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Abstract

Medical imaging has become an increasingly important tool in screening, diagnosis, prognosis, 

and treatment of various diseases given its information visualization and quantitative assessment. 

The aim of this article is to develop a Bayesian scalar-on-image regression model to integrate 

high-dimensional imaging data and clinical data to predict cognitive, behavioral, or emotional 

outcomes, while allowing for nonignorable missing outcomes. Such a nonignorable nonresponse 

consideration is motivated by examining the association between baseline characteristics and 

cognitive abilities for 802 Alzheimer patients enrolled in the Alzheimer’s Disease Neuroimaging 

Initiative 1 (ADNI1), for which data are partially missing. Ignoring such missing data may distort 

the accuracy of statistical inference and provoke misleading results. To address this issue, we 

propose an imaging exponential tilting model to delineate the data missing mechanism and 

incorporate an instrumental variable to facilitate model identifiability followed by a Bayesian 

framework with Markov chain Monte Carlo algorithms to conduct statistical inference. This 

approach is validated in simulation studies where both the finite sample performance and 

asymptotic properties are evaluated and compared with the model with fully observed data and 

that with a misspecified ignorable missing mechanism. Our proposed methods are finally carried 

out on the ADNI1 dataset, which turns out to capture both of those clinical risk factors and 

imaging regions consistent with the existing literature that exhibits clinical significance. 

Supplementary materials for this article, including a standardized description of the materials 

available for reproducing the work, are available as an online supplement.
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1. Introduction

The present study is motivated by a dataset extracted from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI). Since its launch in 2004, ADNI collected imaging, 

clinical, and laboratory data at multiple time points from cognitively normal controls (CN) 

and subjects with mild cognitive impairment (MCI) or Alzheimer’s disease (AD). ADNI 

initially recruited approximately 800 subjects (ADNI-1) according to its initial aims and was 

extended by three follow-up studies, namely, ADNI-GO, ADNI-2, and ADNI-3. The overall 

goal of ADNI is to discover, optimize, standardize, and validate clinical trial measures and 

biomarkers used in AD research by determining the relationships between the clinical, 

cognitive, imaging, genetic, and biochemical biomarker characteristics for the entire 

spectrum of AD. More information on ADNI can be obtained at the official website 

(www.adni-info.org).

The primary objective of this study is to examine whether patients’ numerous baseline 

biomarkers (e.g., structural imaging) can accurately predict their cognitive decline. The 

ability to accurately predict the rate of cognitive decline is critical for effective trial design 

for developing therapies for AD prevention and treatment, but the utility of these baseline 

biomarkers for such accurate prediction is not well established (Allen et al. 2016; Weiner et 

al. 2017a, 2017b). We consider the learning score of the Rey auditory verbal learning test 

(RAVLT), which is a widely used neuropsychological evaluation method that tests episodic 

declarative memory. The RAVLT learning scores of each subject were obtained at baseline 

and every 6 months thereafter across multiple study phases. We consider the RAVLT scores 

measured at the 36th month as the primary clinical outcome and the demographic, imaging, 

and clinical variables measured at baseline as predictors. To build an accurate predictive 

model for the RAVLT score, we have to appropriately deal with at least two challenging 

issues, including (I) missing RAVLT scores, particularly when the missing mechanism is 

nonignorable, and (II) high-dimensional imaging data.

The first challenge is that the nonresponse rate of the RAVLT score increases over time and 

attains a level of 45.6% at the 36th month, while the missing mechanism is nonignorable. To 

justify the missingness assumption, we divide the samples into two groups according to 

whether they are nonrespondents (Group 1) or respondents (Group 2) at the 36th month. 

Figure 1 summarizes the learning scores of both groups at baseline. Apparently, the subjects 

in Group 1 have considerably lower learning ability than those in Group 2. This finding 

implies that low learning ability at baseline is negatively associated with nonresponse 

probability at the 36th month. That is, elderly adults with weak cognitive ability tend to drop 

out early from the follow-up study. Thus, the missing data mechanism is likely to be 

nonignorable and a missing data model should be considered to identify possible effects of 

learning ability together with other imaging and scalar covariates on the probability of data 

missingness.

In large-scale longitudinal neuroimaging studies, follow-up clinical outcomes are frequently 

missing from the dataset. Thus, appropriately managing nonresponse is of great importance. 

A nonresponse is regarded as ignorable when its probability is independent of the missing 

values (Little and Rubin 2002). However, the probability of nonresponse often depends on 
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the observed and missing observations, and disregarding such a missing mechanism may 

destroy the representativeness of the remaining samples and subsequently lead to biased 

estimation results (Baker and Laird 1988; Diggle and Kenward 1994; Ibrahim, Lipsitz, and 

Chen 1999; Ibrahim, Chen, and Lipsitz 2001; Molenberghs and Kenward 2007). Modeling 

nonignorable missingness is challenging because the missing mechanism is generally 

unknown and may elicit additional model identifiability issues (Chen 2001; Qin, Leung, and 

Shao 2002; Tang, Little, and Raghunathan 2003; Ibrahim et al. 2005). Recently, two 

advanced methods have been proposed to facilitate model identification when dealing with 

nonignorable missingness under the exponential tilting model proposed by Kim and Yu 

(2011). The first method, which was developed by Kim and Yu (2011), relies on a set of 

external data obtained from an independent study, where further responses can be obtained 

in a subset of nonrespondents (see also Zhao, Zhao, and Tang 2013; Tang, Zhao, and Zhu 

2014). Through the use of external data, the tilting parameter can be estimated, and the 

exponential tilting model for the formulation of nonresponse is well identified. However, 

such an external dataset is often unavailable in practice, making the procedure infeasible. 

The second method can address such a problem by introducing an instrumental variable, 

such as a covariate associated with the response but conditionally independent of the 

probability of data missingness. The advantage of this method has been demonstrated in 

recent works (Wang, Shao, and Kim 2014; Yang et al. 2014; Zhao and Shao 2015; Shao and 

Wang 2016). However, these methods are limited to modeling scalar responses and 

predictors.

The second challenge is the use of high-dimensional medical images (or functional data) 

observed at a set of grid points to accurately predict clinical outcomes. Many imaging 

studies have collected high-dimensional imaging data, such as magnetic resonance imaging 

(MRI) data and computed tomography, to extract useful information associated with the 

pathophysiology of various diseases, such as lung cancer and AD. Such information can 

further facilitate clinical decision-making (Gillies, Kinahan, and Hricak 2015). For instance, 

data obtained from MRI-based investigations may greatly contribute to the discovery and 

validation of prognostic biomarkers used to identify subjects at great risk of cognitive 

decline, thereby aiding researchers and clinicians in monitoring the progression of MCI and 

early AD, as well as developing new treatments and reducing the time and cost of clinical 

trials.

A functional linear model (FLM) and its variations have received extensive attention in the 

last two decades as popular predictive models based on functional predictors (Ramsay and 

Silverman 2005; Ferraty and Vieu 2006; Horváth and Kokoszka 2012; Morris 2015; 

Fraiman, Gimenez, and Svarc 2016; Wang, Chiou, and Mueller 2016). Many estimation 

methods have been developed to estimate the coefficient function of the FLM and its 

variations, but they differ in terms of the choice of basis or some combination thereof, and 

the approach to regularization (Morris 2015; Wang, Chiou, and Mueller 2016; Wang and 

Zhu 2017). The most common choices for basis include functional principal components, 

splines, and wavelets, among many others (Ramsay and Silverman 2005; Ferraty and Vieu 

2006; Hall and Horowitz 2007; Yuan and Cai 2010). Functional principal component 

analysis (FPCA) is an important tool that reduces the dimensionality of functional data 

(Müller and Stadtmüller 2005; Yao, Müller, and Wang 2005; Reiss and Ogden 2007, 2010; 
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Goldsmith et al. 2011, among many others). Furthermore, FLM analysis is feasible given the 

connection between FPCA and ordinary linear mixed models (James 2002).

Although missing data problems have been extensively investigated, minimal work has 

focused on the analysis of functional data with missing scalar clinical outcomes. Preda, 

Saporta, and Mbarek (2010) considered a nonlinear iterative partial least squares method to 

accommodate functional predictors subject to data missingness. Gertheiss et al. (2013) 

conducted longitudinal scalar-on-function regression, which allows for ignorable 

missingness in functional regressors. Ferraty, Sued, and Vieu (2013) studied the mean 

estimation problems for scalar-on-function regression with ignorable nonresponse. Their 

study was extended by Ling, Liang, and Vieu (2015), who considered stationary ergodic 

functional processes as predictors with ignorable nonresponse. Chiou et al. (2014) modeled 

traffic monitoring data as functional processes and imputed missing values in the functional 

data by using a conditional expectation approach. However, the aforementioned 

developments focused only on functional data with ignorable missingness, and none of them 

considered ultrahigh-dimensional imaging data in the presence of nonignorable missingness. 

To the best of our knowledge, the study by Li et al. (2018) is the only article that developed 

a functional linear model for the joint modeling of functional predictors and nonignorable 

missing clinical outcomes. The methodology they proposed is a frequentist method that 

depends on an external dataset, which is rarely available in real applications.

