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ABSTRACT Quantification tools for RNA sequencing (RNA-Seq) analyses are often
designed and tested using human transcriptomics data sets, in which full-length
transcript sequences are well annotated. For prokaryotic transcriptomics experiments,
full-length transcript sequences are seldom known, and coding sequences must
instead be used for quantification steps in RNA-Seq analyses. However, operons con-
found accurate quantification of coding sequences since a single transcript does not
necessarily equate to a single gene. Here, we introduce FADU (Feature Aggregate
Depth Utility), a quantification tool designed specifically for prokaryotic RNA-Seq
analyses. FADU assigns partial count values proportional to the length of the frag-
ment overlapping the target feature. To assess the ability of FADU to quantify genes
in prokaryotic transcriptomics analyses, we compared its performance to those of
eXpress, featureCounts, HTSeq, kallisto, and Salmon across three paired-end read
data sets of (i) Ehrlichia chaffeensis, (ii) Escherichia coli, and (iii) the Wolbachia endo-
symbiont wBm. Across each of the three data sets, we find that FADU can more
accurately quantify operonic genes by deriving proportional counts for multigene
fragments within operons. FADU is available at https://github.com/IGS/FADU.

IMPORTANCE Most currently available quantification tools for transcriptomics analyses
have been designed for human data sets, in which full-length transcript sequences,
including the untranslated regions, are well annotated. In most prokaryotic systems,
full-length transcript sequences have yet to be characterized, leading to prokaryotic
transcriptomics analyses being performed based on only the coding sequences. In
contrast to eukaryotes, prokaryotes contain polycistronic transcripts, and when genes
are quantified based on coding sequences instead of transcript sequences, this leads
to an increased abundance of improperly assigned ambiguous multigene fragments,
specifically those mapping to multiple genes in operons. Here, we describe FADU, a
quantification tool for prokaryotic RNA-Seq analyses designed to assign proportional
counts with the purpose of better quantifying operonic genes while minimizing the
pitfalls associated with improperly assigning fragment counts from ambiguous
transcripts.

KEYWORDS bacteria, differential expression, operon, polycistronic transcripts, read
count, software, transcriptome, transcriptomics

ifferential expression transcriptomics analyses frequently involve the quantifica-
tion of the number of paired-end reads, or fragments, that are overlapping each
gene. Traditional quantification tools, such as featureCounts (1) or HTSeq (2), first
require an alignment step, in which paired-end reads are aligned to a reference ge-
nome using tools such as Bowtie2 (3, 4), BWA (5), or HISAT2 (6). The subsequent
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quantification step uses the output alignment file in combination with a GFF/GTF
annotation file to quantify the number of sequenced fragments that intersect the coor-
dinates of each target gene. For transcriptomics experiments in which no whole-ge-
nome reference is available, a different subset of quantification tools was developed
using de novo transcriptome assemblies, including the cufflinks suite of tools (7-10),
RSEM (11), and eXpress (12). These tools bypass the need for a GFF/GTF annotation file
and instead involve an alignment step in which fragments are mapped to reference
transcript sequences instead of the whole genome. Most recently, alignment-free tools,
such as kallisto (13) and Salmon (14), bypass the alignment step altogether and use
raw sequencing fragments to directly quantify reference transcript sequences using
pseudoalignments and k-mer-based counting approaches (13, 14).

All of these approaches work best with a well-annotated reference genome in
which full-length transcript sequences have been identified. Each of the above-men-
tioned quantification tools was developed using human transcriptomics data sets as a
template, and because of this, these tools are deficient when used to quantify genes
for prokaryotic transcriptomics studies. Under ideal conditions, transcriptomic studies
would quantify genes at the transcript level, but the lack of complete transcript anno-
tations for most nonmodel eukaryotic and prokaryotic organisms forces transcriptomic
analyses to be conducted at the coding sequence (CDS) level, failing to account for the
untranslated regions (UTRs) of transcripts. This can be problematic in genomes with
dense coding capacities and overlapping transcripts. It is especially problematic when
analyzing prokaryotes due to the abundance of polycistronic transcripts from operons,
with there being an estimated 630 to 700 operons in the >5,000 genes found in the
Escherichia coli genome (15).

At the core of these problems is the method with which ambiguous fragments are
quantified. Ambiguous fragments can be divided into two categories: (i) multimapping
fragments, in which a fragment maps to multiple genomic regions equally, such as in
the case of reads originating from paralogous genes, and (ii) multigene fragments, in
which a fragment maps uniquely but overlaps multiple features. Each tool has a differ-
ent method to quantify these types of ambiguous reads. By default, the genome align-
ment-based tools featureCounts and HTSeq fail to quantify multimapping fragments
and mark them as ambiguous, while some transcript-alignment-based and alignment-
free tools, such as cufflinks, eXpress, RSEM, kallisto, and Salmon, apply abundance esti-
mation algorithms to assign partial counts. As an example, RSEM, eXpress, kallisto, and
Salmon all apply an expectation maximization (EM) algorithm to ambiguous fragments,
in which the number of fragments that unambiguously align to a target transcript is
used to estimate the counts from ambiguous fragments originating from that target
transcript (16).

