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Targeting tumor-associated macrophages to synergize tumor

immunotherapy

Xiaonan Xiang'?, Jianguo Wang'?, Di Lu'? and Xiao Xu'?*?

The current treatment strategies in advanced malignancies remain limited. Notably, immunotherapies have raised hope for a
successful control of these advanced diseases, but their therapeutic responses are suboptimal and vary considerably among
individuals. Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are often
correlated with poor prognosis and therapy resistance, including immunotherapies. Thus, a deeper understanding of the complex
roles of TAMs in immunotherapy regulation could provide new insight into the TME. Furthermore, targeting of TAMs is an emerging
field of interest due to the hope that these strategies will synergize with current immunotherapies. In this review, we summarize
recent studies investigating the involvement of TAMs in immune checkpoint inhibition, tumor vaccines and adoptive cell transfer
therapies, and discuss the therapeutic potential of targeting TAMs as an adjuvant therapy in tumor immunotherapies.
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INTRODUCTION
Given the association of malignancies with subverted immune
surveilliance,” immunotherapies provide options for advanced
cancer patients, and multiple clinical trials are underway.? Despite
the impressive results achieved in several clinical trials,™®
obstacles have been encountered with the current immune
checkpoint inhibitor (ICl)-based immunotherapies.”® Suboptimal
efficacy is among the major concerns because previous trials
suggest that the response rate to ICI monotherapy is limited, and
the responses vary significantly across multiple tumors and
among individuals.''3

Accumulating evidence has suggested that immune suppression
in the tumor microenvironment (TME) represents a major barrier to
maximizing the clinical potential of immunotherapies.' The TME is
complex with diverse populations of nontumor stromal cells that
impact tumor immune evasion, response to immunotherapy, and
patient survival.'® In addition to cytotoxic lymphocytes (CTLs) and
natural killer cells (NKs) that are generally considered effective
antitumor immune cells, the TME contains a range of other cell
types that are involved in the crosstalk with anti-tumor immune
cells, including cancer-associated fibroblasts (CAFs),'® endothelial
cells (ECs),"” and tumor-associated macrophages (TAMs).'® CAFs
can induce a robust stromal reaction characterized by fibrotic
extracellular matrix (ECM) and make the TME convert to an
immune-excluded type via the transforming growth factor-3 (TGF-
B) signaling pathway.'®' The tumor-associated vasculature is
another hallmark of advanced solid tumors.**** ECs of tumor
vasculature can not only inhibit antitumor immunity by establish-
ing a selective immune barrier via the vascular endothelial growth
factor (VEGF)/prostaglandin E2 (PGE2)-FASL pathway,®* but can
also exacerbate the hypoxia condition with low pH and cause high
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interstitial fluid pressure, which is unfavorable for the infiltration
and activation of CTLs and NKs.'#2%%2

Macrophages are involved in various processes in both home-
ostasis and disease.”>?® With effector functions such as phagocy-
tosis, antigen presentation, and the plasticity to secrete a wide
variety of signaling molecules, they serve as an efficient “firewall”
in regulating homeostasis.?*>° They are also dynamic popula-
tions, and the resident macrophage pool can be rapidly expanded
by infiltrating monocytes under pathological states such as tissue
damage, inflammation and malignancy.?>*'** Macrophages in
the TME can be roughly induced into two contrasting groups:
classically activated “M1” macrophages and alternatively activated
“M2" macrophages.>> M2 and small populations of M1 cells, also
known as tumor-associated macrophages (TAMs), have been
generally thought to be involved in tumor initiation, progression,
angiogenesis and metastasis.>> Most relevant for patients, a high
TAM infiltration is often correlated with poor clinical outcomes in a
wide variety of tumors and is believed to decrease responses to
standard-of-care therapeutics, including radiotherapy, chemother-
apy and targeted therapy.?’2™** However, the “M1-M2" macro-
phage dichotomy is too simple to describe their complicated roles
in the TME32 Recent data acquired using unbiased large-scale
techniques might help discriminate among macrophage sub-
populations and have unraveled a previously unrecognized
complexity in macrophage polarization, far beyond the old dogma
of the binary “M1-M2" binary system.*> Furthermore, significant
dynamic changes in macrophage subpopulations were observed
during tumor development and were correlated with the efficacy
of immunotherapy.3%¢* These findings suggest a better under-
standing of heterogeneous TAMs and their roles in immunother-
apy will be critical for developing effective immunotherapies.”®*"
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Fig. 1 Classification of current tumor immunotherapies. The current tumor immunotherapies can be roughly divided into three types: a
checkpoint inhibitors, including anti-PD-1/L1 and anti-CTLA-4 monoclonal antibodies; (b) tumor vaccines, including various dendritic cell-
based vaccines and oncolytic virus-based vaccines; and (c) adoptive cell transfer, including CAR-T or TCR-engineered T cells. The antigens
released from necrotic tumor cells during surgery, locoregional therapy, chemotherapy or targeted therapy enhance the immune recognition