The aim of this article is to develop a Bayesian scalar-on-image (BSOI) regression model 

that uses high-dimensional imaging data and other scalar variables as explanatory covariates 

to predict clinical outcomes that are not fully observed. The proposed approach comprises 

two stages. The first stage uses FPCA to extract the principal directions of variation in large-

scale neuroimaging data, and the extraction is performed through the singular value 

decomposition (SVD) technique (Zipunnikov et al. 2011a; Zhu, Fan, and Kong 2014; Wang, 

Chiou, and Mueller 2016). For simplicity, we use FPCA in the development of BSOI 

although it is easy to use some fixed basis functions, such as a B-spline and wavelet. The 

second stage incorporates the extracted major principal scores into the regression. Regarding 

the modeling of nonignorable missingness, we propose an imaging exponential tilting model 

that is analyzed jointly with the BSOI regression. The imaging predictors involved in the 

exponential tilting model can be similarly assessed through FPCA. An instrumental variable 

is introduced to facilitate the identification of the proposed model. We conduct a full 

Bayesian analysis, not only given its power and efficiency in managing complex models and 

data structures but also because it incorporates useful prior information. Appropriate prior 

distributions can add valuable information for the inference of the missing mechanism and 

thus assist model identification and estimation (Ibrahim, Chen, and Lipsitz 2002). For 

instance, if a set of external data is available for preliminary analysis on the missing data 

model, the estimation results can be incorporated as prior inputs into the Bayesian analysis 

to improve the estimation accuracy.

The remainder of this article is organized as follows: Section 2 introduces the FPCA 

technique, a BSOI regression model, and an exponential tilting model with imaging 

predictors. Section 3 discusses how an instrumental variable improves model identification 

and estimation and develops a Bayesian approach with Markov chain Monte Carlo (MCMC) 
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algorithms for statistical inference. Section 4 conducts simulations to examine the finite 

sample performance of the proposed method. Section 5 presents a comprehensive data 

analysis of the ADNI dataset presented above. Section 6 concludes the article with some 

discussions.

2. Model Description

2.1. FPCA for High-Dimensional Imaging Data

Suppose we have samples of imaging data Wi(v) observed at V grid points v in a compact 

space V for i = 1, …, n. The observed images are formulated through a functional model as 

follows:

W i(v) = μ(v) + Xi(v), v ∈ V, (1)

where μ(v) is the mean image, and Xi(v) is a centered second-order stochastic process with 

covariance operator KX(v1, v2) = E{Xi(v1)Xi(v2)}. Similar to those of Zipunnikov et al. 

(2011a), the measurement errors of the imaging observations are not included in the model. 

This assumption is reasonable because the images are usually presmoothed. The Karhunen–

Loeve expansion of the random process is based on the eigen-decomposition of the 

covariance operator, which yields

Xi(v) = ∑
k = 1

∞
ξikψk(v), (2)

where ψk(v) represents the eigenimages of KX(v1, v2) for the multidimensional imaging 

data, ξik denotes the uncorrelated eigenscores of the ith subject with nonincreasing variances 

λk, and λk is the eigenvalues of KX(v1, v2). FPCA commonly retains the first K 
eigenimages that account for most of the functional variability for the expansion (2) (Di et 

al. 2009; Zipunnikov et al. 2011a; Zhu, Fan, and Kong 2014; Wang, Chiou, and Mueller 

2016). In practical applications, retaining a large number of eigenimages may lead to 

overfitting. Thus, we use the Bayesian information criterion (BIC) to select K for the 

analysis of the ADNI dataset in Section 5. The mean image μ(v) can be regarded as a zero 

vector by centralizing Wi(v). Thus, the functional model (1) can be rewritten as follows:

W i(v) = Xi(v) = ∑
k = 1

K
ξikψk(v) . (3)

Owing to the ultrahigh-dimensionality, eigen-decomposing the covariance operator of the 

functional process Xi(v) is challenging. For example, we consider a two-dimensional image 

{Xi(v)} with 300 grids on each dimension, that is, V = 90,000. This results in a covariance 

operator KX = {KX(v1, v2)} of dimension 90,000 × 90,000. Consequently, a brutal-force 

eigenanalysis on KX requires O(V3) operations, which are essentially impossible. To address 

such a problem, Zipunnikov et al. (2011a) developed an FPCA procedure based on SVD for 

high-dimensional data. The method exploits the relationship between the SVD on Xi(v) and 

the eigen-decomposition on KX. It also exploits the advantage that the number of subjects, n, 
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is usually small to modest. Specifically, we consider a V × n matrix X = (X1, …, Xn), whose 

rank is at most min(n, V), Xi = (Xi(v) : all grid points v ∈ V) is a V × 1 vector for each i. 

The SVD of X can then be represented as

X = USVT , (4)

where U and V are V × n and n × n unitary orthogonal matrices, respectively, and S is an n × 

n diagonal matrix with nonnegative singular values of X as its diagonal elements. The 

computational cost to obtain the SVD is O(Vn2 + n3) (Golub and Loan 1996), which is 

much smaller than that required for the direct eigen-decomposition of the covariance 

operator. The eigenimage (eigenfunction) ψk(v), eigenvalue λk of KX and the eigenscores 

ξik of the subjects can be calculated as follows. The eigenimage Ψk = ψk(v) is given by the 

kth column of U. The eigenvalue λk equals sk
2, where sk is the kth diagonal element of S. 

The eigenscores ξik are given by the columns of SVT truncated to the first K coordinates. To 

implement the SVD, we first express the spectral decomposition of XTX as XTX = VS2VT. 

Then, U can be calculated as U = XVS−1.

Notably, for an ultrahigh-dimensional V, the centered imaging data matrix X may be 

extremely large and thus cannot be loaded into the computer memory. In such an instance, X 

can be partitioned into several blocks as XT = [(X(1))T | (X(2))T |… ∣ (X(M))T ], where the 

number of blocks, M, can be selected to make each block adapt to the available computer 

memory so that it is feasible to calculate XTX and U as follows: 

XTX = ∑m = 1
M (X(m))TX(m), U(m) = X(m)VS−1, and UT = [(U(1))T | (U(2))T |… ∣ (U(M))T ]. 

Alternatively, we may employ the efficient algorithm of multidimensional FPCA from Chen 

and Jiang (2017).

2.2. BSOI Regression

We consider observations yi, zi, Xi(v) : v ∈ V  for i = 1, …, n from n independent subjects, 

where yi is the clinical variable of interest subject to missingness, zi is a Q × 1 vector of 

observed scalar covariates, and Xi(v) represents the imaging data described above. The 

BSOI regression model is thus defined as follows:

yi = α + ∫
V

Xi(v)β(v)dv + γTzi + δi, (5)

where α is the intercept, β(·) is a coefficient image, γ is a Q × 1 vector of the coefficients for 

the covariates, and δi is normal random noise with the variance parameter σ2. The β(v) is the 

coefficient corresponding to the vth voxel of the image. Thus, a natural interpretation of β(·) 

is that the regions of imaging data with large |β(v)| have strong effects on the clinical 

outcome of interest.

With the eigenimages derived in the previous section, both Xi(·) and β(·) can be 

approximated by truncated Karhumen–Loeve expansions as Xi(v) ≈ ∑k = 1
K ξikψk(v) and 
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β(v) ≈ ∑k = 1
K βkψk(v), where the βks’ are the eigenbasis coefficients of β(·). Subsequently, 

model (5) can be rewritten as

yi = α + ∑
k = 1

K
βkξik + γTzi + δi . (6)

Therefore, the BSOI regression becomes a high-dimensional linear regression model, which 

can be readily analyzed.

2.3. Exponential Tilting Model for Nonignorable Missingness

We introduce an indicator variable ri to model the missingness of yi such that ri = 1 if yi is 

missing and ri = 0 otherwise. Naturally, we assume a Bernoulli distribution of ri as follows:

ri ∣ yi, Xi( ⋅ ), zi Bernoulli πi , (7)

where πi = π(yi, Xi(·), zi) is the probability of missingness for yi, and ri and rj are assumed 

to be independent for i ≠ j. Furthermore, an exponential tilting model with imaging 

predictors is proposed for πi as follows:

πi ≡ Pr ri = 1 ∣ yi, Xi( ⋅ ), zi

=
exp ∫VXi(v)βr(v)dv + γrTzi + ϕyi

1 + exp ∫VXi(v)βr(v)dv + γrTzi + ϕyi
, (8)

where ϕ is the tilting parameter that determines the amount of departure from the 

ignorability of the missing mechanism. Model (8) can be regarded as an extension of the 

linear missing data model proposed by Ibrahim, Chen, and Lipsitz (2001). Furthermore, by 

using ∑k = 1
K βrkψk(v) to approximate βr(v), model (8) reduces to

πi ≡ Pr(ri = 1 ∣ yi, Xi(v), zi)

=
exp(αr + ∑k = 1

K βrkξik + γrTzi + ϕyi)
1 + exp(αr + ∑k = 1

K βrkξik + γrTzi + ϕyi)
. (9)

Finally, our BSOI model consists of Equations (6), (7), and (9).