In the case of quantifying operons in prokaryotic systems, difficulties often stem
from the quantification of multigene fragments. By default, featureCounts will assign a
multigene fragment to the feature that overlaps the majority of individual paired-end
reads in a given fragment and, in the case of a perfect split, marks the read ambiguous
(1). In comparison, HTSeq does not quantify any multigene fragments and instead
marks them as ambiguous (2). Both of these approaches lead to an underestimation of
the actual mapped reads for these genes and, by extension, an underestimation of
gene expression. Tools such as cufflinks, eXpress, RSEM, kallisto, and Salmon again rely
on abundance estimation algorithms to assign proportional counts for both multigene
fragments.

However, the strategies used by these tools are inherently flawed when quantifying
prokaryotic genes. For featureCounts and HTSeq, multigene fragments occur fre-
quently in operons. While both of these tools have alternative modes for quantifica-
tion, in which counts are assigned to all overlapped features, this often leads to an
overquantification of features in close proximity that are not transcribed together
(Fig. 1A). When run with default settings, discarding these reads underestimates the
abundance of operonic genes, especially smaller genes in the middle of operons
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FIG 1 Implementation of FADU. (A) The workflow of FADU uses a BAM file and a GFF annotation file to identify proportional read counts for prokaryotic
RNA-Seq analyses. (B) The implementation of FADU differs from those of other similar genome alignment-based quantification tools primarily in the
quantification of ambiguous multigene fragments. The three sets of pie charts above a paired-end fragment display how the counts from the fragment are
proportionally assigned to its overlapping genes. In the case of two overlapping genes, FADU accounts for only the unique portions of each gene and
assigns a proportional count based on the length that the fragment overlaps the feature. (C) In the case of operons, FADU will assign proportional counts
to the different genes based on the overlap between the mapping coordinates of the fragment and any overlapping genic features.

(Fig. 1B). The tools cufflinks, eXpress, kallisto, RSEM, and Salmon all require a reference
containing transcript sequences. Because of the absence of full-transcript prokaryotic
annotations, CDSs must often be used instead, leading to the discarding of fragments
that map primarily to the 5’ or 3’ regions of genes. Additionally, the absence of tran-
script annotations for operons further complicates the analysis. The use of CDSs as the
units for quantification implies that each CDS is a unique observation, which is not the
case for operons. For fragments that overlap multiple genes in an operon, this causes
the fragment count to be improperly split into multiple genes when it should optimally
be equally counted for all genes. Ideally, this issue would be solved by first identifying
the full-length transcript sequences for prokaryotes using laboratory techniques such
as 5’ and 3’ rapid amplification of cDNA ends (RACE) or direct RNA sequencing (RNA-
Seq) preceding transcriptomics-based analyses, but this is currently not practical given
the number of different prokaryotic systems being studied.

In this study, we developed FADU (Feature Aggregate Depth Utility), a quantifica-
tion tool specifically designed for prokaryotic transcriptomics analyses, to address the
shortcomings centered around the quantification step of prokaryotic transcriptomics.
FADU uses an alignment file generated by aligning reads to a whole-genome assembly
and handles ambiguous multigene fragments by proportionally assigning fragment
counts. Given a multigene fragment, FADU assesses the proportion of the fragment
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that overlaps the nonunique positions of each of its overlapped features and assigns a
proportional fragment count. By assigning proportional read counts, FADU avoids the
pitfalls that other tools have in quantifying operonic genes while minimizing the errors
derived from quantifying multigene fragments. Here, we describe the implementation
of FADU and compare its performance and utility to those of the alignment-dependent
quantification tools featureCounts, HTSeq, and eXpress and the alignment-free quanti-
fication tools kallisto and Salmon.

RESULTS

FADU implements a quantification method based on assigning proportional
counts based on fragment overlap. FADU was designed with the objective of
addressing ambiguous multigene fragments. A multigene fragment is a fragment rep-
resented by a read pair whose mapping coordinates overlap multiple features, which
occurs in dense coding regions and operons. To properly identify multigene fragments
in the absence of robust and rigorous operon predictions, we designed FADU to func-
tion using a BAM file aligned to a reference genome.

For each paired-end fragment, FADU functions by assigning proportional counts
based on the length of the different features that the fragment overlaps (Fig. 1C) as
F. = Fy/F,, where F_ represents the proportional fragment count contribution for a
given fragment or read for each genic feature, F, represents the number of bases that
the fragment overlaps the unique positions of the genic feature, and F, represents the
total length of the fragment. In the case of overlapping genes, no proportional count
values will be derived from ambiguous positions. For reads that are unable to be proc-
essed as read pairs, F. is halved to prevent the contribution of discordant reads or sin-
gletons from overestimating the counts of a feature, as these discordant reads could
be the result of potentially erroneous mappings. Following the assignment of uniquely
mapping counts, using an expectation maximization (EM) approach (17) implemented
similarly in other RNA-Seq quantification tools such as eXpress (12), kallisto (13), and
Salmon (14), by default, FADU will derive counts from ambiguous multimapping frag-
ments. After n EM iterations, transcripts per million (TPM) values for each genic feature
are calculated using their unique positional lengths.

