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Abstract 28 

Spillback transmission from humans to animals, and secondary spillover from animal hosts back 29 

into humans, have now been documented for SARS-CoV-2. In addition to threatening animal 30 

health, virus variants arising from novel animal hosts have the potential to undermine global 31 

COVID-19 mitigation efforts. Numerous studies have therefore investigated the zoonotic 32 

capacity of various animal species for SARS-CoV-2, including predicting both species’ 33 

susceptibility to infection and their capacities for onward transmission. A major bottleneck to 34 

these studies is the limited number of sequences for ACE2, a key cellular receptor in chordates 35 

that is required for viral cell entry. Here, we combined protein structure modeling with machine 36 

learning of species’ traits to predict zoonotic capacity of SARS-CoV-2 across 5,400 mammals. 37 

High accuracy model predictions were strongly corroborated by in vivo empirical studies, and 38 

identify numerous mammal species across global COVID-19 hotspots that should be prioritized 39 

for surveillance and experimental validation.  40 
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 41 

Introduction  42 

The ongoing COVID-19 pandemic has surpassed 2.4 million deaths globally as of 17 43 

February 2021 (Dong et al., 2020; WHO, 2021). Like previous pandemics in recorded history, 44 

COVID-19 originated from the spillover of a zoonotic pathogen, SARS-CoV-2, a betacoronavirus 45 

originating from an unknown animal host (Gage and Kosoy, 2005; Keele et al., 2006; 46 

Taubenberger et al., 2005; P. Zhou et al., 2020). The broad host range of SARS-CoV-2 is due in 47 

part to its use of a highly conserved cell surface receptor to enter host cells, the angiotensin-48 

converting enzyme 2 receptor (ACE2) (Letko et al., 2020). This receptor is found in all major 49 

vertebrate groups (Chou et al., 2006).  50 

 51 

The ubiquity of ACE2 coupled with the high prevalence of SARS-CoV-2 in the global 52 

human population explains multiple observed spillback infections in the past year. In spillback 53 

infection, human hosts transmit SARS-CoV-2 virus to cause infection in non-human animals. In 54 

addition to threatening wildlife and domestic animals, repeated spillback infections may lead to 55 

the establishment of new animal hosts from which SARS-CoV-2 can continue to pose a risk of 56 

secondary spillover infection to humans through bridge hosts (e.g., (Guth et al., 2019) or newly 57 

established enzootic reservoirs. Indeed, this risk has already been realized in Denmark (WHO, 58 

2020) and The Netherlands, where SARS-CoV-2 spilled back from humans to farmed mink 59 

(Neovison vison) and a variant of SARS-CoV-2 was subsequently transmitted from mink back to 60 

humans (Oude Munnink et al., 2020). This exemplifies a major concern in these secondary 61 

spillover events, where a mutant strain arising somewhere along the transmission chain (Garry, 62 

2021; Oude Munnink et al., 2020) affects host range (Rodrigues et al., 2020) or leads to distinct 63 

epidemiology in humans (e.g., via increased transmissibility among humans (Davies et al., 64 

2020; Volz et al., 2021), but see (Rambaut et al., 2020; Tegally et al., 2020)). Preliminary 65 

evidence shows that the mink-derived variant exhibits moderately reduced sensitivity to 66 

neutralizing antibodies (WHO, 2020), raising concerns that humans may eventually experience 67 

more virulent infections from spillback variants, and that vaccines may eventually become less 68 

efficient at conferring immunity to variants (Van Egeren et al., 2020).  69 

 70 

Spillback infections are already occurring worldwide. In addition to secondary spillover 71 

infections from mink farms, SARS-CoV-2 has been found for the first time in wild and escaped 72 

mink in multiple states in the United States, with viral sequences confirming that the SARS-CoV-73 

2 variant from wild mink was identical to that found in nearby farmed mink (DeLiberto and 74 

Shriner, 2020; ODA, 2020; Shriner et al., 2021). A variety of pets, domesticated animals, zoo 75 

animals, and wildlife have also been documented as new hosts of SARS-CoV-2 (Table 1). The 76 

increasing range of known hosts for SARS-CoV-2 and the global scale of human infections 77 

signal that SARS-CoV-2 will continue to establish new enzootic infection cycles in animals, 78 

making ongoing disease control more costly and difficult. In response, recent computational 79 

studies make predictions about animal species that are most likely to be susceptible to SARS-80 

CoV-2 (Ahmed et al., 2021; Damas et al., 2020; Huang et al., 2020; Kumar et al., 2020; S. D. 81 

Lam et al., 2020; Liu et al., 2020; Luan et al., 2020; Mathavarajah et al., 2020; Melin et al., 82 

2020; Rodrigues et al., 2020). These studies compare sequences of ACE2 orthologs among 83 
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species (sequence-based), or model the structure of the viral spike protein bound to ACE2 84 

orthologs (structure-based) and yield a wide range of predictions about species susceptibility to 85 

SARS-CoV-2 infection. These different approaches show varying degrees of agreement with 86 

laboratory animal experiments (Figure 1).  87 

 88 

 89 

Table 1. Species with confirmed suitability for SARS-CoV-2 infection from natural infections or in vivo 90 

experiments. Asterisks reference species with infection status from preprints (not yet peer-reviewed). 91 

Some species (e.g, dogs) with natural infection studies also have in vivo experimental studies. 92 

Species Susceptibility Study type Location References 

Cow  

(Bos taurus) Yes In vivo experiment Lab (Ulrich et al., 2020) 

Dog  

(Canis lupus 

familiaris) Yes Natural infection 

Multiple 

countries 

(Hamer et al., 2020; OIE, 2021; Shi et 

al., 2020; Sit et al., 2020; USDA, 2020) 

African green monkey 

(Chlorocebus 

aethiops) Yes In vivo experiment Lab (Woolsey et al., 2020) 

Big brown bat 

(Eptesicus fuscus) No In vivo experiment Lab (Hall et al., 2020) 

Cat  

(Felis catus) Yes 

Natural 

infection 

Multiple 

countries 

(Hamer et al., 2020; OIE, 2021; USDA, 

2020; Zhang et al., 2020) 

Gorilla  

(Gorilla gorilla) Yes Natural infection Zoo (San Diego Zoo, 2021) 

Crab-eating macaque 

(Macaca fascicularis) Yes In vivo experiment Lab (Rockx et al., 2020) 

Rhesus macaque 

(Macaca mulatta) Yes In vivo experiment Lab (Munster et al., 2020) 

Golden hamster 

(Mesocricetus 

auratus) Yes In vivo experiment Lab (Sia et al., 2020) 

House mouse  

(Mus musculus) No In vivo experiment Lab  (Bao et al., 2020) 

Ferret  (Mustela 

putorius furo) Yes In vivo experiment Lab (Shi et al., 2020) 

American mink 

(Neovison vison) Yes Natural infection 

Multiple 

countries 

(OIE, 2021; Oreshkova et al., 2020; 