of tumor cells

Here, we attempt to illustrate the regulatory functions of TAMs
in the TME and different immunotherapies. We further discuss the
therapeutic potential of targeting TAMs to improve current
immunotherapies (immunotherapy classifications are summarized
in Fig. 1).

TAMS IN TUMOR INITIATION AND PROGRESSION

The strong relationship between inflammation and tumorigenesis
has long been recognized.>> Approximately 90-95% of all types of
tumors are connected to environmental exposures including
tobacco, obesity, smoke, radiation, chemicals, and chronic
infections, all of which could induce a smoldering inflammatory
state.®> TAMs help establish a pro-inflammatory microenviron-
ment and the link between TAMs and tumor initiation has been
extensively studied in various clinical samples and preclinical
models.>*~>° For instance, liver macrophages were found to be the
key source of steatosis-induced Wnt expression and the active
Whnt/B-catenin signaling in macrophages can promote the growth
of tumor progenitor cells, underlying the increased risk of
hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA)
in obese individuals.’’~®
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TAMs can promote tumor progression by producing mediators
that remodel the tumor-supportive TME. Such mediators include
growth factors and cytokines that support tumor cell proliferation;
NF-kB-mediated factors that protect against apoptosis (for
example, interleukin (IL)-1B, IL-6, tumor necrosis factor (TNF)-a,
C-C motif chemokine (CCL)2, C-X-C motif chemokine (CXCL)8, and
CXCL10);**' pro-angiogenic growth factors, such as VEGF,
platelet derived growth factor (PDGF), TGF-B and fibroblast
growth factor (FGF);’°°' and other factors that modulate tissue
architecture and favor tumor cell migration, invasion and
metastasis.>>%>%°

TAMs also subvert local immune surveillance because they can
directly reduce the activities of T cells and NKs by expressing cell
surface proteins or by releasing soluble factors that display
immunosuppressive functions (for example, arginase 1 (ARGT),
indoleamine 2,3-dioxygenase (IDO), IL-10, programmed death
ligand 1 (PD-L1), and TGF-B)®*°® or indirectly suppress T cell
activities through recruitment of other immune suppressive cells
such as regulatory T cells (Tregs).55%”

Overall, TAMs play a dual role as “tumor promoters” and
“immune suppressors” because they can promote tumor initiation
and act as central drivers of the immunosuppressive TME through
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Fig. 2 TAMs as regulators of tumor immunotherapies. TAMs exert their distinct regulatory functions in response to different
immunotherapies: a In checkpoint inhibitor therapy, TAMs can suppress effective T cells directly via the expression of various checkpoint
molecules and immunosuppressive cytokines and indirectly through crosstalk with Tregs and hijacking of anti-PD-1 antibodies. b In tumor
vaccine therapy, TAMs can inhibit the antigen-presenting efficiency of dendritic cells; ¢ In adoptive cell transfer therapy, TAMs prevent immune

infiltration via build up the highly fibrotic and angiogenic TME

their expression of cell surface receptors, secreted cytokines,
chemokines, and enzymes that regulate the recruitment and
function of multiple immune cell subtypes.

TAMS AS REGULATORS IN IMMUNOTHERAPIES

Numerous studies have shown the contribution of TAMs to
immunotherapy resistance,°® while the precise mechanisms are
still unclear. How these heterogeneous populations exert their
distinct regulatory capability in response to different immu-
notherapies remains poorly defined.

TAMs in checkpoint inhibitor therapy

Inhibition of immune checkpoints, such as PD-1/L1 and CTLA-4,
removes inhibitory signals of T cell activation, which enabling
tumor-reactive T cells to overcome regulatory mechanisms and
mount an effective antitumor response.’”’® However, the
underlying cellular mechanisms remain unclear, namely, the
expression patterns of checkpoint molecules and the interplay
among ICls and different components within the TME. In the
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setting of ICl therapy, the impact of TAMs should be carefully
considered (Fig. 2, left).