Comparing the performance of FADU against other quantification tools using a
simulated data set. We compared the performance of FADU to those of the default
modes of several different RNA-Seq quantification tools, including the genome-align-
ment-based quantification tools featureCounts (1) and HTSeq, the transcriptome-align-
ment-based quantification tool eXpress, and the alignment-free quantification tools
kallisto and Salmon. In addition to the default modes for each of these tools, we also
assessed the derived counts from some of these tools using options designed to opti-
mize the quantification of prokaryotic RNA-Seq data sets. This includes the -O and
—fraction options for featureCounts, which will quantify ambiguous multigene frag-
ments by assigning either a full count value or a proportional count value derived from
the number of features that a paired-end fragment overlaps, respectively. We also
compared the performance of FADU to those of all three modes of HTSeq, -m union,
-m intersection-nonempty, and -m intersection strict, along with -m unique with the
option —nonunique all (2). Compared to HTSeq -m union, HTSeq -m intersection-non-
empty is liberal in assigning multigene fragments. Given a multigene fragment, HTSeq
-m intersection-nonempty takes the intersect of the genic features found at each non-
empty position, and if only one genic feature is returned, a count is assigned to that
genic feature. HTSeq -m intersection-strict is more conservative and takes the intersect
of the genic features found at all positions rather than the nonempty positions, and
again, if only one genic feature is returned, a count is assigned to that genic feature.
Additionally, HTSeq -nonunique all functions similarly to featureCounts -O in that a full
count value is assigned to all genes overlapped by a multigene fragment. For eXpress
(12), we assessed the performances of the -B 10 and —no-bias-correct options, which
increases the number of EM iterations used in deriving counts from ambiguous frag-
ments and ignores sequence-specific biases, respectively. Finally, for Salmon, we
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FIG 2 Performance of FADU in a simulated differential expression analysis. A 100-bootstrap
dendrogram was generated using the counts obtained from 9 different RNA-Seq quantification
methods on a simulated E. coli data set. The points at the edges of the dendrogram are colored to
represent the different tools corresponding to each method. The colored bar at the edge of the
dendrogram represents the different clusters of quantification tools.

assessed the performances of the —validateMapping and -allowDovetail options to bet-
ter quantify genic features with lengths shorter than the paired-end fragment length.

For these comparisons, we generated a simulated RNA-Seq data set for Escherichia
coli K-12 substrain MG1655 using transcript annotations generated from operon pre-
dictions from OperonDB (18). Using each of the different quantification methods, we
derived count values from the simulated RNA-Seq data set using CDS annotations,
instead of the predicted operon annotations, to best assess the performance of each
quantification method in the absence of operon predictions. Using Polyester (19), four
samples were simulated, consisting of two conditions consisting of two replicates
each, to simulate a basic minimum differential expression analysis. Totals of 256 and
300 transcripts were simulated to be significantly over and underexpressed, respec-
tively, using the operon predictions from OperonDB. Of these transcripts, 184 and 116
are operonic transcripts, resulting in there being 595 and 678 significantly up- and
downregulated CDSs, respectively.

Using TPM values derived from each quantification method, we conducted a hier-
archical clustering analysis to divide the methods into four distinct clusters (Fig. 2). The
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first cluster consists of all methods in which a transcriptome-based reference is used,
including all three alignment-free quantification methods (green bar on the right of
the dendrogram). The second cluster (blue bar) consists of the more conservative ge-
nome-alignment-based quantification methods, in that counts are often not derived
from multigene fragments as they are instead marked as ambiguous and ignored. In
contrast, the third cluster (orange bar) consists of the genome-alignment-based quan-
tification methods that are more liberal in assigning counts from multigene fragments,
in which a count value is given to all features that a multigene fragment overlaps. The
fourth cluster (yellow bar) contains both methods of FADU, which use an EM approach
to quantify ambiguous multimapping fragments while assigning proportional counts
for multigene fragments. With FADU, excluding the assignment of multimapping frag-
ments with the —remove_multimapping option yields counts most similar to those of
the conservative genome-based quantification methods (cluster 2), setting FADU apart
as the only genome alignment quantification method that uses an EM-based method
to assign multimapping fragments.

Differential expression analyses were conducted using two differential expression
tools, DESeq2 (20) and edgeR (21), using the counts derived from each quantification
method. Using DESeq2 and edgeR, all methods, with the exception of eXpress run
with default settings, were at least able to correctly detect approximately half of the
simulated differentially expressed CDSs (Fig. 3b and c). With edgeR, all methods except
eXpress with default settings were able to correctly detect ~200 more differentially
expressed genes than with DESeq2, although the number of false-positive differentially
expressed genes detected was also greater.

Of the different methods, the cluster consisting of the genome-alignment-based
quantification methods that more liberally assign counts from multigene fragments
(cluster 1) was able to consistently detect the most differentially expressed genes.
However, these methods also consistently have the highest false-positive rates
(DESeq2, 0.41 to 0.54%; edgeR, 1.36 to 1.49%) as they incorrectly identify more nondif-
ferentially expressed genes as differentially expressed (Tables 1 and 2). Of the conserv-
ative genome-alignment-based methods (cluster 2), FADU -remove_multimapping
detects the most differentially expressed genes while retaining a false-positive rate
similar to those of the other tools. As the tools in this cluster become more conserva-
tive in assigning multigene fragments, fewer differentially expressed genes are able to
be detected, partly because more are being excluded from the default DESeq2 and
edgeR minimum-expression filters (Tables 1 and 2). As an example, HTSeq -m intersec-
tion-strict is the most conservative quantification tool in this study for deriving counts
from multigene fragments. As such, it excludes the most genes from these analyses,
which include 40 incorrectly assigned differentially expressed genes. The alignment-
free quantification methods perform similarly to the FADU methods that implement an
EM algorithm for assigning counts from multimapping fragments. However, using
DESeq2, FADU is able to detect ~10 genes more as differentially expressed while hav-
ing a slightly higher false-positive rate, while with edgeR, only FADU —-em_iterations 10
outperforms the alignment-free methods in detecting differentially expressed genes
while keeping a similar false-positive rate (Tables 1 and 2). Ten EM iterations were cho-
sen as convergence typically occurs within 10 iterations for these prokaryotic genomes
and annotations (see Fig. S1 in the supplemental material).

