also revealed connections between genetic 

mutations and transcriptional reprogramming. Using Genotyping of Transcriptomes (GoT) 

investigators identified unfolded protein response in CALR mutated myeloproliferative 

neoplasms by comparing wildtype and mutant clones (Nam et al., 2019). Another study of 

primary and metastatic paired samples in colorectal cancer used single cell ‘tripleomics’ 

(DNA, RNA, methylation) to show that DNA methylation levels were found to be diverse 

across different genetic lineages, while relatively stable during metastasis (Bian et al., 2018).

Clonal Evolution

During the expansion of the primary tumor mass, tumor cells undergo Darwinian evolution 

and form divergent clonal lineages in response to selective pressures. Bulk methods have 

limited ability to resolve ITH and clonal lineages in tumors, compared to scDNA-seq 

approaches (Gawad et al., 2014; Navin et al., 2011). These data can provide insight into 

general models of tumor evolution (Davis et al., 2017). A notable evolutionary model 

discovered by scDNA-seq is punctuated copy number evolution (PCNE) in breast cancer, 

which showed that early bursts of genome instability give rise to hundreds of genomic 

rearrangements, that re-stabilize and undergo stable clonal expansions, challenging the 

paradigm of gradual evolution (Gao et al., 2016; Navin et al., 2011). Consistent studies using 

single cell copy number analysis in breast cancers, xenografts and ovarian cancers have also 

shown that CNAs are highly stable across individual tumor cells (Laks et al., 2019; Zahn et 

al., 2017b). In contrast to copy number data, scDNA-seq of mutations have often supported 

branching evolution, by showing that mutations occur more gradually and that multiple 

lineages and clones often co-exist in the tumor at the same point in time (Gawad et al., 2014; 

Li et al., 2012; Wang et al., 2017; Wang et al., 2014b; Yu et al., 2014). Methods for scDNA-

seq data can be used to identify combinations and mutual exclusivity of driver mutations in 

clones to provide a guidance for clinical intervention. For example, in childhood acute 

lymphoblastic leukemia (ALL) targeted scDNA-seq identified late oncogenic mutations 

involved in proliferation that could be targeted to treat the disease (Gawad et al., 2014). In 

acute myeloid leukemia (AML) a microdroplet scDNA-seq approach identified concurrent 

mutations in NRAS, KRAS, and FLT3 that emerged after treatment with a FLT3 inhibitor, 

providing additional targets for treatment (McMahon et al., 2019). By applying both 

scDNA-seq and scRNA-seq, a study of chronic lymphocytic leukemia (CLL) identified 

driver mutations in LCP1 and WNK1, and showed that different genetic lineages can adopt 

similar expression programs (Wang et al., 2017). Another CLL study applied scRRBS-seq 

and scRNA-seq to reconstruct B-cell lineages and showed that after ibrutinib treatment a 
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specific lineage of B-cells had upregulation of Toll-like receptor pathway in post treatment 

cells (Gaiti et al., 2019).

Metastasis and CTC profiling

Metastatic disease is highly correlated with morbidity and mortality in cancer patients. Gaps 

in our knowledge of metastasis include understanding which clones in the primary tumor are 

capable of dissemination, how many times cancer cells disseminate to distant organ sites, 

and whether the TME plays a role in the metastatic niche. SCS methods can resolve ITH and 

the TME in the primary and metastatic tumors, as well as the key intermediates, circulating 

tumor cells (CTCs), to provide insight into these questions. In matched primary colorectal 

cancers and liver metastases, scDNA-seq in two patients identified a late-dissemination 

model to the liver, in which most of the driver events were acquired in primary tumor clones 

prior to the first seeding events (Leung et al., 2017b). In a breast cancer PDX, scRNA-seq 

identified stem-like cells that initiated metastasis, and implicated MYC expression in high 

burden disease (Lawson et al., 2015). Another PDX study of renal cell carcinomas (RCC) 

used scRNA-seq to identify metastasis signatures, which included genes such as EGFR, Scr, 

BRAF/MEK that provide potential therapeutic targets (Kim et al., 2016). In human head & 

neck cancers, scRNA-seq of tumor cells identified invasive expression programs, including 

cell cycle, stress, hypoxia, differentiation and partial-EMT programs, that promoted 

metastasis (Puram et al., 2017).