3. Estimation

3.1. Identifiability

The identifiability of a nonignorable missing mechanism is often a challenging issue and 

thus requires careful investigation. As remarked by Lindley (1972), it is always possible to 

conduct a Bayesian analysis by assigning proper priors on model parameters regardless of 

the model identifiability. However, a practical consequence of a nonidentifiable model is that 

it may trap Bayesian implementations into the possibility of drifting to extreme values even 

with proper priors (Gelfand and Smith 1990). Therefore, achieving model identification is 

crucial for Bayesian analyses. The formal notion of Bayesian identifiability from Dawid 
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(1979) has established that Bayesian nonidentifiability is equivalent to a lack of 

identifiability in the likelihood (Gelfand and Sahu 1999). This equivalence implies that the 

Bayesian model is identifiable as long as two different populations do not exhibit the same 

observed data likelihood. We thus investigate the identifiability of the model likelihood 

below.

The observed data likelihood function of our BSOI model is

∏
i

[Pr(ri = 0 ∣ yi, Xi( ⋅ ), zi)p(yi ∣ Xi( ⋅ ), zi)]1 − ri

[∫ Pr(ri = 1 ∣ y, Xi( ⋅ ), zi)p(y ∣ Xi( ⋅ ), zi)dy]
ri

,
(10)

where ∫ Pr ri = 1 ∣ y, Xi( ⋅ ), zi p y ∣ Xi( ⋅ ), zi dy is given by

∫ 1 − Pr ri = 0 ∣ y, Xi( ⋅ ), zi p y ∣ Xi( ⋅ ), zi dy

= 1 − ∫ Pr ri = 0 ∣ y, Xi( ⋅ ), zi p y ∣ Xi( ⋅ ), zi dy .

Thus, the joint model is identifiable when two different populations do not provide the same 

Pr(r = 0|y, X(·), z)p(y|X(·), z) for all possible (y, X(·), z). Although the proposed model 

assumes a parametric framework, identifiability remains nontrivial, as demonstrated by the 

following example.

Example 1.—Suppose that models (5) and (9) exclude the functional covariate, while 

model (9) satisfies ϕ ≠ 0. Then, we have

Pr(r = 0 ∣ y, z)p(y ∣ z) = exp{−(y − α − γz)2/2σ2}
2πσ2{1 + exp αr + γrz + ϕy }

.

Letting {α, γ, σ, αr, γr, ϕ} and α′, γ′, σ′, αr′, γr′, ϕ′  denote two sets of parameters, and

exp{−(y − α − γz)2/2σ2}
2πσ2{1 + exp αr + γrz + ϕy }

= exp{− y − α′ − γ′z 2/2σ′2}
2πσ′2{1 + exp αr′ + γr′z + ϕ′y }

, ∀(y, z),
(11)

it can be shown that model (11) holds if σ′ = σ, αr′ = − αr, γr′ = − γr, ϕ′ = −ϕ, 

αr = ϕ2σ2/2 − ϕα, α′ = α − ϕσ2, γ′ = γ, ϕ = −γr/γ, implying that the model is unidentifiable.

This simple example sheds new insights on the construction of identifiability conditions. 

Specifically, two possible solutions of (11) are given by
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Scenario (i)

exp{−(y − α − γz)2/2σ2}σ′

= exp{− y − α′ − γ′z 2/2σ′2}σ,

exp{−(y − α − γz)2/2σ2}σ′
exp αr′ + γr′z + ϕ′y

= exp{− y − α′ − γ′z 2/2σ′2}σ
exp αr + γrz + ϕy ,

Scenario (ii)

exp{(y − α − γz)2/2σ2}σ′

= exp{− y − α′ − γ′z 2/2σ′2}σ
exp αr + γrz + ϕy ,

exp{− y − α′ − γ′z 2/2σ′2}σ

= exp{−(y − α − γz)2/2σ2}σ′
exp αr′ + γr′z + ϕ′y .

If Scenario (i) holds for all (y, z) in their domain, then α, γ, σ, αr, γr, ϕ = α′, γ′, σ′, αr′, γr′, ϕ′
holds naturally. Then, the model is identifiable if one can exclude Scenario (ii). This can be 

achieved by introducing some additional assumptions. One such assumption is that a 

covariate u exists in z = (z*T, u)T such that Pr(y|z) depends on u, whereas Pr(r = 0|y, z) does 

not. The covariate u is called a nonresponse instrument, which has been demonstrated to be 

essential for the identification and estimation of a nonignorable missing mechanism in 

regression without functional covariates (Wang, Shao, and Kim 2014; Shao and Wang 2016). 

As an illustration, we set z* to be a nonzero constant and u = z as the instrumental variable. 

In this case, the use of the instrumental variable u = z implies γr = 0, yielding that exp(αr + 

γrz + ϕy) becomes exp(αr + ϕy) and is independent of z. However, given that 

exp{−(y − α − γz)2/2σ2}σ′/exp{− y − α′ − γ′z 2/2σ′2}/σ depends on z for any (α, γ, σ) ≠ (α′, 
γ′, σ′), Scenario (ii) can be excluded and the model is identifiable.

In many real applications, it is not difficult to identify the instrumental variable. For 

example, we are interested in predicting monthly income, which is often only partially 

observed to protect privacy. It may be reasonable to assume that the probability of data 

missingness is independent of gender, age group, and educational level conditional on 

monthly income (Wang, Shao, and Kim 2014; Shao and Wang 2016). Since monthly income 

is usually associated with gender, age group, and educational level, we may choose any of 

the three covariates as the instrumental variable. Based on the existing literature (Wang, 

Shao, and Kim 2014; Zhao and Shao 2015; Shao and Wang 2016) and our experience, we 

have the following recommendations for choosing the instrumental variable. (i) The 

instrumental variable u has to be related to the response y and conditionally independent of 

the nonresponse probability. That is, Pr(y|X(·), z*, u) should depend on u, whereas Pr(r = 0|

y, X(·), z*, u) should not. Experimental analyses that include all covariates in both the scalar 

on image regression and the exponential tilting model could provide clues on the covariates 

that have potential to serve as the instrumental variable. (ii) A sensitivity analysis with 

different choices of the instrumental variable may be considered.

Feng et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2021 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We give a theoretical justification below in a more general setting and provide the proof in 

Appendix A. Specifically, we assume Pr(y ∣ X( ⋅ ), z) = Pr y ∣ X( ⋅ ), z; θy  and 

Pr(r = 0 ∣ y, X( ⋅ ), z* = Pr r = 0 ∣ y, X( ⋅ ), z*; θr , where θy and θr contain unknown 

parameters in the imaging regression y|(X(·), z) and the missing data model r|(y, X(·), z*), 

respectively. Let D θy ⊗ D θr  be the domains of (θy, θr), where ⨂ is the tensor product of 

two spaces and D θy  and D θr  are the domain of θy and that of θr, respectively. We will 

show that the instrumental variable is useful for model identification and estimation in the 

presence of functional covariates. Moreover, we provide further evidence by including 

instrumental variables in the simulation study and real data analysis.

Theorem 1.—Suppose that there is a nonresponse instrumental covariate u in z = (z*T, u)T 

such that Pr(y|X(·), z) depends on u, whereas Pr(r = 0 ∣ y, X( ⋅ ), z) = Pr r = 0 ∣ y, X( ⋅ ), z*  does 

not depend on u. The model is identifiable under conditions (C1)–(C3) stated below:

(C1) there exists a set S ⊆ the support of (y, X(·), z*), such that Pr r = 0 ∣ y, X( ⋅ ), z*; θr ≠ 0
for all (y, X(·), z*) ∈ S and θr ∈ D θr ;

(C2) Pr r = 0 y, X( ⋅ ), z*; θr1 = Pr r = 0 y, X( ⋅ ), z*; θr2  for all y, X( ⋅ ), z* ∈ S θr1 = θr2;

(C3) p y X( ⋅ ), z*, u1; θy1 p y X( ⋅ ), z*, u2; θy2 = p y X( ⋅ ), z*, u1; θy2 p y X( ⋅ ), z*, u2; θy1
holds for all (u1, u2) and y, X( ⋅ ), z* ∈ S θy1 = θy2.

Theorem 1 extends the theoretical results of Wang, Shao, and Kim (2014) from generalized 

linear models to the BSOI model. Specifically, these identifiability conditions (C1)–(C3) can 

be divided into two parts, including the identifiability of Pr(r = 0|y, X(·), z*; θr) and the 

identifiability of the likelihood ratio p(y ∣ X( ⋅ ), z * T , u1)T ; θy)/p(y ∣ X( ⋅ ), z * T , u2)T ; θy)
without missingness. These identification conditions do not need to specify the explicit form 

of a regression model and are applicable to a large class of model settings, such as 

semiparametric BSOI regression and the semiparametric imaging exponential tilting model.

As a special case, conditions (C1)–(C3) for the BSOI regression and exponential tilting 

model can be further clarified to facilitate verification. We need to introduce some notations. 

Denote the topological support of the random process X(·) by X, which is assumed to be a 

subset of the quadratically integrable function space L2(V). Denote the support of z∗ and u 

by Z* and U, which are subsets of ℝQ − 1 and ℝ, respectively. It is assumed that the sup\port 

of (X(·), z∗, u) is X ⊗ Z* ⊗ U. Given aHilbert space H(⟨·, ·⟩) and subsets S1, S2 ⊆ H, we 

define

ℒ S1

= ∑
j = 1

J
aj sj − sj ∣ sj, sj ∈ S1, aj ∈ ℝ for j = 1, …, J , J ∈ ℤ+

and ℒ S1  as the closure of ℒ S1 . Moreover, we define
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ℒ S1, S2; H ⊥ = ℎ ∈ S2 ∣ ℎ, s = 0 for all s ∈ ℒ S1 .