For each quantification method, we calculated a log, ratio of the quantification-
method-derived counts to the simulated counts to assess the accuracy and precision
of the counts derived from each of the quantification methods. The ideal quantification
method would have a distribution with a log, ratio value centered at around zero, indi-
cating that most counts derived for each genic feature are similar to the simulated val-
ues, and a low interquartile value, indicating high precision in the quantification-
method-derived counts (Fig. 3A to C). The transcriptome-based quantification tools of
the first cluster all have distributions that are slightly left-skewed, indicating that most
features are being undercounted. While this difference is very slight for the kallisto-
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TABLE 1 DESeq_? differential expression statistics?

mSystems’

No. of No. of DE genes No. of NDE
No. of No. of No. of false- False- excluded from  genes excluded
Quantification correct correct missed positive  Detection positive expression from expression
method Cluster DEgenes NDEgenes DEgenes DEgenes rate (%) rate (%) threshold threshold
Salmon 1 673 3,156 587 3 5341 0.09 22 5
-validateMappings
-allowDovetail
Salmon 1 674 3,156 586 3 5349 0.09 22 5
-validateMappings
Kallisto 1 673 3,150 587 9 5341 0.28 58 4
eXpress 1 599 3,152 661 7 47.54 0.22 158 14
-B10 -no-bias-correct
eXpress 1 290 3,119 970 40 23.02 1.27 163 17
featureCounts 2 694 3,154 566 5 55.08 0.16 97 15
FADU 2 703 3,156 557 3 55.79 0.09 92 15
—-remove-multimapped
HTSeq 2 656 3,156 604 3 52.06 0.09 156 17
-m intersection-nonempty
HTSeq 2 645 3,158 615 3 51.19 0.09 178 20
-m union
HTSeq 2 607 3,142 653 1 48.17 0.03 357 42
-m intersection-strict
HTSeq 3 770 3,142 490 17 61.11 0.54 51 6
-m union —-nonunique all
featureCounts -O 3 776 3,142 484 17 61.59 0.54 55 6
featureCounts -O 3 735 3,146 525 13 58.33 0.41 52 6
—fraction
FADU 4 686 3,149 574 10 54.44 0.32 52 10
—em_iterations 10
FADU 4 684 3,152 576 7 54.29 0.22 53 9

aDE, differentially expressed; NDE, nondifferentially expressed.

and Salmon-based methods, the high interquartile range for both eXpress methods
indicates low precision in quantifying features in this simulated prokaryotic RNA-Seq
data set. In the second cluster, all three HTSeq methods run with the three different
modes are similarly left-skewed, again indicative of many features being under-
counted, due to fewer count values being derived from multigene fragments. The
default featureCounts method and FADU -remove_multimapped are the most accurate
and precise of the conservative genome-based quantification methods in that they
both have low interquartile ranges and their ratio distributions are centered around
zero. The increased precision of featureCounts relative to HTSeq lies in how each
method quantifies multigene fragments. By default, featureCounts will assign a multi-
gene fragment to the feature that maps to the feature overlapping the majority of the
individual reads in a paired-end fragment (1), while HTSeq derives no counts from all
multigene fragments and instead marks them all as ambiguous (2).

The methods in the third cluster, consisting of the genome-alignment-based quan-
tification methods that liberally derive counts from multigene fragments, all have
right-skewed distributions, indicating that most features are being overcounted
(Fig. 3A to Q). For a multigene read mapping in an operonic structure, the ideal quanti-
fication method should assign an equal count value to all overlapped genic features.
While this may result in an inflation of read counts relative to the number of reads
mapped, the expression values would be more accurately quantified. However,
because of the dense nature of prokaryotic genomes, it becomes difficult to determine
whether a multigene fragment is representative of an operonic transcript or overlaps
multiple genes due to the high coding density of prokaryotic genomes. The right-
skewed nature of all three quantification methods in this cluster is a consequence of
overinflating counts due to an overabundance of overlapping or close-proximity nonop-
eronic genes in the E. coli genome. The fourth cluster consists of both FADU methods
that assign counts from multimapping fragments using an EM algorithm. Of all the
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TABLE 2 edgeR differential expression statistics

mSystems’

No. of No. of DE genes No. of NDE
No. of No. of No. of false- False- excluded from  genes excluded
correct correct missed positive  Detection positive expression from expression
Quantification method Cluster DEgenes NDEgenes DEgenes DEgenes rate (%) rate (%) threshold threshold
Salmon 1 946 3,115 314 44 75.08 1.39 98 5
-validateMappings
-allowDovetail
Salmon 1 946 3,115 314 44 75.08 1.39 98 5
-validateMappings
Kallisto 1 947 3,116 313 43 75.16 1.36 141 4
eXpress 1 831 3,137 429 22 65.95 0.70 237 14
-B10 —-no-bias-correct
eXpress 1 53 3,143 1,207 16 4.21 0.51 292 17
featureCounts 2 936 3,135 324 24 74.29 0.76 169 15
FADU 2 974 3,127 286 32 77.30 1.01 153 15
—-remove-multimapped
HTSeq 2 903 3,128 357 31 71.67 0.98 267 17
-m intersection-nonempty
HTSeq 2 909 3,119 351 40 7214 1.27 295 20
-m union
HTSeq 2 802 3,134 458 25 63.65 0.79 499 42
-m intersection-strict
HTSeq 3 1,006 3,113 254 46 79.84 1.46 76 6
-m union —-nonunique all
featureCounts -O 3 1,008 3,116 252 43 80.00 1.36 80 6
featureCounts 3 1,000 3,112 260 47 79.37 1.49 109 6
-O —fraction
FADU 4 955 3,122 305 37 75.79 117 112 10
—em_iterations 10
FADU 4 947 3,125 313 34 75.16 1.08 111 9