SCS methods have also been applied to profile the genomes and transcriptomes of CTCs in 

metastatic disease. Studies using scDNA-seq have identified a high concordance of 

mutations and CNAs in CTCs when compared to primary and metastatic tumors (Lohr et al., 

2014; Ni et al., 2013). The transcriptomes of CTCs and CTC clusters have also been studied 

in human blood samples using scRNA-seq to identify genes involved in dissemination. In 

pancreatic cancer scRNA-seq identified metastatic signatures with low proliferation, 

enriched stem cell genes and stromal-derived extracellular matrix (ECM) genes (Ting et al., 

2014). In breast cancer scRNA-seq of CTCs identified plakoglobin as a critical cell junction 

gene in CTC cluster formation that increased dissemination efficiency (Aceto et al., 2014). 

CTC gene expression signatures identified by scRNA-seq have correlated with therapeutic 

response and metastasis risk in lung cancer (Su et al., 2019), breast cancer (Kwan et al., 

2018) and prostate cancer (Miyamoto et al., 2018), paving the way for clinical applications.

Therapeutic resistance

Drug resistance is a major obstacle in the treatment of human cancers. While therapies, 

including chemotherapy, hormonal therapy, targeted therapy and immunotherapy are often 

initially effective, many patients develop resistance and progress to metastatic disease. Key 

areas for investigation include understanding the mechanisms of resistance, identifying 

predictive biomarkers of response, and elucidating the evolution of resistant disease. SCS 

methods can profile ITH and the TME from pre-treatment samples with clinical outcome 

data, or longitudinal time-point samples collected before and after treatment to address these 

topics. Several studies have applied scRNA-seq to identify signatures of therapeutic 

response and resistance using tissue samples and CTCs. In ER+/HER2− breast cancer, 

scRNA-seq analysis identified differences in HER2-signatures in CTCs during 
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chemotherapy that were associated with resistance (Jordan et al., 2016). In melanoma, two 

studies using scRNA-seq reported MITF, AXL, and DCT signatures that correlated with 

RAF/MEK-inhibitor resistance (Ho et al., 2018; Rambow et al., 2018; Tirosh et al., 2016a). 

In prostate cancer, scRNA-seq analysis of CTCs identified activated noncanonical Wnt 

signaling in resistance of androgen receptor inhibitors (Miyamoto et al., 2015). Cell lines 

treated with drugs and analyzed by scRNA-seq have also provided insights into resistance. 

In endocrine resistant breast cancer, cell lines profiled with scRNA-seq showed that KDM5 

inhibitor resistance was due to an acquired epigenetic state with high expression of KDM5 

and ITH in ER+ cells that were resistant to antiestrogens (Hinohara et al., 2018). In another 

breast cancer study, scRNA-seq in cell lines treated with chemotherapy identified 

upregulation of EMT and stemness genes and down-regulation of cell cycle genes in the 

resistant cells (Prieto-Vila et al., 2019) In melanoma cell lines treated with BRAF inhibitors, 

a rare pre-resistant cell state was identified, which required further epigenetic 

reprogramming and loss of SOX10 to achieve a fully resistant state (Shaffer et al., 2017). In 

other cell line studies in oral carcinomas treated with chemotherapy, scRNA-seq analysis 

showed that phenotypic heterogeneity favored selection of pre-existing clones, while 

homogenous populations led to epigenomic reprogramming through increased SOX9 

expression and loss of SOX2 (Sharma et al., 2018).

To understand the genomic evolution of drug resistance several studies have used scDNA-

seq methods to understand whether resistant clones are pre-existing in the tumor mass and 

selected after therapy (adaptive resistance), or alternatively have resistance mutations 

induced by treatment (acquired resistance). In a study of CTCs from SCLC patients, analysis 

of blood samples before and after chemotherapy showed consistent CNA profiles after 

treatment, indicating an intrinsic or adaptive resistance model (Carter et al., 2017). In 

another study of neoadjuvant chemotherapy resistance in TNBC, combined profiling using 

scDNA-seq and scRNA-seq showed that resistant genotypes were pre-existing in the tumor 

mass and adaptively selected, followed by further transcriptional reprogramming to acquire 

a fully resistant phenotype (Kim et al., 2018). In castration-resistant prostate cancer, scDNA-

seq of CTCs showed that MYC and AR amplifications were selected in subclones during 

resistance (Dago et al., 2014). In AML patients treated with FLT3 inhibitors, scDNA-seq 

identified rare subclones that emerged upon relapse with mutations in DNMT3A or 

combinations of IDH2, AXSL1 and NRAS following an adaptive resistance model 

(Pellegrino et al., 2018).