Note that ℒ S1  is the closed linear span of S1 if 0 ∈ S1, and ℒ S1, S2; H ⊥ is the 

perpendicular complement of ℒ S1  if S2 = H.

The following proposition holds, and the proof can be found in Appendix B.

Proposition 1.—Consider the model specified by (5), (7), and (8) with an instrumental 

variable as follows:

yi = α + ∫V
Xi(v)β(v)dv + γ*

Tzi* + γuui + δi, δi N 0, σ2 ,

Pr ri = 1 ∣ yi, Xi(v), zi

=
exp αr + ∫VXi(v)βr(v)dv + γrTzi* + ϕyi

1 + exp αr + ∫VXi(v)βr(v)dv + γrTzi* + ϕyi
.

The following conditions are sufficient conditions of (C1)–(C3):

i. there exists an ϵ > 0 such that |γu| ≥ ϵ;

ii. min X 0, Z* 0, U 0 ≥ 2, where || ·||0 is the number of elements.

iii. ℒ(X, D(β( ⋅ )); L2(V) ⊥, ℒ X, D βr( ⋅ ) ; L2(V) ⊥, ℒ Z*, D γ* ; ℝQ − 1 ⊥
, and 

ℒ Z*, D γr ; ℝQ − 1 ⊥
 are zero, where D(β( ⋅ )), D βr( ⋅ ) , D γ*  and D γr  are the 

domains of β(·), βr(·), γ*, and γr, respectively.

Conditions (i), (ii), and (iii) in Proposition 1 can be easily satisfied, as demonstrated in the 

following example.

Example 2.—Let V = [0, T ] for some T > 0. X(·) is a continuous stochastic process on V
with topological support X = X( ⋅ ) ∈ C[0, T ] ∣ X(0) = 0 , for example, the one-dimensional 

Wiener process with nonsingular covariance matrix. The β(·) and βr(·) ∈ C[0, T] are 

continuous functions on [0, T], indicating D βr( ⋅ ) = D(β( ⋅ )) = C[0, T ]. It follows from the 

fact that X is dense in X = X( ⋅ ) ∈ L2[0, T ] ∣ X(0) = 0  that we have

ℒ X, D(β( ⋅ )); L2(V) ⊥ = ℒ X, D βr( ⋅ ) ; L2(V) ⊥

= ℒ X, C[0, T ]; L2([0, T ]) ⊥ = 0.

Suppose Z* = ℝQ − 1, D γ* = ℝQ − 1, and D γr = ℝQ − 1. Then, we have

ℒ Z*, D γ* ; ℝQ − 1 ⊥ = ℒ Z*, D γr ; ℝQ − 1 ⊥

= ℒ ℝQ − 1, ℝQ − 1; ℝQ − 1 ⊥ = 0.
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The key condition |γu| ≥ ϵ guarantees that the dependency of the response y on the 

instrumental variable u exists.

3.2. Bayesian Inference

Let yobs and ymis be the vectors of observed and missing responses, respectively; y = (yobs, 

ymis); Z = (z1, …, zn) be the matrix of observed covariates; and r = (r1, …, rn)T be a vector 

of missingness indicators. We also denote θy = (α, β1, …, βK, γ1, …, γQ, σ2)T  as a vector that 

includes all the unknown parameters involved in the BSOI regression model (6), 

θr = (αr, βr1, …, βrK, γr1, …, γr, Q − 1)T  as a vector that includes all the unknown parameters 

involved in missing data model (9), and θ = (θy, θr). Recall that X is the matrix of imaging 

observations.

After performing FPCA on the imaging observations Xi(v), we can consider the eigenscores 

ξik as known covariates in the regression model. Consequently, the BSOI regression model 

is reduced to a conventional linear model and is readily analyzed under the Bayesian 

framework. We then assign conjugate priors for the parameters in θy as follows:

p(α) =D N(α0, σα0
2 ); p(βk) =D N(βk0, σβk0

2 ), k = 1, …, K;
p(γq) =D N(γq0, σγq0

2 ), q = 1, …, Q; and
p(σ−2) =D Gamma(aσ0, bσ0),

(12)

where α0, α0, σα0
2 , βk0, σβk0

2 , γq0, σγq0
2 , aσ0, and bσ0 are the hyperparameters, and their values 

are prespecified according to the information from historical analyses or prior knowledge. 

For the parameter vector θr involved in (9), we assign the prior distribution as follows:

p θr =D N θr0, Σr0 , (13)

where θr0 and Σr0 are prespecified hyperparameters.

The Bayesian estimate of θ can be obtained through sampling from p(θ|yobs, Z, X). Owing 

to the existence of nonresponses, this posterior distribution involves a high-dimensional 

integral and is therefore intractable. With the use of a data augmentation technique (Tanner 

and Wong 1987), we work on the joint posterior distribution p(θ, ymis|yobs, r, Z, X). MCMC 

methods, such as the Gibbs sampler and the Metropolis–Hastings algorithm, are used 

iteratively to sample (I) ymis from p(ymis|θ, yobs, r, Z, X), (II) θy from p(θy|ymis, yobs, Z, X), 

and (III) θr from p(θr|ymis, yobs, r, Z, X). The conditional distributions and technical details 

are provided in Appendix C. The computer program is written in the R language with the aid 

of RcppArmadillo package (Eddelbuettel and Sanderson 2014) for speeding up loops in the 

code, and the main functions are summarized in the R package “BSOINN.”

4. Simulation Study

In this section, two simulations are conducted to evaluate the empirical performance of the 

proposed method. In Simulation 1, we assess the Bayesian estimation of the BSOI 
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regression with nonignorable, ignorable, and fully observable data. In Simulation 2, we 

further consider several numerical studies that evaluate effectiveness of the instrumental 

variable in improving the model identification and estimation of our proposed method.

4.1. Simulation 1

We consider 2D V1 × V2 imaging data with V1 = V2 = 300, resulting in a Xi with a length of 

V = 90,000. The data are simulated from the following model:

yi = ∫
V

Xi(v)β(v)dv + γ1zi1 + γ2zi2 + γ3ui + δi (14)

with Xi(v) = ∑k = 1
3 ξikψk(v) and β(v) = ∑k = 1

3 βkψk(v), where ξik ~ N(0, 0.5k−1), β1 = 0.5, β2 

= 1, β3 = −1, γ1 = 1.5, γ2 = −1, γ3 = 0.5, and δi ~ N(0, 1). The covariates zi1 and zi2 are 

independently generated from U(0, 1) and N(0, 1), respectively. Moreover, U(0, 1) denotes 

the uniform distribution in [0, 1], and ui denotes a binary instrumental variable with equal 

probabilities taking the values of 1 and −1. The eigenimages ψk are presented in the first 

row of Figure 2. They can be regarded as two-dimensional grayscale images with pixel 

intensities on a [0,1] scale, where the black pixels are set as 1 and white pixels are set as 0. 

Such a method of generating imaging data from eigenimages can also be found in studies 

conducted by Zipunnikov et al. (2011a, 2011b).

The two missing mechanisms are considered as follows.

Mechanism 1 (Nonignorable): The missing data are generated on the basis of an 

exponential tilting model with imaging predictors as follows:

logit πi = ∫
V

Xi(v)βr(v)dv + γr1zi1 + γr2zi2 + ϕyi, (15)

where βr(v) = ∑k = 1
3 βrkψk(v), βr1 = −1, βr2 = 0.5, βr3 = 0.5, γr1 = −0.7, γr2 = −0.7, 

and ϕ = −1.2. The overall missing proportion is approximately 40%.

Mechanism 2 (Ignorable): The missing data are generated on the basis of a logistic 

regression model with imaging predictors as follows:

logit πi = ∫
V

Xi(v)βr(v)dv + γr1zi1 + γr2zi2, (16)

where βr1 = −1, βr2 = 0.5, βr3 = 0.5, γr1 = −1, and γr2 = 0.7. Mechanism 2 is in fact a 

special case of Mechanism 1, the tilting parameter ϕ of which is set to zero. The 

overall missing proportion is also approximately 40%.

In the above designs, Mechanism 1 is used to evaluate whether the proposed method can 

accurately retrieve the information of nonignorable missingness, whereas Mechanism 2 is 

employed to investigate the implication of overspecification of a missing data model. Thus, 

we consider the following models in the data analysis:
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BSOI-NN: BSOI regression (14) and a nonignorable missing model (8) specified as 

model (15).

BSOI-IN: BSOI regression (14) and an ignorable missing model (8) specified as 

model (16).

BSOI-Full: BSOI regression (14) with fully observed data.

Notably, the BSOI-Full model assumes that the values of the missing observations are 

known. Thus, it can be considered as an oracle model, and its corresponding estimation 

results can be considered as a benchmark for comparison.

Regarding the prior distributions in (12) and (13), we set vague prior inputs as follows: α0 = 

0, σα0
2 = 10, βk0 = 0 σβk0

2 = 10, γq0 = 0, σγq0
2 = 10, and aσ0 = 9, bσ0 = 3, θr0 = 0, and Σr0 = I, 

where 0 and I denote the zero vector and identity matrices with appropriate dimensions, 

respectively. We assess the convergence of the MCMC algorithm using three parallel 

sequences with well-separated starting values. The MCMC algorithm converges within 4000 

iterations. Thus, we collect 6000 observations after 4000 burn-in iterations to conduct 

Bayesian inference.