Upregulation of checkpoint molecules. Early in the 2000s, the
overexpression of checkpoint ligand B7-H1 (PD-L1) on tumor cells
was considered a key mechanism of immune evasion.”"”?
However, it was not until 2009 that two independent studies first
demonstrated that macrophages are the predominant immune
cells that express PD-L1 in HCC.”>”* These PD-L1" TAMs, activated
by tumor-derived IL-10, could mediate CD8*T cell dysfunction via
the PD-1/PD-L1 interaction.”>”* Similar results were also observed
in other tumor types including head and neck squamous cell
carcinoma (HNSC), ovarian cancer, soft tissue sarcoma, bladder
cancer and CCA’>® |n the last decade, other B7 family
checkpoints ligands were found to be expressed on TAMs,
including B7-DC (PD-L2) and B7-H4 (B7-S1), as well as alternative
checkpoints ligands such as galectin-9 and V-domain Ig-contain-
ing suppressor of T cell activation (VISTA).2""8¢ Thus, TAMs have
been regarded as carriers of checkpoint ligands that are
upregulated in response to TME-derived factors, resulting in
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immune exhaustion via the checkpoint ligand/receptor interaction
in a cell-to-cell contact manner.

However, these findings do not provide a comprehensive
picture. The expression of checkpoint molecules on macrophages
might reflect the immune status within the TME. PD-L1 expression
on macrophages, rather than on tumor cells, was positively
correlated with patients’ overall survival (OS) and might be used as
an independent prognostic factor based on a cohort study of 453
HCC patients.?” Surprisingly, PD-L1" TAM-enriched tumors exhib-
ited an activated immune status, with high levels of CD8* T cell
infiltration and immune-related gene expression, which indicates
that a substantial proportion of tumor might be a amenable to ICl
therapy.®” %

Moreover, the blocking effect of ICIs on the checkpoint
molecules expressed on TAMs is increasingly attracting attention.
Gordon et al. found that the phagocytic potency of PD-1"
macrophages is rescued by PD-1/PD-L1 inhibition, which length-
ens the survival of colon cancer preclinical models in a
macrophage-dependent manner.”® Another recent study based
on a myeloid cell-specific PD-1 silencing model revealed the vital
role of elevated intracellular cholesterol during anti-PD-1 treat-
ment, which is required for differentiation of inflammatory
macrophages and the promotion of antigen-presenting func-
tion.”! These findings show the complexity behind the checkpoint
molecules expressed on TAMs. A further understanding of their
intracellular regulatory mechanisms will be helpful for precise
classification of TAMs and providing guidance for ICl treatment.

Crosstalk with regulatory T cells. Tregs are critical components of
the TME and contribute to different aspects of tumor progres-
sion.” Recent studies have revealed the compensation between
TAMs and Tregs that derived immune evasion and ICl resistance.”®

TAMs favor chemokine/cytokine-mediated recruitment of Tregs
to the TME.”*®® TAM-derived CCL20 was found to promote the
infiltration of CCR6"Tregs in colorectal cancer (CRC) and HCC,
which may be an essential mechanism of anti-PD-L1 therapy
resistance.®”*° Specifically, TREM-1" TAMs elevate the expression
of the chemokine CCL20 via the extracellular signal-regulated
kinase (ERK)/NF-kP pathway in response to hypoxia and tumor
metabolites promoting infiltration of CCR6 " FOXP3™ Tregs.” Thus,
blocking the TAM-specific TREM-1 pathway could significantly
reduce immunosuppressive Tregs recruitment, as well as restore
the efficacy of anti-PD-L1 therapy.®” TAM-derived factors also play
a central role in the induction of induced Tregs (iTregs) in the TME.
It was shown that iTregs could be induced from CD4"CD25"
T cells co-cultured with M2-TAMs.'® A recent study by Zhou et al.
highlighted the critical roles of TAM-derived exosomes in the
induction of iTregs. They identified miRNAs enriched in exosomes,
including miR-29a-3p and miR-21-5p which directly suppressed T
cell-intrinsic STAT3 and regulated Treg/Th17 in ovarian cancer.’