TME reprogramming in resistant disease can also be investigated using scRNA-seq and 

scATAC-seq methods. In melanoma scRNA-seq identified a TCF7+ memory-like state in the 

cytotoxic T cell population that was associated with therapeutic response (Sade-Feldman et 

al., 2018). In basal cell carcinoma (BCC) scATAC-seq was used to analyze biopsies pre and 

post-treatment with PD-1 blockade, which showed that exhausted T-cells were highly 

expanded after therapy, suggesting that PD-1 blockade impacts both CD4+ and CD8+ cell 

states in the TME (Satpathy et al., 2019). These studies highlight the potential of SCS 

approaches to uncover the role of the immune TME in therapeutic response and resistance.
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Sample Processing Logistics for SCS in the Clinic

The collection and processing of fresh tissues from the clinic for SCS presents unique 

logistical and technical challenges. While scDNA-seq and scATAC-seq methods can be 

applied to archival materials (snap-frozen tissues (OCT) and even FFPE), methods such as 

scRNA-seq require viable cell suspension as input material (Figure 2A). The problem is that 

snap freezing of tissue (without freezing media) leads to the rupture of the cellular 

membrane, and therefore cannot provide intact cells for subsequent dissociation and running 

scRNA-seq. Fortunately, the nuclear membrane remains intact during freeze-thaw cycles, 

protecting the DNA, chromatin and even RNA in the nucleus (Baslan et al., 2012). This 

unique property has allowed researchers to isolate nuclear suspensions from snap-frozen or 

OCT tissues for single nucleus sequencing, including snDNA-seq (Navin et al., 2011; Wang 

et al., 2014a), snATAC-seq (Fujiwara et al., 2019) and snRNA-seq (Gao et al., 2017; Habib 

et al., 2016) (Figure 2A). However while this strategy works well for scDNA assays, the 

profiling of nuclear RNA instead of cytoplasmic RNA can result in lower gene counts, lower 

UMIs and differences in the expression of many genes and pathways (Gao et al., 2017; 

Habib et al., 2017). Therefore, in most research studies and clinical applications, scRNA-seq 

methods are the preferred approach and requires implementing a rapid tissue dissociation 

(RTD) program, which currently do not exist in routine pathology at most cancer hospitals.

To procure fresh clinical tissues in a rapid time-frame for scRNA-seq, an RTD program must 

be established that involves close coordination between the oncologists, surgeons, 

pathologists and researchers (Figure 2B). In an RTD program, the surgeon must deliver the 

excised tumor tissues to pathologists in a rapid time frame, after which the pathologist must 

identify regions of high tumor purity for macrodissection (surgical specimens) and place the 

tissue into cell culture media, ideally in less than 1 hour. For core biopsy or fine-needle-

aspirate (FNA) samples this time can be cut down substantially, since the radiologist can 

place the sample directly into a tube of media and provide the pathologist with a different 

core sample. Once the tissue is submerged in media, the research team can transfer the 

sample back to the laboratory for dissociation to generate single cell suspensions. Ideally, a 

cancer hospital would setup a dedicated RTD facility that can centralize the processing of 

incoming tissue samples to generate viable cell suspensions from tissues after they are 

collected from surgeries or biopsy procedures. However a challenge for RTD is that each 

tissue type (eg. breast, pancreas, liver) requires a different dissociation protocol, that may 

vary in dissociation time, digestion enzymes, red blood cell lysis and other steps. 

Fortunately, collaborative efforts such as the Human Cell Atlas (HCA) are developing open 

source protocols for many tissue types (Regev et al., 2017) that are publicly accessible 

online (www.protocols.io) to help researchers. After dissociation, the cells must undergo 

quality check (QC) for cell viability (ideally >70%) and cell counts (ideally >100K total 

cells). Fortunately after this step, the viable cells can be cryostored in freezing media for an 

extended period of time and batched to run many scRNA-seq experiments together 

(Wohnhaas et al., 2019). However running samples from fresh cell suspensions without 

cryostorage leads to the best data quality, when it is logistically feasible. Another optional 

step involves enriching cells of interest using FACS or antibody columns, to enrich immune 

cells (eg. CD45), stromal cells or tumor cells (eg. EpCAM, Cytokeratins) (Nguyen et al., 
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2018). The final cell suspensions are then used as input material for SCS methods followed 

by next-generation sequencing (NGS).