In this simulation, three sample sizes, n = 100, n = 500, and n = 1000, are considered. A 

total of 100 replicated datasets are generated under each sample size and missing 

mechanism. We first look at the performance of FPCA on the imaging data. The estimated 

eigenimages and eigenscores with the moderate sample size n = 500 are depicted in Figures 

2 and 3. In Figure 2, the first and second rows from left to right provide the true eigenimages 

and the means of their estimates, respectively, whereas the last row displays the means and 

the 5th and 95th percentiles of the estimated eigenimages. The estimated eigenimages are 

normalized through (ψk(v) − minvψk(v))/(maxvψk(v) − minvψk(v)) to obtain grayscale images 

with pixel values in the [0,1] interval. As shown in Figure 2, the means of the estimated 

eigenimages perfectly recover the spatial configuration. The small distortions from the true 

eigenimages to their 5th and 95th percentiles reflect the good performance of the estimated 

eigenimages. Figure 3 reports the estimation result of the eigenscores. Both the Q-Q plot and 

the boxplots show that the estimated eigenscores are very close to their true values.

To evaluate the finite sample performance of the parameter estimates, we compute the bias 

(BIAS) and root mean squared error (RMS) between the Bayesian estimates of the unknown 

parameters and their true population values. Table 1 (upper panel) presents the estimation 

results obtained from the 100 replicated datasets generated under Mechanism 1. As 

expected, the estimates under BSOI-Full (oracle case) have excellent performance with 

small BIAS and RMS values. The estimates under BSOI-NN (true mechanism) are not as 

good as those of BSOI-Full but are still satisfactory. The estimates under both cases improve 

when the sample size increases. Meanwhile, the estimates under BSOI-IN (oversimplified 

mechanism) perform unsatisfactorily with large BIAS and RMS values, indicating that 

ignoring an nonignorable missing mechanism can lead to seriously biased estimation results.

For comparison, the estimation results obtained on the basis of the 100 replicated datasets 

generated under Mechanism 2 are presented in Table 1 (lower panel). The performance of 
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the estimates under BSOI-Full (oracle case) is excellent, whereas the performances of the 

estimates under BSOI-IN (true mechanism) and BSOI-NN (overspecified mechanism) are 

satisfactory and comparable. Thus, the BSOI-NN procedure does not distort the parameter 

estimates of BSOI regression even when the true missing mechanism is ignorable.

The sensitivity of Bayesian estimates to prior inputs is investigated by introducing certain 

disturbances to the hyperparameters. For example, we reanalyze the previous analysis by 

setting σα0
2 = 100, σβk0

2 = 100, σγq0
2 = 100, and some ad hoc disturbances to other 

hyperparameters. The obtained results are similar and are not reported here.

4.2. Simulation 2

4.2.1. Part 1—In this part, we evaluate the effectiveness of the instrumental variable in 

improving model identification and estimation. Specifically, we generate datasets using the 

same setting of model (14) in Simulation 1 except that the instrumental variable ui is 

removed. We generate 100 replicated datasets of different sample sizes under Mechanisms 1 

and 2 that are specified by (15) and (16). The proposed BSOI-NN model, which consists of a 

BSOI regression (14)) without ui and a nonignorable missing model (8) specified as the 

model of (15), is then applied to analyze the newly generated datasets. The estimation results 

are compared with those obtained in Simulation 1, which implements the BOSI-NN method 

on datasets with an instrumental variable (see Table 2). Notably, for the sake of fairness, the 

mean value of the instrumental variable ui is intentionally set to 0 in Simulation 1 to ensure 

that the instrumental variable does not affect the overall missing rate of the responses.

As shown in Table 2, the estimation with an instrumental variable outperforms that without 

the instrumental variable. In particular, for the unknown parameters involved in the 

exponential tilting model, their estimates with an instrumental variable uniformly improve as 

the sample size increases. However, such improvement is not achieved when the 

instrumental variable is excluded, and the estimates of several parameters, such as βr2, γr1, 

γr2, and ϕ, have undesirable results as the sample size increases from 500 to 1000. Thus, the 

instrumental variable facilitates model identification and estimation.

4.2.2. Part 2—In Simulation 1, we assume that the coefficient image β(·) can be well 

represented by the eigenimages of X(·). This part aims to evaluate the performance of the 

proposed method when β(·) is not directly generated from the eigenimages. By fixing all the 

other settings exactly the same as Mechanism 1 of Simulation 1, we consider two cases of 

true β(·) as shown in Figure 4, which cannot be directly generated by the eigenimages (see 

Figure 2) of X(·). We consider a moderate sample size n = 500 in this simulation and 

generate 100 replicated datasets for each case. The three methods, BSOI-NN, BSOI-IN, and 

BSOI-Full, are utilized for data analysis. The estimation results are shown in Figure 4 and 

Table 3, with the estimation accuracy of β(·) being assessed through the following RMS 

measurement:

RMS = 1
100 ∑

l = 1

100 1
V ∑

v = 1

V
{β l(v) − β(v)}2 ,
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where β l(v) is the estimate of β(v) at the vth voxel in the lth replication.

As depicted in Figure 4 and Table 3, we find that the BSOI-Full method with full 

observations still performs the best in both cases on reproducing β(·) and other parameters, 

and the proposed BSOI-NN method exhibits a comparable performance. In contrast, BSOI-

IN method performs unsatisfactorily in both cases. Nonetheless, if β(·) cannot be well 

represented by the eigenimages, none of the three methods is able to recover β(·) accurately.

The considered scalar-on-image regression inherently requires certain structural assumptions 

on the coefficient image β(·) because the dimension of imaging covariates is much larger 

than the sample size (Happ, Greven, and Schmid 2018; Kang, Reich, and Staicu 2018; Wang 

and Zhu 2017, among others). A common assumption is that β(·) is a linear combination of 

the leading eigenimages of X(·), which we considered in the proposed BSOI model. This 

assumption seems plausible because areas with high variation in the imaging observations 

are likely to be relevant to the response values (Happ, Greven, and Schmid 2018). Recent 

advancements on scalar-on-image regression assume spatial sparsity and smoothness on 

voxels of β(·) to identify β(·) (Wang and Zhu 2017; Kang, Reich, and Staicu 2018). 

However, such voxelwise methods are extremely time consuming, especially for managing 

the current ultrahigh dimensional brain images. Nevertheless, none of the aforementioned 

assumptions fits every real situation. The existing literature (Happ, Greven, and Schmid 

2018; Kang, Reich, and Staicu 2018) shows that the estimated β(·)s based on different 

assumptions may vary but should have some common features in the detected regions. 

Specifically, regions of β(·) estimated to be positive (negative) effects under one assumption 

tend to be positive (negative) under other assumptions. This suggests a remedy to check the 

estimation results using a different assumption in the real data analysis. It is worth noting 

that recovering β(·) accurately under different situations for imaging regression is still an 

active research area, and we can adopt advanced techniques of estimating β(·) to improve the 

proposed BSOI-NN method. We acknowledge this limitation in the final discussion and will 

investigate it further in our future research.

4.2.3. Part 3—This part evaluates the out-of-sample prediction performance of the 

proposed BSOI-NN method and compares its performance with those of several other 

models. In addition to BSOI-Full, BSOI-IN, and BSOI-NN, we also consider two scalaron-

image regression models that were recently developed for fully observed imaging datasets, 

namely, the scalar-on-image regression model via the soft-thresholded Gaussian process 

(STGP, Kang, Reich, and Staicu 2018) and the scalar-on-image regression model via total 

variation (TV, Wang and Zhu 2017). The STGP method models the coefficient image β(·) 

through soft-thresholding of a latent Gaussian process, which not only ensures a gradual 

transition between the zero and nonzero effects of neighboring locations but also provides 

large support over the class of spatially varying regression coefficient images. In contrast, 

the TV method assumes that β(·) belongs to the space of bounded total variation, which 

explicitly accounts for the common piecewise smooth nature of imaging data. The STGP 

approach has been implemented in the R package “STGP,” and the default settings therein 

are used in this study. The TV approach has been implemented through MATLAB with 

suggested settings being applied. The target of considering these two alternatives is to assess 
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how much improvement the proposed method can achieve by considering nonignorable 

missing responses compared with existing scalar-on-image regression methods that 

disregard missingness.

We reuse the 100 replicated datasets generated in Simulation 1 for Mechanism 1 with a 

moderate sample size n = 500. For each replicated dataset, we evenly distribute it into a 

training subset and a testing subset, ensuring that both subsets exhibit the same missing rate. 

The training subsets are utilized to fit the imaging regression model, and the testing subsets 

are used to evaluate the out-of-sample prediction accuracy. For BSOI-Full method, we again 

substitute the missing responses with their true values for the training subsets and use the 

full data to fit the model. The prediction performance of BSOI-Full serves as a benchmark in 

the comparison. For BSOI-IN and BSOI-NN methods, we use the training subsets with 

nonresponses to fit models. For STGP and TV methods, we discard the samples with 

missing responses and use the remaining observations to fit models. The parameter estimates 

obtained from different methods are used to obtain predicted responses. Following Li et al. 