USDA, 2020) 
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Raccoon dog 

(Nyctereutes 

procyonoides) Yes In vivo experiment Lab (Freuling et al., 2020)  

European rabbit 

(Oryctolagus 

cuniculus) Yes In vivo experiment Lab (Mykytyn et al., 2021) 

Lion  

(Panthera leo) Yes Natural infection 

Multiple 

countries (Bartlett et al., 2021; OIE, 2021) 

Tiger  

(Panthera tigris) Yes Natural infection 

USA and 

Sweden 

(Bartlett et al., 2021; OIE, 2021; USDA, 

2020; Wang et al., 2020) 

Deer mouse 

(Peromyscus 

maniculatus)* Yes In vivo experiment Lab (Fagre et al., 2020; Griffin et al., 2020),  

Cougar  

(Puma concolor) Yes Natural infection South Africa (OIE, 2021) 

Egyptian fruit bat 

(Rousettus 

aegyptiacus) Yes In vivo experiment Lab (Schlottau et al., 2020) 

Pig  

(Sus scrofa) No In vivo experiment Lab (Schlottau et al., 2020; Shi et al., 2020) 

Northern treeshrew 
(Tupaia belangeri) Yes In vivo experiment Lab (Zhao et al., 2020) 

Snow leopard  
(Uncia uncia) Yes Natural infection Zoo (Louisville Zoo, 2020) 

 93 

 94 

 95 
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 96 
Figure 1. A heatmap summarizing predicted susceptibility to SARS-CoV-2 for species with confirmed 97 
infection status from in vivo experimental studies or documented natural infections. Studies that make 98 
predictions about species susceptibility are shown in the x-axis, organized by method of prediction (those 99 
relying on ACE2 sequences, estimating binding strength using three dimensional structures, or laboratory 100 
experiments). Predictions about zoonotic capacity from this study are listed in the second to last column, 101 
with high and low categories determined by zoonotic capacity observed in Felis catus. Confirmed 102 
infections for species along the y-axis are summarized in (Gryseels et al., 2020) and are depicted as a 103 
series of filled or unfilled circles. Bolded species have been experimentally confirmed to transmit SARS-104 
CoV-2 to naive conspecifics. Species predictions ranged from warmer colors (yellow: low susceptibility or 105 
zoonotic capacity for SARS-CoV-2) to cooler colors (purple: high susceptibility or zoonotic capacity). See 106 
supplementary file 1 for detailed methods about study categorization.  107 
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Sequence-based studies 108 

Studies predicting host susceptibility based on amino acid sequence similarity between 109 

human (hACE2) and non-human ACE2 assume that a high degree of similarity is correlated with 110 

viral binding, especially at amino acid residues where hACE2 interacts with the SARS-CoV-2 111 

spike glycoprotein. For some species, such as rhesus macaques (Deng et al., 2020), these 112 

qualitative predictions are borne out by in vivo studies (Figure 1) but predictions from these 113 

methods do not consistently match real-world outcomes. For example, sequence similarity 114 

predicted weak viral binding for minks and ferrets, which have all been confirmed as highly 115 

susceptible, with minks capable of onward transmission to conspecifics (Damas et al., 2020; 116 

Oude Munnink et al., 2020; Shi et al., 2020) (Figure 1). These mismatches to experimental or 117 

real-world outcomes may arise in part because protein three-dimensional structure, the main 118 

determinant of protein function, is robust to changes in amino acid sequence (Rodrigues et al., 119 

2013; Sander and Schneider, 1991). As such, sequence alone does not capture the details of 120 

the ACE2 receptor interaction with the SARS-CoV-2 spike protein. 121 

Structure-based studies 122 

Modeling the three-dimensional structure of protein-protein complexes addresses some 123 

of the limitations of sequence-based approaches, and has proven useful to predict how different 124 

ACE2 orthologs bind to the SARS-CoV-2 viral spike protein receptor-binding domain (RBD) (S. 125 

D. Lam et al., 2020; Rodrigues et al., 2020). They can also be used to identify ACE2 amino acid 126 

residues essential for a productive interaction with the viral RBD, and thus improve predictive 127 

models of susceptibility through structure-based inference (Rodrigues et al., 2020). These 128 

studies leveraged known structures of the hACE2 receptor bound to the SARS-CoV-2 RBD and 129 

used powerful simulation methods to predict how variation across different ACE2 orthologs 130 

affects binding to the viral RBD. While these approaches successfully predicted strong binding 131 

for species that have been infected (e.g. domestic cat, tiger, dog, and ferret), the results are 132 

also not consistently supported by experiments. For instance, while guinea pig ACE2 scored 133 

favorably among susceptible species in one of the studies (Rodrigues et al., 2020), this ortholog 134 

was shown experimentally not to bind to the SARS-CoV-2 RBD (Li et al., 2020).  135 

Although structural modeling has produced the most accurate results to date, all 136 

currently available approaches for predicting the host range of SARS-CoV-2 are fundamentally 137 

constrained by the availability and quality of ACE2 sequences. ACE2 is ubiquitous across 138 

chordates, likely because of its role in several highly conserved physiological pathways 139 

(Fournier et al., 2012). Because it is so highly conserved, the majority of mammal species 140 

(>6,000 species) are likely to have ACE2 receptors, but there are many fewer sequences 141 

available from which to make predictions using existing modeling methods (~300 species). The 142 

functional importance of the ACE2 receptor suggests that it has evolved in association with 143 

other intrinsic organismal traits that are more easily observed and for which data are more 144 

widely available. These suites of correlated organismal traits may provide a robust statistical 145 

proxy that can be leveraged to predict suitable hosts for SARS-CoV-2. Previous trait-based 146 

analyses applied statistical (machine) learning techniques to accurately distinguish the zoonotic 147 

capacity of various organisms (Han et al., 2020, 2015; Yang and Han, 2018), and predict likely 148 

hosts for particular groups of related viruses (Han et al., 2019, 2016), predictions which have 149 
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subsequently been validated through independent laboratory and field investigations (e.g., 150 
(Goldstein et al., 2018; Yang et al., 2017)). 151 
 152 

Here, we combine molecular structural modeling of viral binding with machine learning of 153 
species-level traits to generate predictions about species’ zoonotic capacity for SARS-CoV-2 154 
virus across over 5000 mammal species, expanding our predictive capacity by an order of 155 
magnitude (Figure 2). Crucially, this combined approach enables predictions for species whose 156 
ACE2 sequences are not available by leveraging information available from viral binding 157 
dynamics and biological traits of potential hosts. In our workflow (Figure 2), we first carry out 158 
structural modeling to quantify the binding strength of SARS-CoV-2 RBD for vertebrate species 159 
using published ACE2 amino acid sequences (Sorokina et al., 2020). We then collate species 160 
traits and apply machine learning to predict zoonotic capacity for 5,400 mammal species, 161 
determined by a conservative threshold of susceptibility and onward transmission capacity of 162 
SARS-CoV-2 reported by in vivo studies. Because COVID-19 is, at this time, primarily a disease 163 
affecting humans, spillback infection of SARS-CoV-2 from humans to animals is the most likely 164 
mode by which new host species will become established. Among mammal species with the 165 
highest predicted zoonotic capacity for SARS-CoV-2, we identify a subset of species for which 166 
the threat of spillback infection appears greatest due to geographic overlaps and opportunities 167 
for contact with humans in areas of high SARS-CoV-2 prevalence globally.  168 

