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Abstract

We introduce a novel image regularization termed as multiple degree total variation (MDTV). This 

type of regularization combines the first and second degree directional derivatives, thus providing 

a good balance between preservation of edges and region smoothness. In order to solve the 

resulting optimization problem, we proposed a fast majorize minimize algorithm. We demonstrate 

the utility of the MDTV regularization in the context of image denoising and compressed sensing. 

We compare the proposed method with standard TV, and the state of the art higher degree 

methods, including higher degree total variation (HDTV) and total generalized variation (TGV) 

based schemes. Numerical results indicate that MDTV penalty provides improved image recovery 

performance.

I. Introduction

Image recovery from their noisy partial measurements has been a significant research topic 

in a wide range of imaging applications including medical imaging, remote sensing, and 

microscopy. The common approach is to formulate the image recovery problem as an 

optimization problem which is the combination of data consistency and regularization term. 

Total variation (TV) is one of the most commonly used regularization penalty in many 

inverse problems [1]. The main reason for the good performance of TV regularization is due 

to its capability to preserve sharp edges in the image. However, the main limitation of TV 

penalty is that it generates patchy or staitcasing artifacts in the reconstructed images since 

TV promotes gradient sparsity. To overcome the problem associated with TV penalty, 

researchers have proposed different modifications of TV promoting higher order derivatives 

sparsity. Among them there are regularizations using derivatives of a single higher order 

degree. For example, the Laplacian penalty [2], [3], the anisotropic second order 

regularization [4], [5], the Hessian Schatten-norm regularizations [6]. However, the L1 norm 

of the Laplacian has a high-dimensional null space [7], which tends to preserve pointlike 

features rather than sharp edges. The anisotropic second order penalty is not rotation 

invariant, which makes it not ideal for the regularization of the image recovery problem. 

Moreover, it has been proved that many of the second degree TV penalties are special cases 
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or equal to the HDTV regularization [8]. Another family of functionals involve image 

derivatves of different degrees, including the infimal-convolution functional which combines 

TV with higher order derivatives [9], and total generalized variation (TGV) [10].

We recently proposed a family of convex functionals named higher degree TV (HDTV), 

which are defined as the L1-Lp norm (p ≥ 1) of the nth degree directional derivatives [8], 

[11]. HDTV penalties possess the desirable properties of TV, such as rotation invariance, 

preservation of edges. Moreover, HDTV scheme overcomes the problems associated with 

TV, while enhances the line like features of an image. Numerical experiments have 

demonstrated that HDTV penalties provide desirable image reconstruction results and 

improve the image quality significantly compared with TV. However, since HDTV focuses 

on derivatives of a single degree, it still has some limitations in accurately recovering an 

image.

In this work, we propose a family of image regularizations which combine the first and 

second degree directional derivative to improve the performance of HDTV penalties. The 

novel type of image regularizations are termed as multiple degree TV (MDTV), which are 

defined as the L1-Lp (p ≥ 1) norm of all rotations of the weighted norm of the 1st and 2nd 

degree derivative operator. The MDTV penalties have the similar properties as TV and 

HDTV, such as rotation invariance, translation invariance, convexity, and scale covariance. 

Furthermore, by balancing the weights of the first and second degree directional derivatives, 

MDTV selectively regularizes the image based on various features, which lead to a more 

natural recovery of the images. In order to solve the resulting optimization problem, we 

propose an iteratively reweighted majorize minimize algorithm similar as in [11], which 

successively approximates the optimal solution by minimizing a sequence of quadratic 

surrogate functions. We demonstrate the utility of MDTV in the context of image denoising 

and compressed sensing. Numerical results show that the proposed method yields improved 

image quality over standard TV penalty, the state of the art HDTV regularization, and the 

TGV scheme.