(2018), we calculate the Pearson correlation between the predicted responses and their true 

values in testing subsets as the measurement of prediction accuracy. The obtained results for 

the five models are presented in the first panel of Table 4. As expected, BSOI-Full method 

with fully observed data exhibits the best prediction accuracy among all methods. The 

proposed BSOI-NN method also shows a satisfactory performance, whereas the other three 

methods do not perform very well due to the ignorance of nonignorable nonresponse.

We further examine whether the use of imaging and scalar covariates lead to better 

prediction accuracy. We first remove the imaging covariate from the datasets and re-evaluate 

the prediction accuracy of all proposed methods. Without the imaging covariate, both STGP 

and TV models reduce to a conventional linear regression model and are not considered in 

this comparison. The obtained results are reported in the second panel of Table 4, showing 

that the prediction accuracy of all methods drops significantly without the imaging covariate. 

We then remove one covariate, z1, from the datasets and re-evaluate the prediction 

performance of all methods. The obtained results are shown in the third panel of Table 4, 

depicting a lower prediction accuracy of all methods when ignoring a scalar covariate. The 

above analyses confirm the power of using imaging and scalar covariates in terms of 

prediction.

5. The Alzheimer’s Disease Neuroimaging Initiative Data

The proposed BSOI-NN method was applied to the ADNI dataset as described in the 

introduction section. The goal of this analysis is to investigate whether the baseline imaging 

and scalar covariates can accurately predict the RAVLT learning scores at the 36th month. 

The learning scores are subject to 45.6% nonresponses. The dataset consists of 802 subjects 

with 223 NC, 391 MCI patients, and 188 AD patients. Among them, 467 are males (mean 

age, 75.52 ± 6.78), and 335 are females (mean age, 74.78 ± 6.81).

MRI data were collected from each subject. These MRI images include the standard T1-

weighted images obtained through volumetric three-dimensional sagittal magnetization 

prepared rapid gradient-echo or equivalent protocols with varying resolutions. The MRI 
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images were generated across a variety of 1.5 Tesla MRI scanners with individualized 

protocols. The following parameters form a typical MRI protocol: repetition time = 2400 

ms, inversion time = 1000 ms, flip angle = 8°, field of view = 24 cm with a 256×256×170 

acquisition matrix in the x-, y- and z-dimensions, which yields a voxel size of 1.25×1.26×1.2 

mm3 (Jack et al. 2008). The MRI data were preprocessed with standard steps as follows: 

Anterior commissure and posterior commissure corrections were performed on original 

images (McAuliffe et al. 2001). The images were then resampled to the dimension of 256 × 

256 × 256. N2 bias field correction was implemented on the reconstructed images to reduce 

intensity inhomogeneity (Sled, Zijdenbos, and Evans 1998). A hybrid of the brain surface 

extractor (Shattuck et al. 2001) and brain extraction tool (Smith 2002) was used to address 

the problems in each method and ensure skull-stripping accuracy. Another intensity 

inhomogeneity correction was performed following the skull-stripping procedure. 

Afterward, the cerebellum was removed from the images according to registration by using a 

manually labeled cerebellum as a standard template. The deformation field obtained during 

registration was used to generate the 256 × 256 × 256 regional analysis of the volume in 

normalized space (RAVENS) images. The RAVENS images for different subjects had a 

unified shape and size in normalized space, and these intensity-based RAVENS maps 

preserve the local tissue volumes in original MRIs. The brain regions that were expanded 

during the normalization step will appear darker than their original counterparts because the 

same amount of tissue was spread over a larger area, and the regions that were decreased in 

size will appear proportionally brighter (Goldszal et al. 1998). The intensities of different 

voxels of a RAVENS map represent the local volume density at different locations relative to 

the density at the same locations of the template (Davatzikos et al. 2001). Finally, the 

RAVENS images were downsampled to 128 × 128 × 128 resolution for final statistical 

analysis.

Four domains of covariates that were motivated from the factors identified as important in 

the existing literature were considered in this analysis. The imaging covariates are the 

generated RAVENS images. The other covariates of interest include demographic variables, 

that is, gender (z1: male = 1, female = 0), age (z2), educational level (z3), race (z4: white = 1, 

other = 0), and whether the subject was ever married (z5: never married = 1, ever married = 

0); a biomarker variable that indicates the risk caused by variations in the APOE gene, such 

as APOE4 (z6); and a diagnostic variable, such as whether the individual is diagnosed as 

having MCI or AD (z7: MCI or AD = 1, NC = 0). We selected educational level as the 

instrumental variable. Specifically, the learning ability of an elderly adult is usually strongly 

correlated with their educational level, while the missingness of the learning abilities may be 

conditionally uncorrelated with the educational level conditional on the learning ability. To 

assess whether the educational level is a good candidate for the instrumental variable, we 

performed an experiment by including the educational level into the exponential tilting 

model in implementing the BSOI-NN method. The results suggest that educational level is 

highly correlated with the learning ability and conditionally independent of the missing 

probability. Moreover, we tried several other variables, including marital status and APOE4, 

as the instrumental variable. The experiments suggest that the results are not very sensitive 

to different choices of instrumental variable, and the experiments based on educational level 

Feng et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2021 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



show stable performance. The BSOI regression with n = 802 subjects and Q = 7 covariates 

was proposed to conduct the analysis.

For statistical inference, we first applied FPCA on the imaging observations to obtain the 

corresponding eigenvalues, eigenimages, and eigenscores. Then, we considered the 

eigenscores as known covariates in the BSOI regression. The prior inputs were specified in 

the same manner as those in the simulation studies. Several pilot runs from well-separated 

starting values were then performed, and the results showed that the MCMC algorithm 

converged within 10,000 iterations. After the burn-in phase of 10,000 iterations, another 

10,000 iterations were generated to conduct the posterior inference. For the determination of 

K, the number of eigenimages retained, we rotated K from 1 to 100 and applied BIC for 

selection. Figure 5 displays the first 30 BIC values, and those with K over 30 are large and 

thus are not reported. The BSOI-NN model with K = 5 eigenimages exhibits the best fit to 

the ADNI dataset.

Table 5 presents the estimation results obtained from the BSOI-NN and BSOI-IN models. 

Several predictors, such as educational level and APOE4, were apparently significant for 

BSOI-NN but nonsignificant for BSOI-IN. However, these variables were previously 

recognized as important influential factors for the cognitive ability of elderly people, 

especially educational level (Lee et al. 2003; Lièvre, Alley, and Crimmins 2008), marital 

status (Helmer et al. 1999; Petersen et al. 2010), and APOE4 status (Bekris et al. 2010; 

Petersen et al. 2010). Moreover, ϕ is highly significant in the BSOI-NN model, indicating 

the strong nonignorability of the missing mechanism. These observations confirm that the 

missing mechanism in this application is nonignorable, and the analysis can be misleading if 

the nonignorable missing mechanism is disregarded.

We tested the importance of the instrumental variable by excluding it (i.e., educational level) 

in the BSOI-NN analysis. Computationally, several MCMC chains did not converge because 

the instrumental variable was not included, while almost all of the Bayesian parameters 

estimated became insignificant. Such behavior did not occur for the BSOI-NN model with 

educational level as the instrumental variable. Moreover, even for converged MCMC chains, 

the posterior standard deviation of the tilting parameter ϕ was estimated to be 0.429 under 

the absence of the instrumental variable. See Table 6 for details. Such a standard deviation 

value is much larger than that of BSOI-NN with the instrumental variable, indicating that ϕ 
may be unidentifiable. This result is consistent with the findings in Shao and Wang (2016), 

revealing the importance of the instrumental variable.

Based on the estimation results, we obtained the following findings. In the exponential 

tilting model, ϕ is significantly negative, implying that subjects with weak cognitive ability 

are likely to have future nonresponses. In addition, several elements of scalar covariates and 

imaging predictors significantly affect the probability of nonresponse. In BSOI regression, 

the scalar covariates exhibit diverse effects. Education has a positive effect on the learning 

ability of the elderly people, whereas the status of never married, APOE4, and the clinical 

outcome of MCI or AD exhibit negative effects. These findings agree with those in the 

current medical literature (e.g., Helmer et al. 1999; Lee et al. 2003; Bekris et al. 2010). 

Surprisingly, age has a slightly positive effect on learning ability. One possible explanation 
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is that the ADNI study focused on the population of elderly people, and healthy elderly 

people tend to possess better cognitive ability and to live longer than unhealthy ones. 

Nonetheless, further investigation is required to understand this unexpected result.

Regarding the imaging predictors, all five of the retained eigenimages exhibit highly 

significant effects on the learning scores, indicating that the imaging covariate is indeed an 

important risk factor for the learning ability of elderly people. β(·) was calculated via the 

Karhumen–Loeve expansion with estimated coefficients βk and eigenimages (see Figure 6 

for the first eigenimage as an example) from FPCA. For clarity, β(·) is depicted in Figure 7 

such that its positive part is separated from its negative part, which denotes the positive and 

negative effects of the corresponding brain regions involved in learning ability, respectively. 