 169 
Figure 2. A flowchart showing the progression of our workflow combining evidence from limited lab and 170 
field studies with additional data types to predict zoonotic capacity across mammals through multi-scale 171 
statistical modeling (gray boxes, steps 1-5). For all vertebrates with published ACE2 sequences, we 172 
modelled the interface of species' ACE2 bound to the viral receptor binding domain using HADDOCK. We 173 
then combined the HADDOCK scores, which approximate binding strength, with species’ trait data and 174 
trained machine learning models for both mammals and vertebrates (yellow boxes). Mammal species 175 
predicted to have high zoonotic capacity were then compared to results of in vivo experiments and in 176 
silico studies that applied various computational approaches. We then identified a subset of species with 177 
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particularly high risk of spillback and secondary spillover potential to prioritize additional lab validation and 178 

field surveillance (dashed line). 179 

 180 

 181 

Methods 182 

Protein sequence and alignment  183 

We assembled a dataset of ACE2 NCBI GenBank accessions that are known human 184 

ACE2 orthologs or have high similarity to known orthologs as determined using BLASTx 185 

(Altschul et al., 1990). Using the R package rentrez and the accession numbers, we 186 

downloaded ACE2 protein sequences (Winter, 2017). We supplemented these sequences by 187 

manually downloading four additional sequences from the MEROPS database (Rawlings et al., 188 

2018).  189 

Structural Modeling of ACE2 orthologs bound to SARS-CoV-2 spike 190 

The modeling of all 326 ACE2 orthologs bound to SARS-CoV-2 spike receptor binding 191 

domain was carried out as described previously (Rodrigues et al., 2020), with a few differences. 192 

In short, sequences of ACE2 orthologs were aligned using MAFFT (Katoh et al., 2002) and 193 

trimmed to the region resolved in the template crystal structure of hACE2 bound to the SARS-194 

CoV-2 spike (PDB ID: 6m0j, (Lan et al., 2020). Ambiguous positions in each sequence, artifacts 195 

of the sequencing method, were replaced by Glycine to minimize assumptions about the nature 196 

of the amino acid side-chain but still allow for modeling. For each ortholog, we generated 10 197 

homology models using MODELLER 9.24 (Sali and Blundell, 1993; Webb and Sali, 2016), with 198 

restricted optimization (fastest schedule) and refinement (very_fast schedule) settings, and 199 

selected a representative model based on the normalized DOPE score. These representative 200 

models were then manually inspected and 27 were removed from further analysis due to large 201 

insertions/deletions or to the presence of too many ambiguous amino acids at the interface with 202 

spike. Each validated model was submitted for refinement to the HADDOCK web server (van 203 

Zundert et al., 2016), which ran 50 independent short molecular dynamics simulations in explicit 204 

solvent to optimize the interface between the two proteins. For each one of the animal species 205 

in our study, we assigned an average and standard deviation of the scores of the 10 best 206 

refined models, ranked by their HADDOCK score -- a combination of van der Waals, 207 

electrostatics, and desolvation energies. A lower (more negative) HADDOCK score predicts 208 

stronger binding between the two proteins. We hereafter refer to predicted binding strength, or 209 

simply binding strength, to indicate HADDOCK score. The HADDOCK server is freely available, 210 

and we provide code to reproduce analyses or to aid in the application of this modeling 211 

approach to other similar problems (https://zenodo.org/record/4517509).  212 

Trait data collection and cleaning 213 

We gathered ecological and life history trait data from AnAge (de Magalhães and Costa, 214 

2009), Amniote Life History Database (Myhrvold et al., 2015), and EltonTraits (Wilman et al., 215 

2014), among other databases (supplementary file 2, Table 1; for details on data processing, 216 
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see supplementary file 1 Methods). Using these data, we engineered additional traits that have 217 

shown importance in predicting host-pathogen associations in other contexts. For example, as a 218 

measure of habitat breadth (Dallas et al., 2017), we computed for each species the percentage 219 

of ecoregions it occupies. To assess the influence of sampling bias across species, we used the 220 

wosr R package (Baker, 2018) to count the number of studies returned in a search in Web of 221 

Science for each species’ Latin binomial and included this as a proxy for sampling bias in our 222 

model.    223 

Modeling 224 

Structure-based modeling of binding strength.  We began by modeling predicted binding 225 

strength for vertebrates, using boosted regression tree (BRT) models, an ensemble machine 226 

learning approach that accommodates non-random patterns of missing data, nonlinear 227 

relationships, and interacting effects among predictors. In a BRT model, a sequence of 228 

regression models are fit by recursive binary splits, with each additional regression modeling 229 

data that were poorly accounted for by the previous regression iterations in the tree (Elith et al., 230 

2008). All BRT models were performed using the gbm package in R version 4.0.0 (Greenwell et 231 

al., 2020; R Core Team, 2020). 232 

 233 

Quantifying a threshold for zoonotic capacity.  While ACE2 binding is necessary for viral 234 

entry into host cells, it is not sufficient for SARS-CoV-2 transmission. Multiple in vivo 235 

experiments suggest that not all species that are capable of binding SARS-CoV-2 are capable 236 

of transmitting active infection to other individuals (e.g., cattle, Bos taurus, (Ulrich et al., 2020); 237 

pigs, Sus scrofa, (Li et al., 2020)). Viral replication, and infectious viral shedding that enables 238 

onward transmission, are both required for a species to become a suitable bridge or reservoir 239 

species for SARS-CoV-2. In order to constrain our predictions to species with the potential to 240 

perpetuate onward transmission, we trained our models on a conservative threshold of binding 241 

strength (HADDOCK score = -129). Binding strength was binarized according to this threshold, 242 

above which it is more likely that both infection and onward transmission will occur following the 243 

results of multiple empirical studies (Table 1). This value is between the scores for two species: 244 

the domestic cat (Felis catus), which is currently the species with weakest predicted binding with 245 

confirmed conspecific transmission (Bosco-Lauth et al., 2020), and the pig (Sus scrofa), which 246 

shows the strongest estimated binding for which experimental inoculation failed to cause 247 

detectable infection (Shi et al., 2020). We note that there are species confirmed to be 248 

susceptible to SARS-CoV-2 whose predicted binding strength is weaker than cats, but 249 

conspecific transmission has not been confirmed in these species. While it is likely that 250 

intraspecific transmission will be reported for additional species, the binding strength selected 251 

for this analysis represents an appropriately conservative threshold based on currently available 252 

evidence. For additional modeling details, see supplementary file 1 Methods. 253 

 254 

In addition, per-residue energy decomposition analysis of HADDOCK scores for 29 255 

species indicated that all species with strong predicted binding had in common a salt bridge 256 

between SARS-CoV-2 K417 and a negatively charged amino acid at position 30 in the ACE2 257 

sequence (Rodrigues et al., 2020). Given the apparent effect of amino acid 30 on overall 258 

binding strength, we constructed an additional feature to denote whether amino acid 30 is 259 
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negatively charged (and therefore more likely to support strong binding) and included this 260 

feature as an additional trait in our models. 261 

Trait-based modeling to predict zoonotic capacity 262 

Prediction across multiple vertebrate classes is difficult due to extensive dissimilarities 263 

among traits describing different classes. For instance, traits that are commonly measured for 264 

reptiles are different than those of interest for birds or amphibians. Moreover, currently available 265 