Although FFPE blocks represent an abundant source of clinical tissue with long-term 

clinical outcome information, these materials are not compatible with standard SCS 

methods. The main problem is that FFPE processing leads to the fragmentation and 

degradation of RNA and DNA when the tissue is placed in formalin. While scRNA and 

scATAC methods may never possible in FFPE materials, developments in scDNA-seq 

methods may make the analysis of CNAs and targeted mutational profiling feasible in the 

near future. Encouragingly, initial success was shown through the addition of DNA damage 

repair enzymes prior to WGA for single cell CNA profiling in FFPE blocks from 

premalignant breast cancer tissues (Martelotto et al., 2017a) . Other strategies designed to 

PCR small targeted regions may also be feasible for FFPE tissue in which the DNA is 

fragmented. Therefore, the development of future technologies for scDNA-seq may open up 

the doors for FFPE tissues and H&E slides that are commonly used in clinical pathology.

Applications in Cancer Medicine

While most SCS studies published to date have been research focused, the development and 

refinement of SCS technologies provides new opportunities for clinical translation. We 

expect that several areas of cancer medicine will be transformed by SCS including early 

detection, diagnostics & risk stratification, drug target discovery, targeting the 

microenvironment, targeting tumor clones, and non-invasive monitoring (Figure 3A). We 

discuss initial progress in these areas and remaining challenges for clinical implication that 

lie ahead.

Early Detection

Early detection is paramount in modern oncology, since it can lead to intervention and 

reduced morbidity in patients. However, the detection of early cancers still relies heavily on 

imaging techniques and pathological analysis. Disseminated tumors cells (DTCs) can be 

detected by cytopathology in many bodily fluids that are proximal to the cancer origin, such 

as urine for bladder and prostate carcinomas (Nawroth et al., 2014); peritoneal washings for 

ovarian (Naz et al., 2015), endometrial and pancreatic carcinomas (Yamada et al., 2007); and 

saliva for nasopharyngeal cancer(Chang et al., 2003). These samples provide a unique 

opportunity for SCS methods to asses risk of progression. Early detection is of particular 

importance in people that have a high risk of cancer development, including patients with 

germline mutations in tumor suppressors (BRCA, APC mutations), acid reflux, 

inflammatory bowel disease, and a history of heavy smoking. Although most studies to date 

have focused on using imaging methods or pathological staining to identify early cancer 

cells in bodily fluids, SCS methods can provide far richer information on whether these cells 

are likely to present a risk for progression to the patient. In one of the first studies, scRNA-

seq was used to study 40 multiple myeloma patients and 11 healthy controls, which 

identified the expression programs of rare invasive plasma cells in several patients with 

asymptomatic disease (Ledergor et al., 2018). We expect that future applications of scDNA-

seq and scRNA-seq in combination with early screening and diagnostic procedures will hold 
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great promise to improve early detection and assess the risk of progression to malignant 

disease.

Improving Clinical Diagnostics & Risk Stratification

The clinical diagnosis of invasive cancers relies heavily on histopathological evaluations that 

often have discrepancies. SCS methods have proven to be very effective at profiling 

premalignant cells in DCIS (Casasent et al., 2018), pancreatic premalignancies (Bernard et 

al., 2019b), prostate intraductal neoplasia (PIN) (Barros-Silva et al., 2018) and atypical 

adenomatous hyperplasia (AAH) (Allin et al., 2018) in the research setting. In principle this 

data can be used to asses risk of progression, in larger clinical studies that compare patients 

that progress to invasive disease to patients that remain indolent. In invasive prostate cancer, 

aggressive clonal populations detected by single cell analysis from tissue biopsies were 

shown to correlate very well with surgical Gleason scores, thus guiding surgery decisions 

based on pathological diagnosis (Alexander et al., 2018). In another study, the subtyping of 

colorectal cancer by SCS has been used to identify the best treatment options for individual 

patients (Bian et al., 2018). Another clinical opportunity involves the diagnosis of cancer of 

unknown primary (CUP) origin, which represents an aggressive cancer without a clear organ 

site of origin, where scRNA-seq and scATAC-seq methods may provide insight into the 

initial organ sites and thus have implications for treatment (Varadhachary et al., 2004).

