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In the Beginning ...

Ernest Amory Codman was an early orthopaedic surgeon
and pioneer who proposed the End Results Idea in 1910
[5]. Codman’s goal was to document, report, and study
complications to predict and prevent these adverse out-
comes. Unfortunately, being ahead of his time did not help
Codman. He was ridiculed and ostracized by his col-
leagues, fell into poverty, and was buried in an unmarked
grave outside Boston. Codman’s work was unappreciated
in his time but forms the basis of modern clinical outcomes
research. Predictive analytics, as a subset of this field,
continues with great vigor today.

The Argument

It is difficult to find an orthopaedic journal issue without a
study on the development or validation of a clinical pre-
diction model. This rise in predictive analytics has been fed
by an increase of information in electronic health records,
national databases, clinical trial registries, wearable sen-
sors, and “omics” repositories (such as patient data bio-
banks with information such as genomics and proteomics)
[8, 33, 36, 43]. Although the volume of clinical prediction
modeling has unequivocally increased, the quality and impact
of this acceleration remains to be standardized [10, 27, 37].
Variable quality creates a need for readers to quickly de-
termine the reliability and expected utility of the growing
number of new and existing models. As such, the purpose of
this article was to discuss core standards for assessing the
performance of predictivemodels, discuss specific challenges
for predictive modeling with machine learning, and propose
an informal checklist for clinical readers. The checklist and
standards discussed here may be helpful for readers to de-
termine when to be skeptical of clinical prediction models.

Essential Elements

The views expressed in this article are based on a review of
clinical predictionmodels published in general orthopaedic
journals such as Clinical Orthopaedics and Related
Research®, the Journal of Bone and Joint Surgery,
American Volume, and the Bone and Joint Journal, among
others, as well as subspecialty journals such as The Spine
Journal and the Journal of Arthroplasty. We did not
conduct a systematic review or study-by-study formal as-
sessment of quality with tools such as the Transparent
Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis guidelines, the Grading
of Recommendations, Assessment, Development, and
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Evaluations criteria, or the Methodological Index for
Nonrandomized Studies checklist. Readers should in-
terpret the comments and recommendations presented here
with an understanding of this limitation.

What We (Think) We Know

The goal of predictive analytics is to transform patterns in
the information available today into a forecast for the fu-
ture. The hope is to answer questions such as: What is the
likelihood of 90-day survival for a 58-year-old man with
metastatic lung cancer and pathologic femur fracture [41]?

The following organizing questions may help orient
readers to make the best use of predictive analytics
research.

Will the Predictions of this Model Reflect the Actual
Outcomes of My Patients?

The output of a clinical prediction model is a predicted
probability for the outcome that ranges from 0 to 1 (or a
percentage ranging from 0 to 100). In oncology, a model
may predict a 40% chance (or 0.4 probability) that a
patient with metastatic cancer will die within 90 days.
Intuitively, clinicians would expect that for every 100
patients predicted to have a 40% chance of mortality, 40
will have died at the 90-day interval and 60 will survive.
This measure of model performance is calibration [1].
Unfortunately, only a few studies have reported model
calibration [4, 9, 44].

Among studies that reported measures of calibration,
the variety of calibration metrics poses an additional
challenge for readers trying to judge the quality of a
model. Fundamentally, readers should ask: Does the
presented mode of calibration allow for a transparent
examination of model performance across the full range
of predicted probabilities [37]? That is, is the model as
reliable when it predicts a 10% probability of mortality as
when it predicts a 70% probability of mortality? One re-
liable way to answer this question is with a calibration plot
(Fig. 1), which shows the observed proportion of patients
who experienced the outcome (death) over the range of
predicted probability of mortality. Calibration plots help
clinicians determine whether models overestimate or
underestimate the outcome. The plot also highlights when
the model is more or less reliable. For example, the pre-
dicted probability of mortality may reflect the actual
(observed) rates of mortality for patients with a predicted
probability of mortality that is less than 25%. However,
for patients with a predicted probability of mortality
greater than 25%, the model may not be well-calibrated or
reliable for the primary purpose of the study.

Does Having a Model for This Outcome Add Any New
Information for Clinical Decision-making, and if so,
How Much?

Accuracy and area under the receiver operating character-
istic curve are not enough. Most outcomes in medicine are
asymmetric or imbalanced. For example, 30-day mortality
in spinal metastatic disease occurs in a minority of patients:
approximately 10% [20]. In the absence of any data,
models would be correct in 90% of patients by predicting
that every patient will survive beyond 30 days. As out-
comes become more imbalanced (a minority event occurs
in < 10%, < 5%, or < 1% of patients), the model’s accuracy
becomes less and less meaningful. Here, accuracy refers to
the percentage of correct predictions (true positives plus
true negatives divided by the total number of patients).