ACE2 sequences are dominated by ray-finned fishes and mammals. Given that only mammals 266 

have so far been confirmed as both susceptible and capable of onward transmission of SARS-267 

CoV-2, we created a separate set of models to make zoonotic capacity predictions for mammals 268 

only. For this mammal-only dataset, we gathered additional species-level traits from 269 

PanTHERIA (Jones et al., 2009) and added a series of binary fields for taxonomic order (based 270 

on (Wilson and Reeder, 2005); supplementary file 2, Table 2). We then applied boosted 271 

regression (BRT; gbm package, (Greenwell et al., 2020)) to impute missing trait data for 272 

mammal species (e.g., (Han et al., 2020); see supplementary file 1 Methods for details on 273 

imputation methods and results).  274 

 275 

Many of the mammals for which we found the strongest evidence of zoonotic capacity 276 

are domesticated to some degree (pets, farmed or traded animals, lab models) (Oude Munnink 277 

et al., 2020; Schlottau et al., 2020; Shi et al., 2020). Relative to their ancestors or wild 278 

conspecifics, domesticated animals often have distinctive traits (Wilkins et al., 2014) that are 279 

likely to influence the number of zoonoses found in these species (Cleaveland et al., 2001). To 280 

account for trait variation due to domestication in certain species, we modeled mammals in two 281 

ways. First, we incorporated a variable indicating whether the source populations from which 282 

trait data were collected are wild or non-wild (e.g., farmed, pets, laboratory animals; non-wild 283 

status confirmed by the Mammal Diversity Database (Database, 2020)). Trait data collected 284 

from both wild and non-wild individuals were considered to represent non-wild species for the 285 

purposes of this model. In a second approach, we used only the wild species for model training 286 

and evaluation. For both approaches, pre-imputation trait values were used for all non-wild 287 

mammals during model training, evaluation, and prediction. 288 

   289 

For boosted regression models, we applied grid search to select optimal 290 

hyperparameters, and repeated model fitting 50 times using bootstrapped training sets of 80% 291 

of labeled data. We measured performance by the area under the receiver operating 292 

characteristic curve (AUC) for predictions made on the test dataset (remaining 20%), corrected 293 

by comparing with null models created by target shuffling, which employed similar bootstrapping 294 

(50 times). Detailed methods can be found in supplementary file 1 Methods. We discuss herein 295 

the results of model predictions about zoonotic capacity made by applying this final model to all 296 

mammal species. We also report the mean and variation in predicted probabilities across all 50 297 

bootstrapped models in supplementary file 4. 298 

 299 

We identified mammal species with the top 10% of predicted probabilities of zoonotic 300 

capacity for SARS-CoV-2. We mapped the geographic ranges of these species using 301 

International Union for the Conservation of Nature (IUCN) polygons of species distributions 302 
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(IUCN, 2020). We filtered this 90th percentile subset of mammal predictions to species that 303 

occur in human-associated habitats (e.g., urban areas, crop lands, pastures, heavily degraded 304 

forests) based on IUCN Red List assessments (IUCN 2020). We filtered a third time by masking 305 

the ranges of species that overlap with locations reporting cumulative human positive SARS-306 

CoV-2 case data from the COVID-19 Data Repository by the Center for Systems Science and 307 

Engineering (CSSE) at Johns Hopkins University (Dong et al., 2020). While these cumulative 308 

case counts do not encompass the true extent of the pandemic due to uneven detection and 309 

reporting efforts across countries, they are currently the best available signal for the spread of 310 

SARS-CoV-2 at the global scale. 311 

 312 

Additional methods and results of multiple uninformative model variations (e.g., a model 313 

in which binding strength is modeled as a continuous rather than a threshold measure, a model 314 

predicting the charge at amino acid 30) are also described in supplementary file 1 Methods and 315 

supplementary file 3 Table 3. Details about how predictions made by past studies were 316 

standardized into categories (low, medium, high; Figure 1) are also available in supplementary 317 

file 1 Methods. 318 

 319 

 320 

Results 321 

ACE2 host protein sequences and alignment 322 

The ACE2 protein sequence alignment of the orthologs from 326 species spans eight 323 

classes and 87 orders (https://zenodo.org/record/4517509). The majority of sequences 324 

belonged to the classes Actinopterygii (22.1%), Aves (23.3%), and Mammalia (46.6%). 325 

Sequence length ranged from 344 amino acids to 872 with a median length of 805.   326 

Structural modeling of viral binding strength  327 

We predicted binding strength for 299 vertebrates, including 142 mammals. These 328 

binding strength scores represented six classes and 80 orders. Across these six vertebrate 329 

classes, the strongest predicted binding between ACE2 and SARS-CoV-2 (corresponding to the 330 

lowest mean HADDOCK scores), were in ray-finned fishes (Actinopterygii; mean = -137.945) 331 

and mammals (Mammalia; mean = -129.193) (Figure 3A). Each of these six classes included at 332 

least one species predicted to have stronger binding than Felis catus (Figure 3B). Overall, 333 

binding strength ranged from strongest binding observed for the cichlid Astatotilapia calliptera (-334 

167.816) to weakest binding observed for alpaca (Vicugna pacos) (-105.615). Among well-335 

represented mammalian orders (those containing at least 10 species with binding strength 336 

predictions), Primates and Carnivora showed predicted mean binding strengths that were 337 

stronger than domestic cats (Figure 3C). 338 

 339 
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 340 
 341 

Figure 3. Plots showing results from modeling species’ ACE2 interaction with SARS-CoV-2 RBD using 342 
HADDOCK to predict binding strength (measured as arbitrary units, a.u.). HADDOCK scores that predict 343 
stronger binding are more negative. The mean and standard deviation of the HADDOCK score for 344 
vertebrate species (A) for which ACE2 orthologs are available. Binding strengths vary across vertebrate 345 
classes (B) and across the five most speciose mammalian orders (C). The “Other” category contains 346 
species across multiple orders for which ACE2 sequences were available, each with fewer than 10 347 
representative species in the order. The shaded regions of all panels represent predicted binding that is 348 
as strong or stronger than (more negative values than) the domestic cat (Felis catus), which represents 349 
our conservative zoonotic capacity threshold based on currently available empirical evidence.  350 
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 351 