Risk stratification is another important area for personalized therapy planning at multiple 

times during cancer treatment including: (1) at diagnosis, (2) after the completion of local 

treatment, and (3) at the time of metastatic recurrence. Current risk stratification tools rely 

on histopathological analysis, cytogenetic markers, germline mutations or gene expression 

panels (eg. oncotypeDX, mammaprint, cologuard). However predictive gene expression 

panels using bulk RNA-seq analysis and qPCR are challenged by the mixtures of tumor, 

stromal and immune cells, which vary across patients. Instead of a precise prediction for 

individual patients, current gene expression panels provide population based prediction (e.g., 

the percentage of recurrence for the group of patients with same score). These assays could 

potentially be improved by scRNA-seq methods to obtain pure cell-type specific expression 

signatures from tumor cells or the TME to predict the risk of progression, metastasis or 

therapeutic resistance. Thus SCS methods have the potential to improve diagnostics and risk 

assessment to determine which patients will require more aggressive treatment strategies.

Drug Target Discovery

SCS methods provide powerful tools for unbiased discovery of new drug targets in the tumor 

cells and TME in primary, metastatic or therapy-resistant disease. For example, in prostate 

cancer, scRNA-seq analysis of CTCs identified activated noncanonical Wnt signaling in 

resistance to androgen receptor inhibitors, providing a new therapeutic target for treating 

advanced disease (Miyamoto et al., 2015). In breast cancer, scRNA-seq identified inversely 

correlated expression of NOTCH1 and HER2 in patient-derived CTCs, where HER2-

negative CTCs showed reduced sensitivity to docetaxel, but were sensitive to Notch 

inhibitors that could potentially be exploited for treatment (Jordan et al., 2016). In a pre-

clinical study, scRNA-seq of docetaxel sensitive and resistant MCF7 breast cancer cell lines 

identified upregulated EMT and stemness-related genes and downregulated cell cycle genes 
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that were regulated by LEF1 in the resistant cells, providing a potential drug target to 

overcome resistance (Prieto-Vila et al., 2019). Longitudinal sampling of tumors on therapy 

can also identify the emergence of resistant clones and potential drug targets. In 

chemoresistant TNBC patients, snRNA-seq of longitudinal biopsies identified signatures for 

EMT, AKT1 signaling, hypoxia, CDH1 and angiogenesis that could potentially be targeted 

to treat resistant disease (Kim et al., 2018). Methods for scRNA-seq and scATAC-seq can be 

used to delineate cell types in the TME and identify drug targets in the stroma and immune 

cell types that contribute to progression, metastasis or therapeutic resistance (Azizi et al., 

2018; Elyada et al., 2019; Lambrechts et al., 2018). In a breast cancer mouse model treated 

with anti-Her2 and CDK4/6 inhibitors, scRNA-seq identified an enrichment of Gr1+ 

immature myeloid cells (IMCs) that were sensitive to cabozantinib, providing a new 

therapeutic target to validate in human patients (Wang et al., 2019). In another breast cancer 

study, scRNA seq revealed serial adaptive changes by transcriptomic reprogramming and 

copy number changes in patients undergoing endocrine therapy (Hong et al., 2019). Thus, 

we expect that SCS methods will lead to a new era of drug development, by providing new 

drug targets in the TME and tumor cells to improve the treatment of cancer patients.

Targeting the Tumor Microenvironment

Reprogrammed cell types in the TME including CAFs, TECs, TAMs and tumor adipocytes 

(Altshuler-Keylin et al., 2016) contribute significantly to tumor progression, metastasis or 

therapeutic resistance (McAllister and Weinberg, 2014). In the research setting, scRNA-seq 

or scATAC-seq methods have proven to be powerful tools to delineate the TME and identify 

reprogrammed immune and stromal cell types in tumors that either promote or inhibit tumor 

growth or therapy resistance (Elyada et al., 2019; Puram et al., 2017; Tirosh et al., 2016a). 