Moreover, Tregs can further enhance the immunosuppressive
properties of TAMs. In laryngeal squamous cell carcinoma (LSCC),
malignant pleural effusion (MPE), and CRC, Tregs were found to
promote the differentiation of monocytes into immunosuppres-
sive TAMs directly.’®®'°21%% Tregs can also modulation of lipid
metabolism in M2-like TAMs. Liu et al. found that Tregs could
suppressed CD8™ T cell secretion of IFN-y, which would otherwise
block the activation of sterol regulatory element binding protein-1
(SREBP1)-mediated fatty acid synthesis in M2 TAMs. Thus, Tregs
indirectly but selectively sustained M2-like TAM metabolic fitness,
mitochondrial integrity and survival.'®*

Therefore, a positive feedback loop exists between TAMs and
Tregs that further enhances their immunosuppressive effects in
the TME.

Hijacking of anti-PD-1 antibodies. The constitutive expression of

Fcy receptor (FcyR) on monocytes/macrophages plays a crucial
role in the antibody-dependent phagocytosis (ADCP) of tumor
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cells.'® However, it is worth noting that TAMs may have a
significant impact on the pharmacokinetics and efficacy of ICI
via Fc-FcyR binding. In mouse models and primary human
immune cells, anti-PD-1 antibodies were observed to be seized
by macrophages depending on the Fc domain of the antibody
and the FcyR expressed by macrophages, which led to ICI
therapy resistance.'®® Moreover, a recent study has shown that
Fc-FcyR  binding-mediated TAM reprogramming can even
induce hyperprogression in an non-small cell lung cancer
(NSCLC) cohort and NSCLC patient-derived xenograft (PDX)
models, although the mechanism remains unclear.'®” Thus, how
to interfere with the constitutive expression of FcyR on
macrophages should be explored out in the tumor immu-
notherapy field. The effects mediated by the Fc domain of
checkpoint molecular antibodies should be carefully evaluated
and mechanistically understood.'%®

Macrophages in adoptive cell transfusion

Adoptive cell transfer therapies such as chimeric antigen receptor
T cell (CAR-T) or TCR-engineered T cell therapies enhanced the
anti-tumor response in different advanced malignancies.'®®™'""
The transferred cells must be trafficked and infiltrate into tumor
sites to exert their cytolytic effects.'’® However, this approach is
not feasible for solid tumor treatment because of the relatively
limited blood distribution and abnormal structure of tumor neo-
vessels.?? In addition, tumors that develop from cirrhosis are
highly fibrotic and difficult to penetrate physically.'® These
features complicate the infiltration of adoptively transferred cells
into tumor sites. In addition, TAMs contribute to the angiogenic
and fibrotic TME (Fig. 2, lower right).

TAMs support tumor angiogenesis mainly by the production of
factors such as VEGFA, PDGF, TGF-B and FGF.>**"®' The subpopula-
tion of TAMs characterized by the expression of angiopoietin 1
(TIE2*) in the blood or TME were considered to be close
associated with intratumor neovessel formation."'*''* The mole-
cular events of TAM-mediated angiogenesis were identified in a
study based on a chronic HBV infection cohort, which showed that
the individuals who finally developed HCC had higher serum
levels of IL-23."" IL-23, which is produced by inflammatory
macrophages, enhanced macrophage-mediated angiogenesis by
upregulating IL-23 receptor expression in macrophages. This
“chronic inflammation-macrophage-IL-23” positive feedback loop
might partially explain the significant role of macrophages in
formation of the TME. Furthermore, high TAM infiltration
correlated with a small number of IFN-y-expressing active NKs in
HCC,""® which might have a negative impact on the activation or
survival of adoptive transferred NKs.

Macrophages in tumor vaccines therapy
The identification of tumor antigens led to the development of
tumor vaccination strategies in the 1980s. The host anti-tumor
immune response is induced by tumor-antigen-pulsed dendritic
cells (DC-based vaccines) or tumor-derived antigens released from
lysed tumor cells (oncolytic virus).""”~1"® However, the results from
clinical trials, were not as striking as expected.'?*~'% The limited
efficacy of tumor vaccines in solid tumors may be ascribed to
different possible causes, one of these being the strong
immunosuppressive TME.'?* As in other immunotherapies, studies
have shown the accumulation of immune suppressive CD11b"
myeloid cells in response to the tumor vaccine treatment, which
may result in therapy resistance'?>~'?’(Fig. 2, upper right).
Currently, TAM-targeting strategies combined with tumor
vaccination are under evaluation. Anti-CD11b antibody-mediated
depletion of myeloid cells showed a synergistic effect along with
the vaccine by further prolonging the survival of tumor-bearing
mice, although no significant reduction in tumor burden was
observed.'?® Injection of tumor lysate-pulsed DC also prolonged
the survival of mouse models, and this therapeutic effect was
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Fig. 3 TAM-targeted Strategies in Tumors. TAM-targeted strategies can be roughly divided as follows: a elimination of macrophages already