Trait-based machine learning models 352 

Models created using the mammal-only dataset with trait imputation showed corrected 353 

test AUC of 0.72 for the zoonotic capacity model (for results of all models, see supplementary 354 

file 3). For mammal predictions, we applied the model trained on wild species given its higher 355 

accuracy (corrected test AUC = 0.72), compared to a model that included all available species 356 

and a variable indicating whether species trait data were collected from wild or non-wild 357 

individuals (corrected test AUC = 0.70). Citation count, as a proxy for study effort, had ~1% 358 

relative importance, suggesting that sampling bias across species had little influence on the 359 

model.   360 

Species predictions of zoonotic capacity 361 

The zoonotic capacity model identified 2,401 mammal species with prediction scores 362 

above 0.5, and 540 species within the 90th percentile probability (0.826 or higher), representing 363 

the subset of species assigned high confidence predictions of SARS-CoV-2 zoonotic capacity 364 

(similar to or greater than domestic cats). See supplementary file 4 for predictions on all 5,400 365 

mammal species.  366 

 367 

There were clear differences among mammalian orders in predicted zoonotic capacity. 368 

The top 10% of species with the highest predicted probabilities includes representatives from 13 369 

orders. Most primates were predicted to have high zoonotic capacity and collectively showed 370 

stronger viral binding compared to other mammal groups (Figure 4). Additional orders with 371 

numerous species predicted to have high zoonotic capacity (at least 75% of species above 0.5) 372 

include Hyracoidea (hyraxes), Perissodactyla (odd-toed ungulates), Scandentia (treeshrews), 373 

Pilosa (sloths and anteaters), Pholidota (pangolins), and non-cetacean Artiodactyla (even-toed 374 

ungulates) (Figure 4).  375 
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 376 
 377 
Figure 4. Ridgeline plots showing the distribution of predicted zoonotic capacity across mammals. 378 
Predicted probabilities for zoonotic capacity across the x-axis range from 0 (likely not susceptible) to 1 379 
(zoonotic capacity predicted to be the same or greater than Felis catus), with the vertical line representing 380 
0.5. The y-axis depicts all mammalian orders represented by our predictions. Density curves represent 381 
the distribution of the predictions, with those parts of the curve over 0.5 colored pink and lines 382 
representing distribution quartiles. The predicted values for each order are shown as points below the 383 
density curves. Points that were used to train the model are colored: orange represents species with 384 
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weaker predicted binding, blue represents species with stronger predicted binding. Selected family-level  385 

distributions are shown in the two figure supplements for this figure. 386 

 387 

 388 

Model predictions 389 

Comparing species predictions across multiple computational approaches  390 

Our model combined species traits and viral binding strength to predict zoonotic capacity  391 

(susceptibility and onward transmission). We note that our threshold for zoonotic capacity was 392 

based on experimental studies confirming intraspecific transmission, and is therefore more 393 

conservative than thresholds adopted by other studies (e.g., based on binding strength, (Huang 394 

et al., 2020)). In addition, our modeling approach (machine learning) and prediction targets 395 

(zoonotic capacity) differed compared to existing computational approaches, which applied 396 

sequence-based or structure-based analyses that are limited to a small number of published 397 

ACE2 sequences. Despite these differences, comparing species predictions generated by 398 

multiple approaches can be useful for gauging consensus, and for comparing how predictions 399 

change from one method to another. Across multiple approaches there was general agreement 400 

in the predictions for primates and for a select group of artiodactyls and carnivores (Figure 5). 401 

Our model results also agree with some low susceptibility predictions made by several previous 402 

studies using sequence-based approaches (e.g., in certain bats and rodents). The structure-403 

based models predicted a smaller proportion of species to have low susceptibility as compared 404 

to sequence-based studies.  405 
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 406 
Figure 5. An alluvial plot comparing predictions of species susceptibility from multiple methods. Existing 407 
studies (listed in supplementary file 1 Methods) are categorized as either sequence-based or structure-408 
based. Predictions from our zoonotic capacity model result from combining structure-based modeling of 409 
viral binding with organismal traits using machine learning to distinguish species with zoonotic capacity 410 
above (1) or below (0) a conservative threshold value set by domestic cats (Felis catus). Colors represent 411 
unique mammalian orders, and the width of colored bands representing the relative number of species 412 
with that combination of predictions across methods. See supplementary file 1 methods for details on how 413 
species across multiple studies were assigned to categories (high, medium, low).  414 
 415 

Comparing species predictions to in vivo outcomes 416 
Among the subset of species with ACE2 sequences (deposited in GenBank or 417 

MEROPS), our model predictions matched the results of most in vivo studies (Figure 1). For 418 
instance, model predictions were consistent with the results of numerous SARS-CoV-2 infection 419 
experiments on live animals. Experiments on deer mice (Peromyscus maniculatus; (Fagre et al., 420 
2020; Griffin et al., 2020)) and raccoon dogs (Nyctereutes procyonoides; (Freuling et al., 2020)) 421 
confirmed SARS-CoV-2 infection and transmission to naive conspecifics. Our model also 422 
predicted a high probability of zoonotic capacity of American mink for SARS-CoV-2 (Neovison 423 
vison, probability=0.83, 90th percentile), in which farmed individuals present severe infection 424 
from human spillback, and demonstrate the capacity to transmit to conspecifics as well as to 425 
humans (Oreshkova et al., 2020; Oude Munnink et al., 2020). Our model also correctly 426 
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predicted relatively low zoonotic capacity for big brown bats (Eptesicus fuscus; (Hall et al., 427 

2020)) and house mice (wild type Mus musculus; (Bao et al., 2020)).  428 

 429 

Some model predictions differed from the results of experimental studies. For instance, 430 

our model predicted a moderately high probability of zoonotic capacity for pigs (Sus scrofa, 431 

probability = 0.72, ~80th percentile). While some experiments have confirmed strong viral 432 

binding in this species (Li et al., 2020), others report no detectable infection or onward 433 

transmission of SARS-CoV-2 (Schlottau et al., 2020; Shi et al., 2020). Similarly for cattle (Bos 434 

taurus), our model also predicted a moderately high probability for zoonotic capacity (0.72, 435 

~80th percentile), but in a live animal experiment, cattle were confirmed to be susceptible to 436 

infection but no transmission was observed to virus-naive conspecifics (Ulrich et al., 2020).  437 

Mapping risk 438 

Most of the terrestrial world intersects the geographic range of at least one mammal 439 

species within the top 10% of predicted zoonotic capacity for SARS-CoV-2. The highest 440 

diversity of species within this top 10% occurs in the tropics (Figure 6A). Masking these species’ 441 

ranges to human-associated habitats showed that a total of 139 countries with at least one 442 

mammal species in the 90th percentile (Figure 6B). Restricting further to regions where there 443 

have been at least 100,000 cumulative human SARS-CoV-2 positive cases (as of 15 February 444 