These data can in principle be used to select targeted therapies against the aberrant cell types 

individually in a clinical setting (Figure 3B). For example, tumors that harbor TAMs could 

be treated with ANG2/TIE2 axis inhibitor (Rebastinib), MIF inhibitor (anti-CD74 antibody), 

or statins to indirectly regulate the function of TAM (simvastatin, atorvastatin). The tumors 

with reprogrammed dendritic cells could be treated with dual inhibitor of Adenosine A2A 

and A2B receptors (AB-928) or anti-CD73 (BMS-986179). T-cells could be treated with 

checkpoint inhibitors: anti-CTLA (ipilimumab), anti-PD1 (pembrolizumab, durvalumab), 

anti-PD-L1(atezolizumab, Avelumab). Similarly, tumors with reprogrammed stromal cell 

types, such as TECs could be treated with inhibitors against JAK-STAT (Ruxolitinib) and 

VEGF (bevacizumab, cabozantinib). CAFs could be treated with FAP inhibitors (PT-100, 

sibrotuzumab) or Nuclear receptor modulators (MORAb2, WYC-209). These SCS tools 

could greatly improve our ability to target reprogrammed cell types in the TME to improve 

the efficacy of cancer therapies (Abbosh et al., 2017).

Targeting Tumor Cells

ITH is common in solid tumors and therefore one single gene target detected by bulk 

sequencing may not be effective in all of the clones in the tumor mass (Alizadeh et al., 2015; 

McGranahan and Swanton, 2015). ITH can be resolved with scDNA-seq to reconstruct 

clonal lineages and identify mutations that are truncal (in all tumor cells), subclonal (shared 

in lineages) or private (exclusive to one clone) in the tumor lineages. Importantly, scDNA-

seq can reveal the combination of mutations in clones in the tumor mass, to know if certain 
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mutations are mutually exclusive or concurrent in the same tumor cells. Oncologists can use 

this data to guide treatment decisions on targeting mutations that are truncal, or specific to 

subpopulations that may have a higher risk for metastasis, therapeutic resistance or 

progression (Figure 3A). In AML, high-throughput scDNA-seq using a micro-droplet 

system was used to identify clonal remodeling in the context of therapy to determine 

relevant pathologic clones for therapeutic targeting in recurrent disease (Pellegrino et al., 

2018). Methods such as scRNA-seq of tumor cells can also play an important role in guiding 

therapy selection by providing phenotypic information on tumor cells and their signaling 

pathways to investigate heterogeneity in processes like EMT, proliferation, migration and 

apoptosis, (Dentro et al., 2018; Patel et al., 2014). Thus, SCS methods provide powerful 

tools to resolve clonal substructure in tumors and guide treatment decisions based on 

mutation co-occurrence and aberrant expression programs.

Non-invasive monitoring

The most advanced translational application of SCS methods has been in genomic analysis 

of CTCs to perform non-invasive monitoring of disease progression, detect the emergence of 

resistant clones and track minimal residual disease (MRD). In contrast to metastatic tissue 

biopsies, CTC analysis can provide a more holistic view of genomic aberrations across many 

organ sites and micrometastases. Further, these methods allow longitudinal measurements to 

track genomic changes within tumors cells in ‘real time’ during disease progression and 

treatment without invasive biopsies. In contrast to circulating tumor DNA (ctDNA) methods, 

CTCs can also resolve clonal diversity in the blood and provide information on RNA gene 

expression. In prostate cancer, the use of scDNA-seq methods to profile CTCs over time has 

been shown to be useful in detecting clonal and subclonal changes of CTCs that provide 

information on progression, regression, and the emergence of resistant disease (Alberter et 

al., 2016; Dago et al., 2014). CTCs from single time-point samples also have utility for 

predicting therapeutic response and clinical outcome. In a breast cancer study, scRNA-seq of 

CTCs identified over 17 breast cancer specific RNA signatures that were used to generate a 

score to predict clinical outcome and risk of progression (Kwan et al., 2018). Similarly, in 

prostate cancer two CTC scores for metastatic and localized sites were established using a 

gene signature that correlated with poor overall survival and early dissemination (Miyamoto 

et al., 2018). Thus, non-invasive monitoring and risk prediction of CTCs using SCS methods 

hold great potential for translation, where previous translational work has largely focused on 

CTC enumeration.