II. Background

A. Regularized inverse problems for image recovery

We consider the recovery of a continuously differential complex image f:Ω ℂ from its 

noisy measurments b. Here, Ω is the spatial support of the complex image f. The 

measurements b is modeled as: b = A(f) + n, where n is the Gaussian distributed white 

noise and A is a linear operator representing the image acquisition process. Under most 

practical scenarios, the operator A is ill-conditioned. In such cased, in order to make the 

problem well-posed, the image recovery problem is generally formulated as a constrained 

optimization problem:

f = argmin
f

‖A(f) − b‖2 + αℛ(f) (1)

where ‖A(f) − b‖2 represents data fidelity, ℛ(f) is the regularization term, and we choose 

the parameter α to obtain the optimal solution, i.e., the maximized signal to noise ratio.
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B. Generalized higher degree total variation

We have shown in [11] that by reinterpreting the standard two-dimensional total variation 

(TV) regularization as a mixed norm of image directional derivatives, we could obtain 

higher degree total variation (HDTV) regularizations, defined as

HDTV = ∫
Ω

1
2π∫0

2π
fθ, n(r) pdθ

1
pdr, p = 1, 2 (2)

where fθ,n(r) is the nth degree directional derivative of f along the direction uθ = (cos(θ), 

sin(θ)), defined as

fθ, n(r) = ∂n

∂nγ
f r + γuθ

γ = 0
. (3)

The HDTV penalty (2) is termed as isotropic and anisotropic HDTV, when p = 2 and p = 1, 

respectively.

According to the property of rotation steerability of the directional derivative, fθ,n(r) can be 

expressed as

fθ, n(r) = sn*(θ)gn(r) (4)

where sn(θ) is the vector of trigonometric polynomials, and gn(r) is the vector of nth degree 

partial derivatives.

III. Multiple degree total variation (MDTV) regularized image restoration

A. MDTV regularization

We use the combination of the first and second order derivative to obtain a new type of 

regularization penalty, termed as MDTV penalty, which is defined as

ℛM(f) = ∫
Ω

1
2π∫0

2π
λ1 fθ, 1(r) 2 + λ2 fθ, 2(r) 2dθ dr (5)

where fθ,1(r), fθ,2(r) are the first and second order directional derivative separately, and λ1, 

λ2 are the weighting coefficients for balancing the first and second order directional 

derivatives. For simplicity purpose, we define λ1 + λ2 = 1.

Note that the MDTV penalty is the L1-L1 norm of the directional derivatives similar as the 

anisotropic type of HDTV penalties proposed in [11]. However, instead of using a single 

higher degree derivative, MDTV uses the combined weighted L2 norm of the first and 

second degree directional derivatives. By tuning λ1 and λ2, the optimal performance of 

MDTV penalty can be achieved for image recovery. The tuning of the balancing parameters 

will be discussed in the later section. According to the definition of MDTV (5), TV and 

HDTV penalties are two special cases of the MDTV regularization. When λ1 = 1, λ2 = 0, 
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MDTV becomes standard TV penalty. Similarly, when λ1 = 0, λ2 = 1, MDTV becomes the 

HDTV penalty.

Therefore, the MDTV regularized image recovery scheme is specified by

f = argmin
f

‖A(f) − b‖2 + αℛM(f) (6)

B. Numerical algorithm

We apply the fast majorize minimze algorithm to solve the optimization problem [11]. In the 

first step, the original optimization function is majorized as:

ℛM(f) ≤ ℛM f(m) + ℛ1
(m)(f) + ℛ2

(m)(f) (7)

where ℛ1
(m)(f) and ℛ2

(m)(f) represent the first and second degree derivative majorization 

terms separately. Specifically,

ℛ1
(m)(f) = 1

2π∫Ω
∫

0

2π
λ1ω(m)(r, θ) fθ, 1(r) 2dθdr (8)

ℛ2
(m)(f) = 1

2π∫Ω
∫

0

2π
λ2ω(m)(r, θ) fθ, 2(r) 2dθdr (9)

where ω(m)(r, θ) is the weighting matrix, which is computed at each iteration using the 

values of fθ, n
(m)(r) (n = 1, 2) at the current mth iteration.