analyzed methods, both FADU methods run with EM iterations have the lowest
interquartile range and a distribution centered at zero, indicating that they most
accurately quantify coding sequences in the absence of operon annotations for this
simulated data set.

Comparing the performance of FADU against those of other quantification
tools. To assess the performance of each of the quantification methods when faced
with variation arising from real data, we compared the performances of the same
quantification methods on three different transcriptomics data sets consisting of
(i) paired-end reads from a standard (i.e., not-strand-specific) library constructed from
Escherichia coli RNA, (ii) paired-end reads from a standard library constructed from
Ehrlichia chaffeensis RNA, and (iii) paired-end reads from a strand-specific library con-
structed from RNA isolated from the Wolbachia endosymbiont strain wBm from Brugia
malayi. For the alignment-based quantification tools, reads were mapped to a genomic
reference for FADU, featureCounts, and HTSeq or a coding sequence reference for
eXpress. For the alignment-free quantification tools kallisto and Salmon, reads were
directly quantified using a coding sequence reference. Across all three data sets, the
counts obtained using FADU are correlated with those obtained with the five other quan-
tification tools (Fig. S2).

For pairwise comparisons between FADU and two representative quantification
methods from each of the hierarchical clusters in Fig. 2, MA plots were constructed
(Fig. 4) by calculating the mean average of the log, counts (A) and the log, ratio counts
(M) for each gene. Genes with a log, count ratio of =2 or =2 were defined as being
significantly differentially counted between FADU and the compared quantification
method. There are 135 unique CDSs in the wBm data set across the five pairwise com-
parisons that had higher counts by FADU (Fig. 4). Of the analyzed methods, eXpress
-B10 -no-bias-correct contains most of these genes, with 122 CDSs (90.3%) having
higher counts with FADU. Additionally, Salmon -validateMappings -allowDovetail,

January/February 2021 Volume 6 Issue 1 €00917-20

msystems.asm.org 8


https://msystems.asm.org

Prokaryotic Transcriptome Quantification Tool

25%
Salmon | -
—-validateMappings —-allowDovetail * + 0.25
Salmon | * ‘ 025
—-validateMapping. .
kallisto - 4 b e 0.28
eXpress ‘ _-_*-‘ -
-B10 ——no-bias-correct 0.31
eXpress * -* -0.67
featureCounts - “ 4‘ -0.19
FADU L * -
--remove_multimapped | - 0.19
HTSeq | ‘ | . R
-m intersection-nonempty 0.44
WD N e e 047
—m union
HTSeq 4‘ _4_ -
-m intersection-strict 0.87
HTSeq | i -
—m union ——nonunique all } 0
featureCounts | 4
ns IS IS~ S
featureCounts | .—*—
-0 —~fraction * -0.07
FADU | A _+—
—--em_iterations 10 o -0.17
FADU - é + -0.17
T
0

-10 -5 5

log2 actual v. expected count ratio

T
10

T T T T T
-1.0 -05 00 05 10

mSystems’

quartiles

50%
-0.02

-0.02
-0.01
-0.04
-0.14

0

0
-0.06
-0.07
-0.32
0.19
0.17
0.02

75%
0.03

0.03
0.06
0.15
0.19

0.08
0.05
0.05
-0.01
0.45
0.42
0.19
0.08
0.08

FIG 3 Accuracy of FADU in a simulated RNA-Seq data set. (A) For each quantification method, a log, ratio was calculated for the counts obtained for each
gene in the simulated data set versus the actual counts expected from the simulated data set. The distributions for each of these methods would ideally
be normal and centered at zero. (B) Zoomed-in version of the distribution generated from the log, ratios. (C) The interquartile ranges for each of the

distributions show the precision of each method.

featureCounts, and HTSeq -m union have 68, 67, and 29 CDSs that have higher counts
with FADU. In comparison, HTSeq -m union —nonunique all and featureCounts -O —frac-
tion have at most 2 genes with higher counts using FADU.

A total of 36 unique CDSs were identified as having lower counts using FADU than
using one of the six analyzed quantification methods. (Fig. 4). Of the analyzed quantifi-
cation methods, FADU has the fewest counted genes compared to HTSeq -m union
—-nonunique all and featureCounts —O —fraction. As both of these tools derive counts
from multigene fragments, FADU produces fewer counts for 28 (77.8%) and 13 (36.1%)
CDSs than HTSeq -m union —nonunique all and featureCounts —O —fraction, respectively.
FADU compared to all other methods has fewer counts for <10 CDSs.