present in tumor tissue; (b) inhibition of monocyte/macrophage

recruitment; (c) reeducation of TAMs toward an “immune-supportive”

phenotype characterized by restored phagocytic and antigen presenting ability

further enhanced by injection of PLX3397, a CSF1R inhibitor that
reprograms macrophages.'?®

THERAPEUTIC TARGETING OF TAMS IN TUMOR

Given that TAMs have a profound impact on tumor immunothera-
pies, there is considerable interest in the therapeutic targeting of
TAMs to synergize current ICl-based immunotherapy. The different
approaches that have been explored for targeting TAMs can be
roughly sorted into three major categories: (1) eliminating TAMs
already present in the TME; (2) inhibition of monocyte recruitment;
and (3) reprogramming of TAMs (Fig. 3).3"3>'%° These strategies
have been investigated in preclinical models, and some have been
translated into the clinical setting as adjuvant to immunother-
apy."*° Here, we summarize current preclinical and clinical studies
and discuss the potential strengths and weaknesses of these
approaches in different solid tumors (Table 1).

Macrophage elimination

The clearance of TAMs is an option to counter their negative impact
directly during immunotherapy. Bisphosphonates, which are tradi-
tionally been used to prevent the bone metastases or excessive
bone resorption, can be taken up by phagocytes and have cytotoxic

Signal Transduction and Targeted Therapy (2021)6:75

effects on myeloid cells.'®"'3 Based on their structure, bispho-
sphonates can be divided into two categories: nonnitrogen-
containing and nitrogen-containing bisphosphonates.'®'

Clodronate belongs to the family of non-nitrogen bispho-
sphonates. In early studies, clodronate-loaded liposomes (clodro-
lip) were often used to deplete liver macrophages.'®'3*
Liposomes are artificially prepared vesicles that undergo phago-
cytosis by macrophages after injection, and then, the intracellular
release and accumulation of clodronate can induce apoptosis of
macrophages.'®® Administration of clodrolip depleted TAMs
resulted in reduced tumor growth in preclinical models.'3%'3¢
The benefits of macrophage elimination have not only been seen
with clodrolip, but also with other bisphosphonates, such as
zoledronate.'®? Zoledronate belongs to the third-generation
nitrogen-containing bisphosphonate that has been shown to
exhibit selective cytotoxicity towards matrix metalloproteinase-9
(MMP9)-expressing TAMs and to impair differentiation of mono-
cytes into TAMs.'” Zoledronate acid (ZA) reduced the infiltration
of TAMs, decreased tumor angiogenesis and inhibited tumor
progression in different preclinical tumor models,'3%138-140

A possible major barrier to this therapeutic approach might be
the fact that general depletion of monocytes/macrophages is not
TAM-specific and coincides with loss of tissue-resident
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by circulating monocytes. The recruitment of circulating mono-
cytes is highly dependent on several chemokine signals,®' and
thus, interference with chemokine signaling using monoclonal
antibodies or small molecule inhibitors might be an effective way
to prevent TAM accumulation in the TME.
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2 circulatory monocytes and their infiltration into the TME, making

5 < < < < < < < < it a promisilng TﬁM—tarﬁeted therapy.141'14;ﬁInhibition c();ffCLZ/

x|z z Zz z z z z CCR2 signaling has shown antitumor efficiency in different

3 experimental animal models.?® Genetic silencing and administra-
. ' . tion of a CCL2 neutralizing antibody or CCR2 antagonist reduced
2|83 2 ‘g gg 2 the recruitment of circulatory monocytes, subsequently lowered

S| E E 2= 3 S E 55 the number of TAMs, and downregulated the secretion function of

% A5 s F 2 E g A E <§C_ M2-like TAMs.*"'*371% More importantly, an enhancement of the

S|l << 2 %% - - function of tumor-infiltrating CD8"* T cells and NKs was observed

E|E ¢ EQs E‘é Eo 0o during the treatment,*"'**'** which may suggest a good

£ 2 & o g 2 fx o =z immunotherapy response. Thus, several phase I/ll clinical trials

EREEE: 09 89 £S5 8 are in progress to assess the therapeutic effect of BMS-813160, a

2|3 e §%B> vaeT e small molecule inhibitor of CCR2/5, in combination with Nivolu-

© = 3 ~ T 5 - = . . .