ω(m)(r, θ) = 1
2 λ1 fθ, 1

(m)(r) 2 + λ2 fθ, 2
(m)(r) 2 + ϵ

(10)

The small constant ϵ is included to ensure that the weighting matrix is finite in smooth 

image regions where the directional derivatives tend to be zeros. Using the steerability of the 

directional derivatives (4), ℛn
(m)(f) (n = 1, 2) in (8) and (9) can be rewritten as

ℛn
(m)(f) = λn∫

Ω
gn*(r) 1

2π∫0

2π
sn(θ)ω(m)(r, θ)sn*(θ)dθgn(r)dr (11)

Here, the spatially varying weighting matrix could be defined as

Wn
(m)(r) = 1

2π∫0

2π
sn(θ)ω(m)(r, θ)sn*(θ)dθ (12)

The first and second degree derivative majorization terms (11) thus become
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ℛn
(m)(f) = λn∫

Ω
gn*(r)Wn

(m)(r)gn(r)dr (13)

Substituting (13) and (7) in (6), and ignoring the constant terms, we could solve for the 

following majorization cost function iteratively to obtain the optimal image recovery results:

f(m + 1) = argmin
f

‖A(f) − b‖2 + α ∑
n = 1

2
λn∫

Ω
gn*(r)Wn

(m)(r)gn(r)dr (14)

We propose to use conjugate gradient algorithm to solve (14), with the corresponding 

gradient expressed as

∇G(m) = 2AT(Af − b) + 2α ∑
n = 1

2
λn∂n

T (r) Wn
(m)(r)gn(r) (15)

C. Discretization of the derivative operator

The above introduced MDTV penalties are defined for continuous images. In practical 

implementations, The derivatives are approximated using finite difference. For example, the 

derivative of the 2D signal along the x dimension is approximated as q[k, l] = f[k+1, l]−f[k, 

l] = Δ1 ∗ f, which can be viewed as the convolution of f by Δ1[k] = ψ k + 1
2 , where ψ(x) = 

∂β1(x)/∂x and β1(x) is the first degree B-spline function [12]. In order to further obtain 

discrete operators that are approximately rotation steerable, we approximate the nth degree 

partial derivatives as follows:

∂n1, n2f k1, k2 = βd
n1 k1 + δ ⊗ βd

n2 k2 + δ ∗ f k1, k2 (16)

for all k1, k2 ∈ ℕ, where βd
n denotes the nth order derivative of the dth (d = n1 + n2) degree B-

spline and δ is chosen based on the following rule:

δ =
1
2 if n is odd

0 else
(17)

The shift δ is chosen so that the image derivatives are evaluated at the intersection of the 

pixels instead of the midpoint of the pixels. Since B-spline functions approximate Gaussian 

functions as the degree increases, the tensor product of B-spline functions are approximately 

rotation steerable.

D. Choice of the parameters

MDTV regularized optimization problem requires optimized regularization parameters to 

ensure ideal image recovery results. In addition, MDTV needs a proper balancing between 

the first and second order directional derivatives. For each noise level and A operator, we 

Hu and Jacob Page 5

Proc Int Conf Image Proc. Author manuscript; available in PMC 2021 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



determine the optimal parameters to obtain the optimized signal to noise ratio (SNR), which 

is computed as

SNR = − 10log10
‖forig − f‖F

2

‖forig ‖F
2 . (18)

where f  is the reconstructed image, forig is the original image, and ∥ · ∥F is the Frobenius 

norm.

In order to check how the SNR values of the recovered images behave as a function of the 

regularization parameter α and the weighting parameters λ1 and λ2, we plot the parameters 

optimization results in Fig. 1. Specifically, we tuned for the parameters for the denoising of 

the Lena image with additive Gaussian noise with standard deviation σ = 0.04. We choose α 
= 0.01, 0.02, 0.03, …, 0.19 and λ1 = 0, 0.1, 0.2, …, 1. Note that λ2 = 1, 0.9, …, 1 

correspondingly. The plot indicates that the SNR has a global maximum for different values 

of the parameters. We also observe that the optimal parameters are mostly dependent on 

each setting, but not much on the specific image.

IV. Results

The performance of the proposed MDTV regularized method is investigated in the context 

of image denoising and compressed sensing. We use the signal to noise ratio (SNR) to assess 

the quality of the recovered images.

A. Denoising

We compare the denoising performance of MDTV method with standard TV, HDTV, and 

TGV regularized schemes using the Lena image in Fig. 2. The image is corrupted with 

additive Gaussian whilte noise of standard deviation of σ = 0.04. We show the zoomed 

image for better visual comparison. The results show that TV leads to patchy recovered 

image, indicated in red dotted arrow. The HDTV method overcomes the patchy artifacts and 

preserves more details. Compared with HDTV, TGV scheme provides smoother and more 

natural recovered image. The proposed MDTV method preserves most of the details, 

indicated in green arrow. The red arrows in the error images show that MDTV scheme is 

capable of preserving the linelike features, compared with the other methods.