The MA analysis highlights differences in how ambiguous multigene fragments are
quantified. High counts with FADU are often found relative to quantification methods
that conservatively quantify genes in multigene fragments, while low counts by
FADU are often relative to the genome-based quantification methods that derive
counts from genes with ambiguous multigene fragments. In total, we observed 24
CDSs with higher counts by FADU than by eXpress -B10 —-no-bias-correct, Salmon
-validateMappings —allowDovetail, featureCounts, and HTSeq -m union. Of the 24
genes, 3 are within a putative 11-gene operon: Wom7023, Wbm7024, and Wbm7025
(Fig. 5A). Within this 11-gene region, based on the depth track, empirically, all genes
should have roughly the same count values. Within this operon, we divided the frag-
ment counts for each gene by their respective gene lengths to obtain a fragment
count per base pair value for each gene. For each quantification method individu-
ally, these fragment count per base pair values were normalized by dividing by the
median fragment counts per base pair for all genes in this 11-gene operonic region
(Fig. 5B). Normalized values that are higher than 3 or lower than —3 indicate that
the gene is significantly over- or undercounted relative to the rest of the operon.

For Wbm7023, Wbm7024, and Wbm7025, despite all three genes having a fragment
depth that appears to be similar to that of the rest of the putative operon (Fig. 5A),
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FIG 4 MA plots comparing wBm fragment counts obtained using FADU against those obtained using other quantification
tools. The fragment counts for the stranded wBm data set obtained using FADU were compared to the counts obtained
using methods representative of the different clusters of quantification methods. The x axis denotes the mean average
from the two compared counts (A), while the y axis denotes the log, ratio of the two compared counts (M) as a
scatterplot (left) and a density plot (right). The horizontal orange dotted lines on each plot are drawn at log, ratio values
of 2 and —2. Points with a log, ratio greater than 2 and less than —2 were defined as genes counted differently by FADU
relative to its counterpart tool.

only the FADU-based methods and HTSeq -m union —nonunique all, featureCounts -O,
and featureCounts -O —fraction properly assign counts to all three. The difficulty in
assigning counts to the three genes stems from their close proximity to adjacent genes
combined with their individual small sizes. Similarly, the smaller size of WBM_RS03925
leads to undercounting with eXpress, kallisto, and Salmon. In the case of transcrip-
tome-based aligners, the small sizes of the three genes make it difficult for eXpress to
identify reads that mostly map to each of the genes. Similarly, the smaller size makes it
difficult for kallisto and Salmon to identify unique k-mers for these genes, leading to
both genes being undercounted by the k-mer-based tools (Fig. 5B).

By deriving counts from ambiguous multigene fragments, FADU, HTSeq -m union
-nonunique all, featureCounts -0, and featureCounts -O -fraction all run the risk of
incorrectly assigning counts in instances where fragments originate from monocis-
tronic transcripts that are in close proximity, particularly in the case of gene-dense
genomes rather than operons. Because each of these tools assigns fragment counts to
all overlapped features, the counts from a fragment that originates from one gene can
be mistakenly assigned to another gene overlapped by the fragment. While this is erro-
neous in the case of monocistronic transcripts, scenarios such as this are difficult to
avoid without well-annotated transcripts and without undercounting smaller operonic
genes. However, the proportional fragment counts assigned by FADU minimize the
errors from such instances. As an example, the wBm gene Wbm7021 is in close proxim-
ity to Wbm0608 (Fig. 6A), separated by 44 bp, such that reads from the unannotated 3’
UTR of WbmO0608 are erroneously being counted for Wbm7021. FADU mitigates this
issue by only assigning proportional fragment counts based on the percentage of the
fragment’s length that overlaps a feature. While most quantification methods obtain
almost no reads for Wom7021, HTSeq -m union -nonunique all, featureCounts -O, and
featureCounts -O -fraction obtain 137, 139, and 70 read counts for Wbm7021,
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significantly undercounted (log, count ratio of less than —1), as assessed in Fig. 4. (B) For each quantification tool, the read
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undercount the smaller genes in operons, such as Wbm7023, Wbm7024, and Wbm7025.

respectively (Fig. 6B). In comparison, all methods of FADU limit this error and obtain
only 1 read count for Wbm7021. Collectively, by assigning proportional counts, FADU
is better able to quantify operonic genes while mitigating the issues stemming from
quantifying multigene fragments.

Timing and memory benchmarks. We compared the speed (Fig. 7A; Fig. S3) and
memory usage (Fig. 7C) of FADU to those of the 10 other quantification modes for E.
chaffeensis, E. coli, and wBm data sets run with 1 and 4 threads. For the alignment-
based quantification tools eXpress, FADU, featureCounts, and HTSeq, the times for
alignment and quantification were individually recorded, while for the alignment-
free quantification tools kallisto and Salmon, the times for indexing and quantifica-
tion were individually recorded. Across all three data sets analyzed, the alignment-
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also map to the 3’ end of Wbm0608. Despite the wBm annotation lacking UTRs, these reads likely originate from the 3" UTR of WbmO0608,

indicating that most if not all the reads assigned to Wbm7023 are erroneous.

free quantification tools kallisto and Salmon perform the fastest and use the least
memory, as would have been expected from the methodology. The speed of FADU is
either higher than or comparable to those of the other alignment-based quantifica-
tion tools for the E. chaffeensis and wBm data sets (Fig. 7A). However, when used to
analyze the E. coli data set, FADU and HTSeq have longer run times than eXpress and
featureCounts. When comparing the maximum memory usage between the different
tools, FADU has memory requirements comparable to those of the other alignment-
based quantification tools (Fig. 7B).