£|98 5 50- E~n O EE mab and/or the tumor vaccine GVAX in several solid tumors

'g -g [§ § gt 22 E -g 232 including HCC, NSCLC, renal cell carcinoma (RCC) and pancreatic

Sleg 28z53298 23 ductal adenocarcinoma (PDAC).

Hypoxia-induced upregulation of stromal cell-derived factor 1
alpha (SDF-10/CXCL12) also contributes to the recruitment of the
suppressive M2 macrophages.’*® Inhibition of the SDF-1a receptor

0 (CXCR4) using the CXCR4 antagonist AMD3100 relieved regional
g immunosuppression and facilitated anti-PD-1 antibody treatment
S E in a sorafenib-resistance HCC model."”” This study is of great
2 - ) ST
sY S u translation value because hypoxia and HIF-1a activation are the

v |, 58 5 % £ ¥ most common and significant features of solid tumors and are

g: = EY EE £ T usually aggravated during conventional treatments including

s|afet = p sy ‘é e chemotherapy, transcatheter arterial chemoembolization (TACE)

E|lgz&852E 5 233 and sorafenib treatment.'*® Moreover, inhibition of CXCR4 might

F|lZwdunnkE » T <o have synergistic effects with anti-angiogenesis drugs because

% __ T B B _ _ TAMs can regulate the expression of CXCR4 via the ERK pathway,
56 228 6 §2¢9 which is a novel vascular marker for angiogenesis.'*® Therefore,
|22 8§52 2 2385 CXCR4 antagonists, such as AMD3100 and BL-8040 should be

5_—; % % §8 S % % 5§ judiciously considered in the future design of clinical trials for

<=3 - ZTZ-Z = =ZTZ immunotherapies.

g1 3 g g3 g 933 Although the efficacy of immunotherapies could be enhanced

j= T @© T @© @© © T @© @© . . . sy .. .

S|l£E& £&££ £ ££ &£ by myeloid cell recruitment inhibition, preclinical evidence from
PDAC suggests that the resistance mechanism against this
therapeutic approach may lie in the rapid compensation by

- T tumor-associated neutrophils (TANs) and a lack of effect on tissue-

Tla S 2 o resident TAM populations.’*®'>" Moreover, withdrawal of CCL2/

S|l o _ E v =2 pop . ,

3 S 3 § § 3 o % 2 8 CCR2 inhibitors may lead to a dramatically release of monocytes

Elg E ¥ .g T A previously trapped within the bone marrow, which was shown to

vljeEm ST £ Z 0E%G accelerate metastasis in a preclinical model of breast cancer.'?

B S Although these limitations have not been reported in completed
= 2 g 58 or ongoing clinical trials, considering them in the design of future
2 S 5 5 € linical trials is critical, and alternative targets that th

e | € S 835 < clinical trials is critical, and alternative targets that overcome these

qé* % pis < <€ X limitations may be required for optimal and stable therapeutic

S ~ - = -

I~ N © = a responses.
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Macrophage reprogramming

s |5 An inevitable drawback to macrophage clearance and recruitment
21 inhibition is the loss of their potential immune-stimulatory role as
£ g the major phagocytes and professional antigen-presenting cells
§ e (APCs) within the TME.'>® Despite generally being tumor-
BE supportive, TAMs may be phagocytic and suppress tumor growth
-2 by activating antitumor immune responses. This suggests that
= 3 macrophage plasticity can be therapeutically exploited to restore
s 1= the antitumor properties to TAMs.?> Thus, switching TAMs toward
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an “immune-supportive” phenotype provides an opportunity to
reshape the immune-suppressive or exclusive TME and therefore
presents a more effective approach to optimizing current ICl-
based immunotherapies. This can be achieved by using ther-
apeutics that promote macrophage polarization and/or using
nanoparticles that can selectively reprogram macrophages to a
restorative phenotype.'*°

Restoring phagocytic capacity. In homeostasis, normal cells can
avoid self-elimination by phagocytes through the expression of
anti-phagocytosis molecules,”>*'>> which are therefore called
“phagocytosis checkpoints.” However, many studies have shown
that tumor cells depend even more on phagocytosis checkpoints
to evade immune surveilliance.'*® Therefore, identification and
intervention with phagocytosis checkpoints might provide a new
approach for restoring the phagocytic capacity of TAMs to
eliminate tumor cells.’