The denoising results on four 256 × 256 images using TV, HDTV, TGV, and the proposed 

MDTV methods with different noise levels are reported in Table I. The standard deviation of 

the noise is chosen to be 0.02–0.06. We observe from the results that the proposed methods 

consistently outperforms the other methods with an improvement of the SNR around 0.5dB.

B. Compressed sensing

In this section, we consider the reconstruction of MR images from incomplete compressed 

sensing measurements. We use four MR images, including brain, wrist, angiography, and 

ankle MR image to validate the proposed method. In the experiments, we assume that the 

measurements are acquired using radial undersampling pattern. Fig. 3 shows the 
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reconstructions of the brain MR image using HDTV, TGV, and the proposed MDTV 

methods from 60 radial sampling lines. We observe that the proposed method is capable of 

recovering the details and the linelike features most accurately compared with HDTV and 

TGV schemes, indicated by the green arrows.

The SNRs of the reconstructed images using TV, HDTV, TGV, and MDTV methods with 

different number of radial lines are showed in Table II. One can see that the propose MDTV 

methods consistently provides results with highest SNR among all of the algorithms.

V. Conclusion

We proposed a MDTV regularization penalty for image recovery, which is the L1-L1 norm 

of the balanced combination of the first and the second degree directional derivatives. We 

used an efficient majorize minimize algorithm to solve the resulting optimization problem. 

Numerical comparisons of the proposed method with the standard TV, HDTV, and TGV 

regularization schemes show that MDTV regularized method leads to an improved image 

recovery performance.
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Fig. 1. 
SNR values of the denoised Lena image as function of the parameters α and λ1. The 

original image was contaminated with Gaussian white noise with standard deviation σ = 

0.04. The dotted region corresponds to the maximum SNR value, where the optimal 

parameters were chosen, i.e.,λ1 = 0.4, α = 0.13. Note that the first and the last column 

corresponds to HDTV denoising and TV denoising, respectively.
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Fig. 2. 
Denoising results of the Lena image. (a) and (b) show the actual image and the noisy version 

containing Gaussian white noise of standard deviation σ = 0.04. (c)-(f): Denoised images 

using TV, HDTV, TGV, and MDTV methods, respectively. (g)-(i): Error images of the 

denoised results using HDTV, TGV, and MDTV schemes.
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Fig. 3. 
Recovery of the brain MR image from the undersampled measurements. (a)-(c): The actual 

image, the radial undersampling pattern, and the zoomed version of the original image. (d)-

(f): Reconstructions using HDTV, TGV, and the proposed MDTV method. (g)-(i): Error 

images.
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TABLE I

Comparison of denoising algorithms

Lena Peppers

σ 0.02 0.04 0.06 0.02 0.04 0.06

TV 29.02 24.71 22.28 31.42 27.18 24.89

HDTV 29.10 24.75 22.39 31.85 27.42 25.27

TGV 29.22 24.90 22.59 31.91 27.61 25.21

MDTV 29.31 25.02 22.58 32.05 27.73 25.40

Cameraman Microscopy

σ 0.02 0.04 0.06 0.02 0.04 0.06

TV 31.58 26.60 24.27 33.26 28.10 26.78

HDTV 31.73 26.72 24.46 33.49 28.38 26.95

TGV 31.80 26.68 24.56 33.65 28.42 26.12

MDTV 31.98 27.05 24.70 33.75 28.61 26.29
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TABLE II

Comparison of compressed sensing algorithms

Brain Angiography

Lines 40 60 100 40 60 100

TV 22.38 25.93 30.96 19.35 23.31 28.60

HDTV 22.66 26.25 31.30 19.61 23.46 28.87

TGV 22.53 26.11 31.23 19.50 23.32 28.81

MDTV 22.76 26.33 31.35 19.73 23.68 28.95

Wrist Ankle

Lines 40 60 100 40 60 100

TV 20.35 23.70 28.89 17.55 20.03 24.30

HDTV 20.65 23.86 29.12 17.59 20.01 24.35

TGV 20.59 23.73 29.03 17.80 20.15 24.51

MDTV 20.75 24.07 29.25 17.74 20.32 24.64
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