DISCUSSION

In an ideal transcriptomics differential expression analysis, full-length transcript
annotation of the reference organism should be used for the alignment and/or quanti-
fication steps. In cases where full-length transcripts are available, we believe that am-
biguous multigene fragments should be able to be assigned with confidence using
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recorded for all quantification methods analyzed.

abundance estimation strategies such as the EM algorithm (17). However, in cases
where full-length transcripts are not available, CDSs are typically used instead. When
CDSs are used, considerations need to be made regarding the shortcomings of quanti-
fying ambiguous multigene fragments, especially in the context of prokaryotic sys-
tems, in which operonic structures and dense coding regions could be present.

Without knowledge of complete transcript sequences, it becomes impossible to
determine whether an ambiguous multigene fragment stems from an operonic tran-
script or overlaps two genes in close proximity that are independent transcriptional
units. While operon databases and prediction software are available, they are not com-
prehensive, and the gold standard for determining the sequences of full-length tran-
scripts is still through laboratory-based studies such as 5’ and 3’ RACE. While advances
in long-read sequencing will eventually lead to native-strand RNA sequencing (22), in
which the sequences of full-length transcripts can be obtained easily, current technolo-
gies are lacking a robust method to easily annotate full-length nonpolyadenylated
transcripts and, as a result, operons.

In situations where full-length transcript sequences are unavailable, mapping
directly to transcript references will fail to quantify a subset of reads that originate pri-
marily from untranslated regions instead of the coding sequence. For cases such as
this, genome references perform better for deriving counts from noncoding sequence
reads. By using the precise mapping information provided by a genome-based align-
ment, quantification tools can better infer whether a fragment overlaps a target gene.
However, as we have shown, ambiguous reads are often either too conservatively or
too liberally assigned, resulting in an under- or overestimation of transcript expression,
respectively. FADU was designed for the purpose of optimizing the available alignment

January/February 2021 Volume 6 Issue 1 e00917-20

msystems.asm.org

13


https://msystems.asm.org

Chungetal.

information for systems in which full-length transcript annotations are unavailable and
CDS-based counting is confounded by operons and/or a high coding density, both of
which are significant issues in prokaryote genomes. However, FADU is not splice aware
and is thus not suitable for eukaryotic genomes with spliced genes. But by assigning
proportional read counts, FADU maximizes the quantification of operonic genes while
minimizing the false overquantification of nonoperonic genes in close proximity to
one another.

MATERIALS AND METHODS

Implementation. FADU was written entirely using the Julia programming language v1.0 (23) and
uses the BioAlignments.jl and GenomicFeatures.jl packages. GenomicFeatures.jl is used to parse out record
information from GFF files and determine overlaps between alignments and features. BioAlignments,jl is
used to quickly parse record information from the BAM file. FADU was tested and benchmarked in the
UNIX environment.

FADU first creates an interval tree-based data structure of the feature annotation (GFF3) input file
consisting of the sequence identification (ID), the leftmost coordinate, the rightmost coordinate, the
strand, and the feature metadata. This data structure is used to construct a set of all nonoverlapping
coordinates per strand, defined as a genomic position that is not overlapped by two or more recorded
features. If the BAM alignment input file is unstranded, the set of overlapping coordinates per attribute
ID will be strand agnostic.

The BAM file is read in one alignment record at a time. For each record, validation steps are per-
formed to ensure that the record is mapped, is a primary record, and exceeds the specified minimum
mapping quality (default score of 10). If the option —remove_multimapping alignments is enabled,
records whose “NH" attribute exceeds a value of 1 are also removed. Next, the record is assessed as to
whether or not it is part of a fragment by taking into account read pair information. In order to classify a
read as part of a fragment, both the template length of the read pair (default, <1,000 bp) and the 0-by-
2 bitflag of each record are assessed. Records that do not meet the qualifications to be processed as
“fragments” are instead processed as “reads.” For records classified as fragments, only one of the reads
of the pair is kept because the coordinate information of the mate pair can be inferred. If the option to
keep only properly paired reads is enabled, only records that can be classified as fragments will be kept.

After validation, each record is classified as either a fragment or a read for downstream processing.
Each record is used to create an interval tree-based data structure consisting of the record reference
sequence name, the leftmost and rightmost coordinates of the fragment or read, the strand of the frag-
ment or read, and a designation of fragment or read. Once a sufficient number of these data structures
is read into memory (the default chunk size is 10,000,000), the overlaps for each alignment record to the
specified annotation feature type are processed. If the option —remove_multimapping alignments is dis-
abled, alignment records that are multimapped are saved to be processed after all the uniquely mapped
records are processed. The overlaps for the multimapped reads are then processed, but the counts over-
lapping each feature are adjusted via the EM algorithm (17). For each iteration of the EM algorithm, the
contribution of a multimapped record’s overlap to a given annotation feature’s count total is adjusted
by the relative abundance of each overlapping feature’s total counts for uniquely mapped records only.

Once all records have been processed, total counts for every feature ID for the specified attribute
type are calculated and used to calculate normalized TPM values for each feature ID. For each feature ID,
five tab-delimited fields are written to file: (i) feature ID, (ii) length of nonoverlapping coordinates, (iii)
number of alignments to overlap the feature, (iv) total fractionalized alignment counts for the feature,
and (v) TPM count for the feature.