Signal regulatory protein alpha (SIRPa) is an ITIM-bearing
inhibitory receptor expressed on myeloid cells, including macro-
phages.”” SIRPa recognizes CD47, which acts as a “don’t eat me”
signal and is found to be overexpressed tumor cells and correlate
with patients’ poor survival.'*®'*® Macrophage phagocytosis of
tumor cells was restored after treatment with CD47 antibodies,'®°
and this macrophage-mediated phagocytosis was further
enhanced in the presence of chemotherapeutic drugs, suggesting
that patients with lower CD47 expression were more likely to
benefit from adjuvant TACE treatment.'*® It is worth noticing that
CDA47 is highly expressed in CCA.'®" Interfering with the CD47-
SIRPa interaction promotes phagocytosis in TAMs and conse-
quently suppresses the progress of CCA.'®' The unique over-
expression of CD47 in CCA offers an exceptional opportunity for
CDA47-targeted therapy.

The bridging between innate and adaptive immune cells
provides the rationale for combining phagocytosis checkpoint
inhibitors with current ICl-based immunotherapies that boost the
adaptive immune response.””” The potential for such combina-
tions was initially observed when anti-CD47 therapy was shown to
have synergistic effect with PD-L1 inhibitor in a mouse model
bearing the B16F10 melanoma.'®? Similarly, a bispecific antibody
targeting PD-L1 on tumor cells and SIRPa on APCs showed a more
significant antitumor effect against murine colon cancer com-
pared with either anti-PD-L1 or anti-SIRPa monotherapy.'®?
Overall, these preclinical results along with earlier observations
in ICIs confirm the notion that the conventional boundary
between the innate immune checkpoint and adaptive immune
checkpoints is becoming unclear, because more of these
checkpoints have been found to function at both the innate
and adaptive levels."’

Unleashing the immune-stimulatory capacity. The CSF1/CSF1R
axis has been heavily investigated for its role in defining the
survival, proliferation, differentiation and function of macro-
phages.'®*'% Targeting CSF1/CSF1R signaling in protumoral
TAMs represents an attractive strategy to eliminate CSF1R-
dependent or reprogram M2-like TAMs.'®” The altered TAM’s
polarization will be key to reshaping the immunosuppressive TME
and boosting a preexisting antitumor immune response.'®”'%® |n
preclinical models, CSF1/CSF1R blockade has been shown to
improve the efficacy of different immunotherapies, including ICls
and adoptive cell transfer therapy.'®*'”" The positive results of
these studies have led to clinical trials combining CSF1 and/or
CSF1R inhibitors with ICIs or other immunotherapies.'’%'”3

CD40, a receptor that belongs to the TNF receptor superfamily,
is primarily expressed on APCs. The CD40-CD40L interaction
upregulates the expression of MHC and promotes the secretion of
pro-inflammatory cytokines, such as IL-12, which plays a
significant role in T cell priming."*® Macrophage treatment with
CD40 agonists in combination with anti-CSF1R antibodies resulted
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in profound TAM reprogramming before their depletion; these
reprogrammed TAMs created a pro-inflammatory environment
that elicited effective T cell responses, even in tumors that were
nonresponsive to ICls.'”*'7>

Phosphatidylinositol 3-kinase y (PI3Ky) acts as a molecular
switch that turns on an “immunosuppressive program” while
shutting down “immune-stimulatory program”.'’® Kaneda et al.
showed that PI3Ky determines the immunosuppressive properties
of TAMs."” It was shown that the lack of PI3Ky activity in TAMs
induced the expression of MHC-Il and pro-inflammatory cytokines
while reducing the immunosuppressive molecules including IL-10
and arginase.'”” This dramatic shift of TAMs also enhanced
adaptive immunity in the TME and significantly inhibited tumor
progression.'”” Another critical study by De Henau et al. also
showed the potential of targeting myeloid-intrinsic PI3Ky in
overcoming ICl resistance.'’® Further analysis is required to
determine whether PI3Ky inhibition could exert similar immuno-
modulatory function in other solid tumors.