Alternatively, the area under the receiver operating
characteristic (AUC) curve is a summary measure of model
performance that ranges from 0 to 1 [12, 13]. The AUC
curve is a measure of model discrimination that represents
the likelihood the model will distinguish patients who
survived from those who died. It does not provide the
probability of an outcome, nor does it provide the accuracy
of probabilities professed by the model. The threshold for
no information in this score is often set at 0.50—a likeli-
hood equal to a coin toss or pure chance that the model
distinguishes between patients who survived and died.
Interpretation of the AUC has been simplified as: 0.51 to
0.69 is poor, 0.70 to 0.79 is fair, 0.80 to 0.89 is good, and
0.90 to 0.99 is excellent [7, 12, 13]. However, these
thresholds are oversimplified and potentially misleading.
The AUC curve is sensitive to imbalanced data [12, 39].
The AUC curve may appear in the fair, good, or excellent
range without correctly identifying a model that provides
meaningful or new information for the outcome of interest.
Furthermore, when comparing two models, an observer

Fig. 1 An example of a calibration plot is shown here.
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should resist the temptation to select the model with the
higher AUC value without assessing other critical attrib-
utes such as calibration. For example, consider an illus-
trative example of a model that has an AUC of 0.91 but
poor calibration (Fig. 2). Possible tools to mitigate the
imbalanced data limitations of the AUC and shed another
light on the discrimination of these models may be area
under the precision-recall curve and the F1-score.

Another alternative for clinicians is to estimate that
every patient has a 10% probability of mortality based on
the prevalence of mortality in this population. This type of
prediction is referred to as the “null model” and represents
the threshold of no new information [37]. To formalize the
performance of this prediction, we can calculate the error
between this prediction and the observed outcome for each
patient. The formal metric for expressing this error is the
Brier score (the mean squared error between the model
predictions and the observed outcomes) [6]. Ideally, there
would be zero error between the predictions and outcomes,
resulting in a perfect Brier score of 0. At the opposite ex-
treme, the Brier score for the “null model” expresses the
error for models adding no new information. That is,
clinical prediction models should achieve a Brier score at
least lower than the null-model Brier score.

Do Decisions Made Based on the Algorithm’s
Predictions Do More Harm Than Good?

The result of using any model is a decision: the binary de-
termination (yes or no) of whether to change any part of the
default planned management strategy for that patient [48].
The management change may be nonoperative care instead
of surgery. The change may be a preoperative psychiatric
intervention instead of or in addition to usual preoperative
care. Clinical prediction models identify patients who are
most likely to benefit from management changes.

In the absence of clinical prediction models, two default
strategies for decisions are either changingmanagement for
no patients or changing management for all patients. True
positives (benefit) are achieved when decisions made on
the basis of the model’s predictions result in the expected
outcome; for example, not operating on a patient with 80%
chance of 90-day mortality and that patient dying 3 weeks
after evaluation. False positives (harm) represent the op-
posite outcome; for example, not operating on a patient
with 80% chance of 90-day mortality but that patient living
for another 9 months. Changing management for no patients
results in zero benefit and zero harm. Changing management
for all patients results in a benefit for some patients (true
positives) and harm for others (false positives). The amount
of benefit and harm generated by changing management for
all patients depends on the value of true positives relative to
false positives. Cost or harm in decision curve analysis refers
to the adverse outcome generated by making a decision for a
patient with a false positive prediction and may be patient
harm or economic costs. If the cost of false positives is very
low (that is, false positives are worth much less than true
positives), changing management for all patients may be the
best strategy. An example of this is the management change
of universal methicillin-resistant Staphylococcus aureus de-
colonization before surgery. The risk of treating patients who
are not actually carrying methicillin-resistant S. aureus is
relatively low and changing management for all patients
(decolonizing all patients) may be the best strategy.
However, if the intendedmanagement change has a high cost
for false positives (for example, withholding life-saving in-
tervention) changing management for no patients may be the
best strategy. These two alternatives represent the default
states in decision curve analysis.