The results are in good agreement with related results reported in the existing literature. For 

instance, the positive effects of “frontal gyrus” (Figure 8, the top row), “superior temporal 

gyrus and insula” (Figure 8, the middle row), and “medial temporal lobe, perirhinal and 

entorhinal cortex” (Figure 8, the bottom row) are relatively large. This finding is consistent 

with the results in neuroscience studies, which revealed that MCI and AD are negatively 

associated with the volume or cortical thickness of the frontal brain regions (Hämäläinen et 

al. 2007; Whitwell et al. 2007; Im et al. 2008b), superior temporal regions (Harasty et al. 

1999), insula regions (Foundas et al. 1997), medial temporal lobe (Visser et al. 2002), and 

perirhinal and entorhinal cortex (Yilmazer-Hanke and Joachim 1999). In brain regions that 

exhibit negative effects, the “lateral ventricle and caudate nucleus” (Figure 9, the top row), 

and “central sulcus” (Figure 9, the bottom row) are the most evident. These results are also 

supported by previous findings, which indicated that the sulcal span (Im et al. 2008a; Liu et 

al. 2012) and enlargement of the lateral ventricle (McKhann et al. 1984; Feng et al. 2004; 

Nestor et al. 2008; Ertekin et al. 2016) are associated with the decline in cognitive functions 

in AD and MCI patients. Notably, the proposed method reveals a significant negative effect 

of the volume of caudate nucleus on the learning ability of older people, which agrees with 

the very recent results in cognitive neurology (Persson et al. 2017, 2018).

In addition to the association analysis on the ADNI data, we also evaluated the out-of-

sample prediction performance of the proposed method. We randomly partitioned the ADNI 

dataset into a training subset with n1 = 401 and a testing subset with n2 = 401, ensuring that 

both subsets exhibit the same nonresponse rate. For BSOI-NN and BSOI-IN methods, we 

used the training subset with nonresponse to fit model parameters. For STGP and TV 

methods, we discarded the samples with missing responses in the training subset and applied 

the remaining observations to fit model parameters. Unlike the simulation study, we did not 

have the true values of missing responses in the testing subset for validation. As a remedy, 

for a subject with no learning score at the 36th month, we obtained his/her most recently 

observed learning score as the true value at the 36th month, such as that from the 30th 

month, 24th month, or earlier. We repeated the above random partition and analysis for 100 

times and computed the mean prediction accuracy (standard deviation) for BSOI-NN, BSOI-

IN, STGP, and TV as 0.540 (0.028), 0.533 (0.029), 0.526 (0.030), and 0.527 (0.032), 

respectively. The results suggest that it is crucial to consider the nonignorable nonresponse 

in analyzing the ADNI dataset. We also examined whether the medical images are powerful 

in terms of prediction. We discarded the imaging covariates from the ADNI dataset and 

repeated the partition procedures and analyses. The prediction accuracy for BSOI-NN and 

Feng et al. Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2021 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BSOI-IN were computed as 0.508 (0.033) and 0.498 (0.033), respectively, confirming that 

the medical images are crucial predictors for the learning scores.

When predicting future learning scores, the baseline learning scores are often useful due to 

within-subject correlation. We therefore further considered the baseline learning scores (z8) 

as a covariate in the BSOI model. This setting essentially tests the influence of baseline 

covariates on the change in the RAVLT learning scores at the 36th month relative to the 

baseline learning scores. Table 7 presents the estimation results, which are consistent with 

those of the previous analysis. As expected, elderly people with higher baseline learning 

scores tend to exhibit better learning ability in the follow-up phase. Notably, although the 

baseline learning scores exhibit a positive effect on the nonresponse probability, their strong 

negative mediation effect through the current learning scores on the nonresponse probability 

implies a negative total effect on the nonresponse probability. To verify this mediation effect, 

we separately analyzed the exponential tilting model by excluding the current learning 

scores y but retaining the rest. The effect of the baseline learning scores on the nonresponse 

probability became negative (−0.145*), which confirms the mediation effect and agrees with 

the results presented in Figure 1. In terms of out-of-sample prediction, we again repeated the 

random partition procedures for 100 times and computed the prediction accuracy for BSOI-

NN, BSOI-IN, STGP, and TV as 0.615 (0.026), 0.610 (0.025), 0.606 (0.028), and 0.608 

(0.031), respectively. These results indicate that baseline learning scores are predictive of 

future learning scores. It is reasonable to further infer that in addition to the baseline 

learning scores, the learning scores at other months previous to the 36th month should also 

be predictive of the learning scores at the 36th month. However, there are considerable 

missing values for the learning scores at these months, for example, the nonresponse rate at 

the 24th month is 23.4%. The proposed method can be further improved by allowing for 

nonignorable missing covariates so that the learning scores before the 36th month can be 

adjusted in the prediction model. We have acknowledged this limitation in the discussion 

section and included it in our research agenda.

Finally, we evaluated the validity of the conducted analyses through two robustness checks. 

The first one aims at assessing the impact of the model assumption that β(·) can be well 

represented by the leading eigenimages of X(·). As mentioned in Part 2 of Simulation 2, we 

may re-estimate β(·) under a different assumption. To this end, we used the Bayesian STGP 

method proposed by Kang, Reich, and Staicu (2018) to estimate β(·) in the scalar-on-image 

regression. The STGP method assumes β(·) to be piecewise-smooth, sparse and continuous, 

and estimates β(·) on the voxel level. However, as mentioned above, this voxelwise method 

is extremely computationally demanding. Therefore, we applied the STGP procedure to 

estimate β(·) only in the scalar-on-image regression and utilized the default settings of the 

STGP procedure in the R package “STGP.” The results based on the STGP method are 

provided in Appendix D. Two findings are obtained. First, the estimates of the parameters 

other than β(·) are largely consistent with those in Table 6 under the proposed BSOI-NN 

method. Second, the regions of β(·) detected by the STGP method largely overlap with those 

estimated by the proposed BSOI-NN method. Specifically, 81.3% (2375 among 2922 

voxels) of the regions in β(·) detected to be positive by the STGP method were also 

estimated to be positive by the proposed BSOI-NN method, and 69.5% (332 among 478 

voxels) of the negative regions detected by the STGP method were also estimated to be 
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negative by the proposed BSOI-NN method. Notably, the estimated β(·) using STGP is 

highly sparse. Therefore, many regions, such as lateral ventricle, caudate nucleus, and 

central sulcus, which have been detected by our method and well validated by the existing 

literature (McKhann et al. 1984; Feng et al. 2004; Im et al. 2008a; Nestor et al. 2008; Liu et 

al. 2012; Ertekin et al. 2016), were not detected by STGP. These results indicate that the 

model assumption on β(·) may be plausible and the proposed BSOI model framework is 

potentially useful for substantive studies in the presence of ultrahigh dimensional imaging 

data and nonignorable missingness.

The second robustness check excluded the diagnostic status (z7) from both the main analysis 

and the analysis with the baseline learning scores. The baseline diagnostic status is partially 

determined by the baseline RAVLT scores, so it is strongly correlated with the baseline and 

future RAVLT scores. Thus, the diagnostic status could be a substantial confounding factor 

in the analysis and may significantly affect the results. The estimation results are consistent 

with those of the above analyses, and thus are not reported to save space. This may provide 

further evidence of the validity of the previous analyses.

6. Discussion

We develop a Bayesian method for analyzing BSOI regression with nonignorable 

nonresponses. Ultrahigh-dimensional imaging data are considered in the regression model to 

explain clinical outcomes of interest. We propose an exponential tilting model with scalar 

and imaging predictors to examine their effects on the probability of nonresponse. An 

instrumental variable is introduced to the missing data model to aid model identifiability and 

estimation. FPCA for high-dimensional imaging observations is employed to lower the 

dimensionality of the imaging regression and missing data model to simplify the model 

representation. An efficient Bayesian method is developed and used with MCMC techniques 

to conduct statistical inference. The effectiveness of the proposed method is demonstrated 

through simulation studies. We believe that its application to the ADNI dataset provides new 

insights into AD risk factors.

The present study has limitations. First, the FPCA method used to reduce model 

dimensionality relies on the presmoothing of the covariance operator, while the spatial 

structures of the brain images are disregarded. The combination of Ising and Markov 

random field priors developed by Goldsmith, Huang, and Crainiceanu (2014) may be 

applied to accommodate the spatial correlations. However, such priors introduce high 

computational challenges under ultrahigh-dimensional settings. The feasibility of such 

development requires further investigation. Second, we assume β(·) to be well presented by 

the eigenimages of X(·). This may not be the case in certain circumstances. In fact, β(·) may 

have unknown jumps and edges. We can consider a generalization of the current approach 

by applying functional penalization methods to directly estimate β(·) (e.g., Crambes, Kneip, 

and Sarda 2009; Wang and Zhu 2017; Kang, Reich, and Staicu 2018). Third, to better 

explain the current learning scores, the proposed methodology can be further improved by 

allowing for nonignorable missing covariates so that the historical learning scores that are 

subjected to nonignorable missingness can be considered in the regression model. Fourth, 

longitudinal nonignorable nonresponse has been recognized as an important research 
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problem in the literature (see, e.g., Diggle and Kenward 1994). We may extend the proposed 

BSOI-NN framework to handle longitudinal nonignorable nonresponse so that the entire 

trajectory of the learning scores that are subjected to nonignorable missingness can be linked 

with imaging covariates. Finally, we consider a parametric setting in the BSOI regression 

and missing mechanism. We may extend the proposed framework to a more sophisticated 

semiparametric context. Substantial efforts are required for these developments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Proof for Theorem 1

Suppose that the following two equations hold for all (y, X(v), z*) ∈ S and (u1, u2) : u1 ≠ 

u2.