2021) highlighted 144 species across 71 countries (Figure 6C). These maps exclude the 445 

distributions of companion animals and zoo species, for which SARS-CoV-2 surveillance and 446 

veterinary records are not systematically available (McNamara et al., 2020). For a full list of 447 

model-predicted zoonotic capacity of species by country, see supplementary file 5.  448 

 449 
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 450 
Figure 6: Maps showing the global distribution of species with predicted capacity to transmit SARS-CoV-451 

2. (A) depicts global species richness of the top 10 percent of model-predicted zoonotic capacity. Ranges 452 

of this subset of species were filtered to those associated with human-dominated or human-altered 453 

habitats (B), and further filtered to show the subset of species that overlaps with areas of high human 454 

SARS-CoV-2 positive case counts (over 100,000 cumulative cases as of 15 February 2021) (C). 455 

 456 

 457 

Discussion 458 

We combined structure-based inference about viral binding with species-level trait data 459 

to make predictions about the capacity of animal species to become zoonotic hosts of SARS-460 

CoV-2 (zoonotic capacity). Our definition of zoonotic capacity includes critical elements 461 
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necessary for an animal host to serve as a zoonotic host, either as a new enzootic reservoir or 462 

as a bridge host capable of seeding secondary transmission to humans following an initial 463 

spillback event. First, species susceptibility to SARS-CoV-2 is a necessary condition, which we 464 

assumed to depend on the strength of binding between SARS-CoV-2 RBD and host ACE2. 465 

Second, the capacity for onward transmission, which we model as a threshold quantity based 466 

on available empirical evidence confirming SARS-CoV-2 transmission to naive conspecific 467 

hosts. To extend predictive capacity beyond the small number of species for which ACE2 468 

sequences are currently available, we leveraged data on intrinsic biological traits of ~5400 469 

mammal species. We assumed intrinsic traits to be under similarly broad selection pressures 470 

influencing major physiological pathways, such as those incorporating the ACE2 receptor 471 

across species. This combined modeling approach predicted zoonotic capacity with 72% 472 

accuracy, and identified numerous mammal species whose predicted zoonotic capacity meets 473 

or exceeds the viral susceptibility and transmissibility observed in experimental infections with 474 

SARS-CoV-2. In addition to wide agreement with in vivo study results (Table 1), model 475 

predictions corroborate multiple previous studies investigating species susceptibility to SARS-476 

CoV-2 using the limited number of currently available ACE2 sequences (Figure 1).  477 

 478 

Captive, farmed, or domesticated species.  Given that the type and frequency of contact with 479 

humans fundamentally underlies transmission risk, it is notable that our model predicted high 480 

zoonotic capacity for multiple captive species that have also been confirmed as susceptible to 481 

SARS-CoV-2 via experiments or natural infections. These include numerous carnivore species, 482 

such as large cats from multiple zoos, pet dogs and cats. Our model also predicted high SARS-483 

CoV-2 zoonotic capacity for many farmed, domesticated, and live traded animal species. The 484 

water buffalo (Bubalus bubalis), widely bred for dairy production and farming, had the highest 485 

probability of zoonotic capacity among livestock (0.91). The 90th percentile of model predictions 486 

also included American mink (Neovison vison), red fox (Vulpes vulpes), sika deer (Cervus 487 

nippon), white-lipped peccary (Tayassu pecari), nilgai (Boselaphus tragocamelus), and raccoon 488 

dogs (Nyctereutes procyonoides), all of which are farmed, with the latter two considered 489 

invasive species in some areas (Milla et al., 2018; Pitra et al., 2010). In addition to the risks of 490 

secondary spillover to humans and the potential for large economic losses from culling infected 491 

animals (Kevany, 2020), the escape of farmed individuals into wild populations has implications 492 

for the spread and enzootic establishment of SARS-CoV-2 (DeLiberto and Shriner, 2020). 493 

These findings also have implications for informing vaccination strategies for people in regular 494 

contact with potential bridge species (e.g., veterinarians, abattoir-workers, farmers, etc).  495 

 496 

Live traded or hunted wildlife species.  Model predictions also included many live-traded 497 

mammals. The majority of the legal live mammal trade consists of primates and carnivores (Can 498 

et al., 2019). Most live-traded primates come from the genus Macaca, with 20 out of 21 species 499 

in the genus predicted to have high zoonotic capacity, along with several live-traded carnivores, 500 

such as the Asiatic black bear (Ursus thibetanus), grey wolf (Canis lupus), and jaguar (Panthera 501 

onca). Two species of live-traded pangolins, the Philippine pangolin (Manis culionensis) and 502 

Sunda pangolin (M. javanica) were also predicted with high zoonotic capacity. Pangolins are 503 

notable because one of the betacoronaviruses with the highest sequence similarity to SARS-504 

CoV-2 was isolated from Sunda pangolins (Andersen et al., 2020; T. T.-Y. Lam et al., 2020). 505 
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Additional species in the top 10% of predictions that are commonly hunted include duiker 506 

(Cephalophus zebra, West Africa), warty pig (Sus celebes, Southeast Asia), and two species of 507 

deer (Odocoileus hemionus and O. virginianus) that are widespread across the Americas. The 508 

white-tailed deer (O. hemionus) was recently confirmed capable of transmitting SARS-CoV-2 to 509 

conspecifics via indirect contact (aerosolized virus particles) (Palmer et al., 2021).   510 

 511 

Bats.  Similarly, bats are of special interest because of the high diversity of betacoronaviruses 512 

found in Rhinolophus spp. and other bat species (Anthony et al., 2017, 2013; Olival et al., 2020; 513 

Tsuda et al., 2012). Our model identified 35 bat species within the 90th percentile of zoonotic 514 

capacity for SARS-CoV-2. Within the genus Rhinolophus, our model identified the large rufous 515 

horseshoe bat (Rhinolophus rufus), a known natural host for bat betacoronaviruses (Tsuda et 516 

al., 2012) and a congener to three other horseshoe bats harboring betacoronaviruses with high 517 

nucleotide sequence similarity to SARS-CoV-2 (~92-96%) (Hul et al., 2021; H. Zhou et al., 518 

2020; P. Zhou et al., 2020). For these three species, our model assigned a range of probabilities 519 

for SARS-CoV-2 zoonotic capacity (Rhinolophus affinis (0.58), R. malayanus (0.70), and R. 520 

shameli (0.71)). Our model identified additional congeners, Rhinolophus acuminatus (0.84) and 521 

R. macrotis (0.70), predicted to have relatively high probabilities. These predictions are in 522 

agreement with recent experiments demonstrating efficient viral binding of SARS-CoV-2 RBD 523 

for R. macrotis (Mou et al., 2020) and confirmation of SARS-CoV-2-neutralizing antibodies in 524 

field-caught R. acuminatus harboring a closely related betacoronavirus (Wacharapluesadee et 525 

al., 2021). Within the genus Pteropus (flying foxes), our model identified 17 species with high 526 

probabilities of zoonotic capacity for SARS-CoV-2. Some of these species are confirmed 527 

reservoirs of other zoonotic viruses in Southeast Asia (e.g., henipaviruses in P. lylei, P. 528 

vampyrus, P. conspicillatus, and P. alecto). While contact patterns between bats and humans 529 

may be somewhat less direct compared with captive or farmed species, annual outbreaks 530 

attributed to viral spillover transmission from bats illustrate a persistent epizootic risk to humans 531 