To express this tradeoff in a single metric, the net benefit
provides a common language for determining the impact of
decisions. The net benefit is a weighted sum of true pos-
itives and false positives. As seen above, the relative value
of true positives to false positives depends on the proposed
management change. The relative value also depends on
the individual clinician and patient. When developing
predictive models, it is impossible to know individual
preferences or to incorporate all possible management
changes. As such, a decision curve analysis calculates the
expected net benefit of the model over the full-range of
predicted probabilities [15, 38, 48]. At a minimum, clini-
cians should determine whether the clinical prediction
models they plan to use for management changes offer
greater net benefit than the two default options outlined
above (treating all patients or treating no patients).
Clinicians can determine this by examining the decision
curve analysis plots for a proposed clinical prediction
model (Fig. 3). For example, they might consider a man-
agement change such as sending visiting nurses to patient
homes after surgery to prevent readmission. Hospital

Fig. 2 This figure demonstrates an example of amodel with poor
calibration despite excellent discrimination (c-statistic of 0.91).
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resources are limited and the true positive of correctly iden-
tifying and preventing readmission is likely worth more than
the false positive of incorrectly identifying a patient who
would not have been readmitted and thus incorrectly using
nursing resources for that patient. One might determine that
the value of sending nursing resources and preventing
readmission is four times as valuable as incorrectly sending
nursing resources to a patient who would not have had a
readmission regardless of the nursing resources. This
represents a cost-to-benefit ratio (relative weight) of 1:4
(correctly preventing readmission is worth four times as
much as incorrectly sendingnursing resources). The equation
that relates threshold probabilities to relative weights is:

relative weight =
threshold probability

12 threshold probability

Therefore, a cost-to-benefit ratio of 1:4 represents a
threshold probability of 0.20. In other words, 0.20 divided by
(1 minus 0.20) results in relative weight of 1:4. The threshold
probability refers to the level above which one would change
treatment. One should use decision curves with a specific
threshold range in mind. In this case, clinicians can determine
whether themodel they are using offers any utility by selecting
0.20 on the x-axis of the decision curve and examining which
strategy results in the greatest net benefit. If the clinical pre-
diction model results in less net benefit than the default strat-
egies (changing management for all patients or none) at that
threshold, clinicians are better off without the model.

If the Study Uses Machine Learning or Artificial
Intelligence, What Additional Factors Should
I Demand?

Model explanations should be required for machine
learning algorithms. Unlike regression modeling, machine

learning algorithms do not provide relative risk or odds
ratios for individual variables that constitute the overall
prediction model. Machine learning algorithms often ap-
pear to clinicians as a “black box” [32]. Some even have
suggested that these algorithms are reported to be too com-
plex for simplification into transparent and interpretable
models [25]. In fact, an inspection of the process by which
machine learning algorithms make predictions can increase
accountability for these algorithms [3]. At the overall study
population level, global variable importance plots can show
which variables are used bymachine learning algorithms for
predicting outcomes and they can show the relative impor-
tance of each variable (Fig. 4) [18, 23, 24, 34, 40]. At the
individual-patient level, local explanations can show which
specific variables increased or decreased the estimated
likelihood of the outcome and how much each factor con-
tributed to the overall prediction (Fig. 5) [24, 31, 32].
Furthermore, to explain the impact of individual variables,
explanation plots can be created that show how the model
predictions change over the full range of the input variables
(Fig. 6) [16, 17]. Inspecting explanation plots allows clini-
cians to determine the reliability of machine learning pre-
dictions and to intervene in factors that may be modifiable.
Furthermore, inspecting explanations of the model pre-
dictions allows clinicians to determine whether these algo-
rithms are overfitting and memorizing the data available as
opposed to learning generalizable patterns. If the algorithms
ignore well-established predictors of the primary outcome
but index heavily on other factors that may be idiosyncratic
to the population used for developing the model, clinicians
should be wary of the potential for generalizability of these
models on external validation.

Is There a Usable Tool Included in the Manuscript?

Clinical prediction models (including machine learning
algorithms) should be accessible to clinicians. Regression

Fig. 3 An example of decision curve analysis is shown here.

Fig. 4 This figure provides an example of global relative var-
iable importance plot.

Volume 478, Number 12 Clinicians’ Guide to Clinical Prediction Models 2725

Copyright © 2020 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.



models are reported as odds ratios, risk scores, or nomo-
grams. These can be used by clinicians directly from
published studies. However, machine learning algorithms
cannot be reported in this way, and as such, have no
clinical utility from a published study alone. These
models must be deployed as freely accessible digital
applications for clinicians to be able to use the algorithms
in practice [20, 42]. By including access to the digital
application as part of a published study, the developers of
machine learning algorithms are required to meet at least
the minimum standards for usability achieved by the
developers of regression models. In addition, model pre-
dictions are the most helpful when provided with model
explanations. Creating freely accessible tools that provide
both predictions and local explanations for complex
modeling strategies should be minimal standards for
publishing machine learning-based clinical predictions
models.