Update equations. For each paired-end fragment, FADU functions by assigning proportional counts
based on the length of the different features that the fragment overlaps (Fig. 1C), where F, represents
the proportional fragment count contribution for a given fragment or read for each genic feature, F,
represents the number of bases that the fragment overlaps the unique positions of the genic feature, F,
represents the total length of the fragment, and

F.=
Fp

For f (feature [e.g., a gene]), F (all features), N, (total counts for feature f), N, (total counts for all fea-
tures present), and g, (estimated relative abundance for feature f among all features F), then

Nf=)F,

Ny
af :N_F

For r (each record for a fragment [e.g., a pair of reads]), R (all alignment records), r,f (a single feature
mapping to record r), r,F (all features mapping to record r), N, , (count for record r aligning to feature f),
N, - (total counts for all features that align to record r [including counts where the record aligns to other

features]), and a, , (relative abundance for feature f that mapped to record r), then
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Z A=

feF

For the EM algorithm, only multimapping records are considered. For Rmm (all multimapping align-
ment records) and Ngpm ¢ (total counts for feature f from all multimapping records in Rmm), then

Nemm,f = Z a, ;N s

reRmm

For k (EM iteration cycle number), K (maximum number of cycles), N, (counts for a given feature not
including multimapped records), N,w( (adjustment counts for feature f based on all multimapped
records R in EM iteration cycle k), and N, (updated counts for a feature for EM iteration cycle number k),
then

Npk=Npo+ NRmm_f'k fork=1,2,...K

All values are recalculated using N, to update abundance values for each cycle.

Quantification method analyses of the simulated data set. The strand-specific simulated RNA-Seq
data set for Escherichia coli K-12 substrain MG1655 (GenBank accession number U00096.3) was gener-
ated using Polyester v1.9.7 (19), using an annotation generated from operon predictions from
OperonDB (18). Four samples were simulated, consisting of two conditions consisting of two replicates
each, for conducting differential expression analysis. Totals of 256 and 300 transcripts were simulated to
be significantly over- and underexpressed using the operon predictions from OperonDB. For the subse-
quent quantification steps, genes from the simulated data set were quantified using the original CDS
annotations. Simulated reads were aligned using HISAT2 v2.1.0 with the options —X 7000 -no-spliced
alignment -k 200 to either the target genome or transcriptome. Genes were quantified using FADU v1.7
run with default settings and the -remove_mulitmapping and —-em_iterations 10 options; eXpress v1.5.1
(12) run with default settings and the -B70 and -no-bias-correct options; featureCounts (1) v1.6.4 run
with default settings and the —fraction and -O options; HTSeq v0.11.0 (2) run with each of the -m union,
-m intersection-nonempty, and -m intersection-strict options and —nonunique all options; kallisto v0.46.1
(13) run with default settings; and Salmon v1.1.0 (14) run with default settings and the -allowDovetail
and -validateMappings options. Hierarchical clustering analyses were conducted using pvclust v2.0-0
using a correlation distance parameter and average cluster method. Differential expression analyses
were conducted using DESeq2 (20) and edgeR (21), using their respective recommended minimum
expression filters of a total of 10 read counts across all samples and a cutoff of 5 counts per million
(CPM) in the sample in the data set with the fewest reads sequenced. For DESeq2, differentially
expressed genes were identified with cooksCutoff=T and a false discovery rate (FDR) of <0.05, while for
edgeR, differentially expressed genes were identified using gImQLFit and an FDR of <0.05.

Quantification tool comparisons on actual data sets. E. chaffeensis Arkansas (GenBank accession
number NC_007799.1), E. coli O127:H6 strain E2348/69 (GenBank accession number NC_011601.1), and
wBm (GenBank accession number NC_006833.1) data sets were downloaded from the SRA, using
SRAtoolkit v2.9.0, under SRA accession numbers SRX485438, SRX1322474, and SRX2508248, respectively.
The paired-end data sets were each aligned to the genomes or transcriptomes of their respective organ-
isms using HISAT2 v2.1.0 with the options —-X 7000 —no-spliced alignment -k 200. In the case of wBm,
reads were aligned to a combined reference consisting of the wBm genome/transcriptome along with
the Brugia malayi (WormBase version WBPS9) genome/transcriptome to minimize erroneous mappings
from Wolbachia-Brugia lateral gene transfer reads (24, 25). Genes were quantified for each data set using
FADU v1.7 run with default settings and the -remove_mulitmapping and -em_iterations 10 options;
eXpress v1.5.1 (12) run with default settings and the -B70 and —no-bias-correct options; featureCounts (1)
v1.6.4 run with default settings and the -fraction and -O options; HTSeq v0.11.0 (2) run with each of
the -m union, -m intersection-nonempty, and -m intersection-strict options and —nonunique all options;
kallisto v0.46.1 (13) run with default settings; and Salmon v1.1.0 (14) run with default settings and the
-allowDovetail and -validateMappings options.

MA plots were generated between FADU and the default modes of eXpress, featureCounts, HTSeq,
kallisto, and Salmon. For each plot, the mean average of the log, counts (A) was calculated and plotted
against the log, ratio of counts (M).

Data availability. Three data sets were used in all analyses consisting of RNA-Seq paired-end
data from standard, nonstranded libraries originating from E. chaffeensis and E. coli and stranded
libraries from wBm. The sequencing reads for the three data sets can be found in the NCBI Sequence
Read Archive under the following accession numbers: SRX485438, SRX1322474, and SRX2508248,
respectively. Additional scripts and commands used for analyses and benchmarking are available at
https://github.com/IGS/FADU.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.1 MB.
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FIG S3, PDF file, 0.8 MB.
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