(Kessler et al., 2018; Plowright et al., 2015; Pulliam et al., 2012) and suggest that gaps in 532 

systematic surveillance of zoonotic viruses, including betacoronaviruses, are an urgent priority 533 

(e.g., (Peel et al., 2020)). 534 

 535 

Rodents.  Our model identified 76 rodent species with high zoonotic capacity for SARS-CoV-2, 536 

some of which thrive in human-altered settings. Among these, our model predicted high 537 

probabilities for the deer mouse (Peromyscus maniculatus) and the white-footed mouse (P. 538 

leucopus). These are among the most well-studied mammals in North America, in part due to 539 

their status as zoonotic reservoirs for multiple zoonotic pathogens and parasites (Bordes et al., 540 

2015; Machtinger and Williams, 2020; Ostfeld et al., 2006). Experimental infection, viral 541 

shedding, and sustained intraspecific transmission of SARS-CoV-2 were recently confirmed for 542 

P. maniculatus (Fagre et al., 2020; Griffin et al., 2020). Our model predicted low zoonotic 543 

capacity for Mus musculus (0.11), corresponding with recent in vivo experiments suggesting this 544 

species is not susceptible to infection by SARS-CoV-2 (Bao et al., 2020). Also in the top 10% 545 

were two rodent species considered to be human commensals whose geographic ranges are 546 

expanding due to human activities: Rattus argentiventer (0.84) and R. tiomanicus (0.79) 547 

(supplementary file 5) (Hamdan et al., 2017; Louys et al., 2020; Morand et al., 2015). Additional 548 

common rodent species with relatively high probabilities of zoonotic capacity include 549 
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domesticated guinea pigs (Cavia porcellus), gerbils (Gerbillus gerbillus, Meriones tristrami), and 550 

several common mouse species (Apodemus peninsulae, A. flavicollis, and A. sylvaticus), all of 551 

which are known reservoirs for other zoonotic diseases. It is notable that many of these rodent 552 

species are regularly preyed upon by carnivore species, such as the red fox (Vulpes vulpes) or 553 

domestic cats (Felis catus) who themselves are likely to have high zoonotic capacity for SARS-554 

CoV-2.  555 

 556 

Species with large geographic ranges.  With sufficient opportunity for infectious contact, the risk 557 

of zoonotic spillback transmission increases with SARS-CoV-2 prevalence in human 558 

populations. Among species with high model-predicted zoonotic capacity, there were several 559 

relatively common species with very large geographic ranges or synanthropic tendencies that 560 

overlap with high prevalence global hotspots of COVID-19 (Figure 6, supplementary file 5). 561 

Notable species that are widely distributed across much of the northern hemisphere include the 562 

red fox (Vulpes vulpes, ~50 countries), the European polecat (Mustela putorius), the raccoon 563 

dog (Nyctereutes procyonoides), stoat (Mustela erminea) and wolf (Canis lupus). White-tailed 564 

deer (Odocoileus virginianus) are among the most geographically widespread species across 565 

Latin American countries with high SARS-CoV-2 prevalence. Globally, South and Southeast 566 

Asia had the highest diversity of mammal species with high predicted zoonotic capacity for 567 

SARS-CoV-2 (~90 species). Notable examples in the 90th percentile probability in this region 568 

include both rodents and bats. For example, Finlayson’s squirrel (Callosciurus finlaysonii) is 569 

native to Mainland Southeast Asia, but introductions via the pet trade in Europe have led to 570 

invasive populations in multiple countries (Bertolino and Lurz, 2013). Hunting has been 571 

documented for numerous bat species with geographic ranges across Southeast Asia (e.g., 572 

Cheiromeles torquatus, Cynopterus brachyotis, Rousettus amplexicaudatus, Macroglossus 573 

minimus) (Mildenstein et al., 2016; Ransaleleh et al., 2020), and there were multiple additional 574 

bat species in the 90th percentile probability from Asia and Africa where bats are subject to 575 

hunting and from which other betacoronaviruses have been identified (Anthony et al., 2017; 576 

Tampon et al., 2020). There were also several wide-ranging species whose contact with 577 

humans are limited to specialized settings. For instance, biologists and wildlife managers handle 578 

live individuals for research purposes, including grizzly bear (Ursus arctos), polar bear (Ursus 579 

maritimus), and wolf (Canis lupus), all of which are in the 89th percentile or above for predicted 580 

zoonotic capacity.  581 

 582 

Other high priority mammal species.  Species that are in frequent contact with humans that 583 

showed more equivocal predictions warrant further investigation. For instance, while species 584 

such as horses (Equus caballus), goats (Capra hircus), and guinea pigs (Cavia porcellus) are 585 

not in the top 10% of predicted zoonotic capacity, due to the nature of their contact with humans 586 

they may experience greater risks of spillback infection, or pose a greater risk to humans for 587 

secondary spillover infection compared to many wild species. Conversely, while certain 588 

endangered or nearly extinct species are predicted to have relatively high zoonotic capacity, 589 

they may have fewer opportunities for human contact. For these species, populations that are 590 

under active conservation management may be at greater risk of spillback transmission. These 591 

species include the scimitar-horned oryx (Oryx dammah), addax (Addax nasomaculatus), and 592 

mountain gorillas (Gorilla beringei), in which spillback infection may occur through close-593 
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proximity eco-tourism activities (Weber et al., 2020). Indeed, spillback transmission of SARS-594 

CoV-2 has already been confirmed in a closely related species, the Western lowland gorilla 595 

(Gorilla gorilla) in captivity (Gibbons, 2021). These species may benefit from focused risk 596 

mitigation efforts, such as those enacted recently to protect endangered black-footed ferrets 597 

(Mustela nigripes) from potential SARS-CoV-2 spillback (Aleccia, 2020). 598 

 599 

All fifteen species of Tupaia treeshrews were predicted by our model to have medium to 600 

high probability (ranging from 0.62 to 0.87). One species, T. belangeri, has been explored as a 601 

potential lab model for several human infectious diseases including SARS-CoV-2 (Xu et al., 602 

2020). Relative to other treeshrews, our model assigned only medium probability for SARS-603 

CoV-2 zoonotic capacity in T. belangeri (0.67), which matches lab studies reporting 604 

asymptomatic infection and low viral shedding in this species (Zhao et al., 2020). In contrast, the 605 

common treeshrew (T. glis) was in the 94th percentile of zoonotic capacity (0.87 probability). 606 