The Lmdd-MPFG (LM) vaccine activates the NF-kB pathway in
TAMs through the Toll-like receptor (TLR)2-MyD88 pathways, and
recruits p62 to activate the autophagy pathway.'”*'®° The overall
effect of LM skews the TAMs from the M2-like state into the M1-
like state.'®' Most importantly, this approach skewed the TME
cytokine profile to anti-tumor profile, and this change restored the
T cell reactivity to the anti-PD-1 blockade.'®°

Nanoparticles in the optimization of macrophages reprogramming.
Systemic targeting of TAMs using nanomedicines is an attractive
approach because TAMs are ideal therapeutic targets due to their
considerable propensity to phagocytose nanoparticles.'®? Notably,
it has been reported that myeloid cells could take up ten-fold
more nanoparticles than tumor cells in a preclinical model.'®

Several recent studies have used nanoparticles loaded with TLR
agonists or tumor peptides to promote reprogramming of the
TAMs, exploiting the capacity of nanoparticles to both target TAMs
and promote antitumor immunity. For example, the TLR7/TLR8
agonist R848 loaded nanoparticles preferentially accumulated in
TAMs in mouse models and promoted macrophage reeduca-
tion.”®® Another study based on immunotherapy resistance
tumors showed that codelivery of a long peptide antigen, which
induced antigen-presenting activity of TAMs, and TLR agonists to
TAMs using a nanosized hydrogel (nanogel) can transform the
resistant tumors into tumors sensitive to adaptive immune cell
transfer.'®

However, the development of TAM-reeducating therapies
based on nanoparticles is still facing great challenges, such as
how to preferentially deliver them to the protumoral M2-like TAMs
or how to acquire a long-lasting and sufficient antitumor response.

Fortunately, engineering of new nanomedicines provides new
opportunities by (1) applying nanoparticles modified with ligands
that could recognize M2 TAM's specific markers to achieve target
delivery; and (2) preparing nanoparticles to reduce the number of
TAM:s in the tumor via specific cytotoxicity, or reeducating TAMs in
a long-lasting manner with the carriers possessing drug controlled
release properties.'® Effective development of such nanomedi-
cines could lead to a breakthrough in the field of tumor
immunotherapy.

CONCLUSION AND PERSPECTIVES

TAMs are primary immune cells within the TME with high
heterogeneity and complex roles as regulators of tumor immunity
and immunotherapy. Thus, it is fundamental to reveal their exact
regulatory mechanisms and identify macrophage-specific targets
to optimize the efficacy of current immunotherapies. Recent
studies have partially revealed the regulatory mechanisms and
have highlighted three major TAM-targeting strategies: macro-
phage elimination, recruitment inhibition and reprogramming.
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Early clinical trials have focused on the first two approaches.
Regardless, organ homeostasis disruption induced by resident
macrophages and the potential metastasis-promoting withdrawal
reaction remain key barriers to practical application in clinical
settings. Going forward, a better strategy for macrophage
reprogramming that attenuates their immune-suppressive ability
while enhancing their potential immune-stimulatory functions is
favorable for current ICl-based immunotherapy. However, the
actual synergistic effect of macrophage-reprogramming agents,
such as PI3Ky inhibitors and CD40 agonists needs further
evaluation. Moreover, macrophage reprogramming using nano-
particles has therapeutic potential in several preclinical models,
but nanoparticle efficiency, safety and tolerability should be
carefully evaluated in the human body.

Despite the recent progress in clinical and preclinical studies,
some questions remain unanswered. For example, studies have
highlighted the molecular events and signaling pathways of TAMs.
Still, less is known about the intracellular metabolic switch during
tumor progression and its potential impact on immunotherapy.
Novel checkpoint receptors, such as T Cell Immunoglobulin and
ITIM domain (TIGIT), VISTA or Lymphocyte-activation-gene-3 (LAG-
3), have attracted broad interest, but what is the significance of
macrophage populations expressing these different checkpoint
receptors? Finally, because macrophages in the digestive system
are direct sentinel cells for changes in the gut microbiota,
understanding the exact mechanisms of these interactions and
their consequences could potentially aid in tailoring an antitumor
microbial cocktail. This concept is based on emerging studies
suggesting that the manipulation of the gut microbiome can alter
cancer incidence and the responses to immunotherapy,'8%'87-189
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