Knowledge Gaps and Unsupported Practices

The model performance assessments described above may
not be sufficient for detecting uninformative or harmful
algorithms [33]. Recent work has shown that models de-
rived from measures of retrospective resource use may
discriminate against minorities [29]. There are very few
randomized prospective trials that compare the real-world
impact of decisions made based on algorithms with the
default state of no algorithms [28, 30, 33].

If model performance is only demonstrated on pop-
ulations similar to the developmental cohort, the gener-
alizability of the clinical prediction models for other
populations remains to be proven [11, 14, 35]. Models
that show excellent performance on internal validation
may be overfit to the available data and experience sig-
nificant performance degradation when externally vali-
dated [35]. Furthermore, even with internal validation, if
model performance is only shown on the same population

used to train the model without evaluation in an in-
dependent testing set, there is insufficient evidence to
support the model generalizability, and there is potential
for overfitting. Studies that develop clinical prediction
models (traditional or machine learning) may neglect to
report how much missing data were present in the pop-
ulation and how the missing data were handled. A com-
plete case analysis often introduces bias and multiple
imputation is preferred [2, 19].

Clinicians should critically examine the baseline char-
acteristics of the study population. Studies using pop-
ulations with data that were not collected for studying the
specific outcome of interest may lack variables previously
established as risk factors for that outcome. Clinicians
should be wary of clinical prediction models that have not
considered variables that have a clearly established asso-
ciation with the primary outcome. Attention has previously
been drawn to the problems of sparse data and readers
should be skeptical of sparse data in clinical prediction
models as well.[21]

For simplification, in this article, we focused on binary
outcomes when discussing clinical prediction models.
However, these principles directly translate to models
seeking to predict multicategory variables and continuous
variables. The specific measures used in these contexts are
extensions of the measures discussed here and include
multiclass metrics for discrimination and calibration,
among others [22, 45-47].

Barriers and How to Overcome Them

Several authors have called for increased oversight and
standardized of predictive models [10, 26, 33]. The

Fig. 5 An example of local variable importance plot for in-
dividual patient-level explanation is offered here.

Fig. 6 This figure shows an example of a partial dependence
plot.
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Transparent Reporting of aMultivariable PredictionModel
for Individual Prognosis or Diagnosis-Machine Learning
(TRIPOD-ML) guidelines were recently proposed [10] and
will further help guide the future of this field. In the interim,
to give clinicians an informal checklist for determining the
reliability of clinical prediction models, we suggest the
following questions:

Will the Predictions of this Model Reflect the Actual
Outcomes of my Patients?

Does the study correctly report the type of validation (in-
ternal or external) used? Was the model performance
demonstrated in an independent population not used to
derive the model? Do baseline variables collected for the
population reflect those in existing studies? Were missing
data reported and appropriately managed? Was a calibra-
tion plot provided? Is my patient population similar to the
those on which the model was built? Is there evidence of
sparse-data bias?

Does Having a Model for This Outcome Add Any New
Information for Clinical Decision-making, and if so,
How Much?

Are measures of model performance other than accuracy
and the AUC reported? What is the null-model Brier score
for this outcome and was it reported? Was the final model
Brier score less than the null-model Brier score? Was a
decision curve analysis provided?

If the Study Uses Machine Learning or Artificial
Intelligence, What Additional Factors Should
I Demand?

If machine learning was used, were global (that is, overall
study patient population-level) explanations provided? If
machine learning was used, were local (such as, individual
patient-level) explanations provided? In the absence of
understanding the critical determinants of an ML-
generated model, it would not be advisable for a clinician
to depend on its recommendations.

Is There a Usable Tool Included in the Manuscript?

If conventional predictive modeling, was a risk score or
nomogram provided? If machine learning was used, was a
usable tool such as an accessible digital application pro-
vided? Does the usable tool offer both individual patient-
level predictions and explanations?

5-year Forecast

We speculate that the rising popularity of predictive
modeling will require clinicians to become more sophisti-
cated users of these technologies. Ongoing efforts to create
new standards will lead to improvements in the reporting
and clinical utility of artificial intelligence models. Digital
transformation of patient-physician interactions will lead to
the incorporation of predictive algorithms as automated
decision aids in the clinical workflow. Ongoing skepticism
in the development of new algorithms and vigilance in
assessing existing algorithms will be required to realize the
full potential of Codman’s End Results idea.
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