Conclusions

In closing, SCS technologies have already transformed many areas of cancer research and 

are poised to make an even bigger impact in the clinic. In the same way that NGS 

technologies have transformed modern oncology over the last decade, we expect that SCS 

methods will impact many areas of cancer medicine and will become a common tool in 

cancer hospitals. While the biggest barrier to implementing SCS studies broadly in hospitals 

is likely to be the implementation of RTD programs, the wealth of information that can be 

obtained from SCS analysis can easily justify these efforts. Emerging technologies including 

SCS spatial and multiomic methods will further expand the capabilities of SCS methods 
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over the next few years, and have a major impact on cancer research and clinical pathology. 

We expect that the implementation of SCS in cancer medicine over the next decade will lead 

to vast improvements in the diagnosis and treatment of cancer patients.
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Figure 1 –. Cancer Research Applications and Analyses
(A) Cancer research applications of SCS include investigating invasion in premalignant 

cancers, clonal evolution in primary tumors, the tumor microenvironment, metastatic 

dissemination and therapeutic resistance. (B) Biological analyses that can be performed 

using scRNA-seq and scATAC-seq methods include cell type identification, cell state 

analysis, gene signature and pathway analysis, expression subtype analysis, tumor lineage 

inference and cell-type specific differential expression (DE) analysis. (C) Biological analysis 

that can be performed using scDNA-seq data for copy number aberrations or mutations, 

include delineating clonal substructure, inferring clonal lineages, reconstructing tumor 

evolution and identifying mutation co-occurrence or mutual exclusivity. Matched samples 

for these analyses may include premalignant and invasive tumors, pre-treatment and post-

treatment samples, or primary and metastatic tumors.
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Figure 2 –. Compatibility of Clinical Tissues and Processing Logistics for SCS
(A) Clinical samples types for SCS may include FFPE tissues, snap-frozen tumors, 

cryostored viable cells and fresh tissues, and their compatibility with single cell and single 

nucleus sequencing assays is listed below. Asterisk indicates that single-nucleus RNA-seq of 

frozen tissues is highly dependent on the quality of the tissues. (B) Rapid tissue collection 

(RTC) program to procure fresh tissues collected after surgery or biopsy procedures for SCS. 

Optional steps include cryostorage of viable cell suspensions in freezing media and 

enrichment of cell types prior to running scRNA-seq assays.
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Figure 3 –. Clinical Applications of Single Cell Genomics
(A) Clinical areas that may benefit from SCS include early detection, improving clinical 

diagnostics & risk stratification, drug target discovery, targeting the tumor 

microenvironment, target selection for tumor cells and non-invasive monitoring. Red arrows 

in the tumor targeting panel indicate targeting of clonal or subclonal mutations (B) An 

example of profiling a patient’s tumor to identify reprogrammed cell types in the TME using 

scRNA-seq or scATAC-seq, followed by selecting specific drugs that target individual 

reprogrammed cell types in the TME to treat the patient.
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Table 1 -

Technologies for High-Throughput Single Cell Sequencing

Method Technology Name Platform Cost Chemistry References

scRNA-seq microdroplets 10X Genomics RNA commercial 10K $$$$ 3' or 5' Zheng et al. 2017

microdroplets Drop-seq research 10K $$ 3' Macosko et al. 2015

microdroplets Indrop research 10K $$ 3' Klein et al. 2015

nanowells Seq-Well research 10K $ 3' Gierahn et al. 2017

nanowells Takara Wafergen commercial 1.8K $$$$ 3', full-length Goldstein et al. 2017

nanowells cytoseq research 100K $$ 3' Fodor et al. 2015

FACS smart-seq2 research 384 $ full-length Ramskold et al. 2012

FACS sci-RNA-seq research 100K $$ 3' Cao et al. 2017

 

scEpigenomics microdroplets 10X Chromium ATAC commercial 10K $$$$ tagmentation Satpathy et al. 2019

FACS ATAC tagmentation research 384 $ tagmentation Buenrostro et al. 2015

FACS dscATAC-seq research 100K $ tagmentation Cusavonich et al. 2015

micromanipulation scRBBS research 100 $$ RBBS Guo et al. 2013

 

scDNA-seq microdroplets 10X Chromium CNV commercial 10K $$$$ MDA Andor et al. 2018

microdroplets Mission Bio Tapestri commercial 10K $$$ amplicon PCR Lan et al. 2017

nanowells Wafergen Takara commercial/res 1.8K $$$$ tagmentation Laks et al. 2019

Microfluidics tagmentation research 200 $$ tagmentation Zahn et al. 2017

FACS sci-seq research 100K $$ tagmentation Adey et al. 2017
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