These two species are sympatric in parts of their range, exist in close proximity to humans, and 607 

also overlap geographically with COVID-19 hotspots in Southeast Asia, suggesting the 608 

possibility of spillover transmission among congeners if spillback transmission occurs from 609 

humans to these species. 610 

 611 

Strengthening predictive capacity for zoonoses.  While there was wide agreement between our 612 

model predictions and empirical studies, examining mismatches between experimental results 613 

and model-generated predictions may better focus research attention on characterizing what 614 

external conditions may be driving disconnects between predicted and observed zoonotic 615 

capacity. For instance, in pigs (Sus scrofa) multiple computational and experimental studies 616 

predicted susceptibility to SARS-CoV-2 (Figure 1), but this prediction has not been supported by 617 

results from whole animal inoculations, which so far have showed unproductive infection 618 

(Schlottau et al., 2020; Shi et al., 2020). Similarly, previous studies made contrasting predictions 619 

about SARS-CoV-2 susceptibility of American mink (Damas et al., 2020; S. D. Lam et al., 2020), 620 

Figure 1) whose very high zoonotic capacity was only confirmed ipso facto in multiple countries 621 

(Zhou and Shi, 2021).  622 

 623 

Disconnects between real-world observations and in silico predictions of zoonotic 624 

capacity may arise because host susceptibility and transmission capacity are necessary but not 625 

sufficient for high zoonotic risk to be realized in natural settings. These processes depend 626 

strongly on the cellular environments in which cell entry and viral replication take place (e.g., the 627 

presence of suitable receptors and key proteases, (Letko et al., 2020)), and on host 628 

immunogenicity (Bean et al., 2013). These processes are therefore embedded in a broader 629 

ecological context impacting intra-host infection dynamics (latency, recrudescence, tolerance), 630 

and environmental drivers of host susceptibility and viral persistence that collectively determine 631 

where and when spillover may occur (Bean et al., 2013; Becker et al., 2019; Morris et al., 2020; 632 

Plowright et al., 2017). Insofar as data limitations (e.g., limited ACE2 sequences or species trait 633 

data) preclude perfect computational predictions of zoonotic capacity, laboratory experiments 634 

are also limited in assessing true zoonotic capacity. For SARS-CoV-2 and other host-pathogen 635 

systems, animals that are readily infected in the lab appear to be less susceptible in non-lab 636 

settings (ferrets in the lab vs. mixed results in ferrets as pets (OIE, 2021; Sawatzki et al., 2020; 637 
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Schlottau et al., 2020); rabbits in the lab vs. rabbits as pets (Mykytyn et al., 2021; Ruiz-Arrondo 638 

et al., 2020)). Moreover, wildlife hosts that are confirmed to shed multiple zoonotic viruses in 639 

natural settings (e.g., bats, (Peel et al., 2019)) can be much less tractable for laboratory 640 

investigations (for instance, requiring high biosecurity containment and very limited sample 641 

sizes). While laboratory experiments are critical for understanding mechanisms of pathogenesis 642 

and disease, without field surveillance and population-level studies they are only partial 643 

reflections of zoonotic capacity in the natural world. These examples illustrate that there is no 644 

single methodology sufficient to understand and predict zoonotic transmission, for SARS-CoV-2 645 

or any zoonotic pathogen, and further demonstrate the need for coordination among theoretical 646 

and statistical models, lab work, and field work to improve zoonotic predictive capacity (Restif et 647 

al., 2012). As new SARS-CoV-2 variants continue to emerge, our work demonstrates the utility 648 

of combining molecular structural modeling with machine learning for predicting future animal 649 

hosts, and the potential for similar multi-scale methods to bridge the many advances in 650 

molecular and structural modeling with ecological and biological data to extend predictive 651 

capacity for zoonotic pathogens whose host ranges remain uncharacterized due to persistent 652 

bottlenecks in field-collected data on wild hosts and their potentially zoonotic viruses. Integration 653 

of multiple methodologies, as done here, and more efficient iteration between computational 654 

predictions, laboratory experiments, and targeted animal surveillance will better link 655 

transmission mechanisms to the broader conditions enabling spillover, spillback, and secondary 656 

transmission in nature.   657 

 658 
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Figure supplements 
 

 
Figure 3-supplement 1. Mean HADDOCK scores (points) and their standard deviations (errorbar) for 
Actinopterygii and Chondrichthyes. 
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Figure 3-supplement 2. Mean HADDOCK scores (points) and their standard deviations (errorbar) for 
Amphibia and Reptilia. 
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Figure 3-supplement 3. Mean HADDOCK scores (points) and their standard deviations (errorbar) for 
Aves. 
 

Gallus gallus
Coturnix japonica
Fulmarus glacialis

Phasianus colchicus
Anas platyrhynchos

Corapipo altera
Aythya fuligula

Antrostomus carolinensis
Charadrius vociferus

Cuculus canorus
Anser cygnoides domesticus

Dromaius novaehollandiae
Eurypyga helias

Numida meleagris
Aptenodytes forsteri
Strigops habroptila

Calypte anna
Cariama cristata
Serinus canaria

Pipra filicauda
Empidonax traillii

Zonotrichia albicollis
Tinamus guttatus

Haliaeetus leucocephalus
Calidris pugnax

Camarhynchus parvulus
Falco cherrug

Manacus vitellinus
Pelecanus crispus

Pseudopodoces humilis
Catharus ustulatus

Tyto alba
Phalacrocorax carbo
Corvus cornix cornix
Cyanistes caeruleus

Nothoprocta perdicaria
Geospiza fortis

Phaethon lepturus
Struthio camelus australis

Aquila chrysaetos chrysaetos
Melopsittacus undulatus

Pygoscelis adeliae
Apteryx rowi
Parus major

Athene cunicularia
Lonchura striata

Lepidothrix coronata
Pterocles gutturalis

Gavia stellata
Ficedula albicollis

Corvus moneduloides
Chiroxiphia lanceolata
Opisthocomus hoazin

Sturnus vulgaris
Taeniopygia guttata

Tauraco erythrolophus
Mesitornis unicolor
Chaetura pelagica

Chlamydotis macqueenii
Nipponia nippon

Neopelma chrysocephalum
Leptosomus discolor

Merops nubicus
Buceros rhinoceros silvestris

−1
70

−1
60

−1
50

−1
40

−1
30

−1
20

−1
10

−1
00

Mean HADDOCK Score

Sp
ec

ie
s

Aves

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2021. ; https://doi.org/10.1101/2021.02.18.431844doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431844
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

 
Figure 3-supplement 4. Mean HADDOCK scores (points) and their standard deviations (errorbar) for 
Mammalia. 
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 Figure 4-supplement 1. Distribution of predictions by family for artiodactyls, carnivores, and 
chiropterans. 

 
Figure 4-supplement 2. Distribution of predictions by family for metatherians, primates, and rodents.
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Figure 4-supplement 3. Standard deviation of predicted zoonotic capacity probability for our 50 
bootstrap iterations. Species are grouped by order with color representing the average zoonotic capacity 
probability score (warmer colors represent higher scores, indicating higher predicted zoonotic capacity, 
cooler represent lower scores).   
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