Pr r = 0 ∣ y, X( ⋅ ), z*; θr1 p y ∣ X( ⋅ ), z*, u1; θy1
= Pr r = 0 ∣ y, X( ⋅ ), z*; θr2 p y ∣ X( ⋅ ), z*, u1; θy2 ,

Pr r = 0 ∣ y, X( ⋅ ), z*; θr2 p y ∣ X( ⋅ ), z*, u2; θy2
= Pr r = 0 ∣ y, X( ⋅ ), z*; θr1 p y ∣ X( ⋅ ), z*, u2; θy1 .

(A1)

Multiplying the two equations gives

Pr r = 0 ∣ y, X( ⋅ ), z*; θr1 p y ∣ X( ⋅ ), z*, u1; θy1
Pr r = 0 ∣ y, X(v), z*; θr2 p y ∣ X( ⋅ ), z*, u2; θy2

= Pr r = 0 ∣ y, X( ⋅ ), z*; θr2 p y ∣ X( ⋅ ), z*, u1; θy2
Pr r = 0 ∣ y, X( ⋅ ), z*; θr1 p y ∣ X( ⋅ ), z*, u2; θy1 .

(A2)

Together with condition (C1) of Theorem 1, it follows that

p y ∣ X( ⋅ ), z*, u1; θy1 p y ∣ X( ⋅ ), z*, u2; θy2
= p y ∣ X( ⋅ ), z*, u1; θy2 p y ∣ X( ⋅ ), z*, u2; θy1

(A3)

holds for all (y, X(·), z*). Together with condition (C2), we have θy1 = θy2. Then, we obtain 

from (A.1) that

Pr r = 0 ∣ y, X( ⋅ ), z*; θr1 = Pr r = 0 ∣ y, X( ⋅ ), z*; θr2
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for all (y, X(·), z*). Together with condition (C3), we have θr1 = θr2, and the identifiability is 

obtained.

Appendix B: Proof for Proposition 1

(I) Condition (C1) holds, because for all (θr, X(·), z∗, y) we have

Pr r = 0 ∣ y, X( ⋅ ), z*; θr
= 1

1 + exp αr + ∫VX(v)βr(v)dv + γrTz* + ϕ1y
> 0.

(II) The fact that

Pr r = 0 ∣ y, X( ⋅ ), z*; θr1 = Pr r = 0 ∣ y, X( ⋅ ), z*; θr2 ,

for all(y, X(·), z*) is equivalent to

αr1 + ∫V
X(v)βr1(v)dv + γr1

T z* + ϕ1y

= αr2 + ∫V
X(v)βr2(v)dv + γr2

T z* + ϕ2y,

for all (y, X(·), z*) ⟹

αr1 − αr2 + ∫V
X1(v) βr1(v) − βr2(v) dv

+ γr1 − γr2 Tz1* + ϕ1 − ϕ2 y1 = 0,

αr1 − αr2 + ∫V
X1(v) βr1(v) − βr2(v) dv

+ γr1 − γr2 Tz1* + ϕ1 − ϕ2 y2 = 0,

αr1 − αr2 + ∫V
X2(v) βr1(v) − βr2(v) dv

+ γr1 − γr2 Tz1* + ϕ1 − ϕ2 y1 = 0,

αr1 − αr2 + ∫V
X1(v) βr1(v) − βr2(v) dv

+ γr1 − γr2 Tz2* + ϕ1 − ϕ2 y1 = 0,

for all y1, y2, X1( ⋅ ), X2( ⋅ ), z1*, z2*
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ϕ1 − ϕ2 y1 − y2 = 0,

γr1 − γr2 T z1* − z2* = 0,

∫V
X1(v) − X2(v) βr1(v) − βr2(v) dv = 0,

for all y1, y2, X1( ⋅ ), X2( ⋅ ), z1*, z2* . It follows that ϕ1 − ϕ2 = 0 because y1 ≠ y2, and

γr1 − γr2 ∈ ℒ Z*, D γr ; ℝQ − 1 ⊥,
βr1( ⋅ ) − βr2( ⋅ ) ∈ ℒ X, D βr( ⋅ ) ; L2(V) ⊥ .

Given ℒ X, D βr( ⋅ ) ; L2(V) ⊥ and ℒ Z*, D γr ; ℝQ − 1 ⊥
 are both zero, we have ϕ1 = ϕ2, γ 

r1 = γ r2, and βr1(·) = βr2(·). Finally, we have αr1 − αr2 = 0.

(III) From the normal distribution assumption of random noise δi, the fact that

p y ∣ X( ⋅ ), z*, u1; θy1 p y ∣ X( ⋅ ), z*, u2; θy2
≡ p y ∣ X( ⋅ ), z*, u1; θy2 p y ∣ X( ⋅ ), z*, u2; θy1 ,

for all y, X( ⋅ ), z*, u1, u2  is equivalent to

y − α1 − ∫VX(v)β1(v)dv − γ ∗ 1
T z* − γu1

T u1
2

− y − α1 − ∫VX(v)β1(v)dv − γ ∗ 1
T z∗ − γu1

T u2
2

2σ1

=

y − α2 − ∫VX(v)β2(v)dv − γ ∗ 2
T z∗ − γu2

T u1
2

− y − α2 − ∫VX(v)β2(v)dv − γ ∗ 2
T z∗ − γu2

T u2
2

2σ2
,

for all y, X( ⋅ ), z∗, u1, u2
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1
σ1

γu1 γu1u1 + γu1u2 − 2y

+2α1 + 2∫V
X(v)β1(v)dv + 2γ ∗ 1z*

= 1
σ2

γu2 γu2u1 + γu2u2 − 2y + 2α2

+2∫V
X(v)β2(v)dv + 2γ*2z* ,

for all (y, X(·), z*, u1, u2). Similar to the proof of (II), we have γu1/σ1 = γu2/σ2, β1(·) = 

β2(·), γ*1 = γ*2, γu1 = γu2, α1 = α2 using the fact that |γu1|/σ1 ≥ ϵ/σ1 > 0, which completes 

the proof.

Note that in this proposition the scalar u can be generalized to multidimensional in the 

model setting. Proof will be similar if we choose u1 = u1ej, u2 = u2ej to replace u1, u2 in the 

above proof, where ej, j = 1, 2, …, du, are the basis of the space U.

Appendix C: Full Conditional Distributions

Let β = (β1, …, βK)T, ξi = (ξi1, …, ξiK)T, and a vector a(−k) denote a sub-vector of a excluding 

the kth element.

(I) The conditional distributions of unknown parameters in θy are given as follows:

p(α ∣ ⋅ ) =D N Σα[α0/σα0
2 + ∑

i = 1

n
yi − γTzi − βTξi /σ2], Σα ,

p(βk ∣ ⋅ ) =D N Σβk[βk0/σβk0
2 + ∑

i = 1

n
(yi − α − γTzi − β( − k)

T ξi( − k))

ξik/σ2], Σβk , k = 1, …, K,

p γq ∣ ⋅ =D N Σγq[γq0/σγq0
2 + ∑

i = 1

n
(yi − α − γ( − q)

T zi( − q) − βTξi)

ziq/σ2], Σγq , q = 1, …, Q,

p σ−2 ∣ ⋅ =D Gamma aσ0 + n/2, bσ ,

where Σα = (n/σ2 + 1/σα0
2 )−1

, Σβk = (∑i = 1
n ξik

2 /σ2 + 1/σβk0
2 )−1

, Σγq = (∑i = 1
n ziq2 /σ2 + 1/σγq0

2 )−1

and bσ = bσ0 + ∑i = 1
n (yi − α − γTzi − βTξi)

2/2.

(II) The conditional distribution of ymis,i is

Feng et al. Page 26

J Am Stat Assoc. Author manuscript; available in PMC 2021 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p(ymis, i ∣ ⋅ ) ∝

exp{−(ymis − α − γTzmis, i − βTξmis, i)
2/2σδ

2

+ri(αr + γrTzmis, i* + βrTξmis, i + ϕymis, i)}

1 + exp(αr + γrTzmis, i* + βrTξmis, i + ϕymis, i)/
,

where zmis, i*  is the covariate vector excluding the instrumental variable and corresponding to 

the subject with the missing response.

The above conditional distribution is not in a closed form. We propose the use of the 

Metropolis–Hastings algorithm to sample from it. At the jth iteration with a current value 

ymis, i
(j) , a new candidate value ymis,i is generated from the proposed distribution 

N(ymis, i
(j) , σymis

2 Σymis, i), where

Σymis, i−1 = σ−2 +
exp(αr + γrTzi* + βrTξi)

(1 + exp(αr + γrTzi* + βrTξi))
2ϕ2 .

The new candidate value is accepted according to the following probability:

min 1,
p(ymis, i ∣ ⋅ )

p(ymis, i
(j) ∣ ⋅ )

.

The variance of σymis
2  is chosen such that the average acceptance rate is approximately 0.25 

(Gelman, Roberts, and Gilks 1996).

(III) The conditional distribution of the unknown parameter vector θr is given as follows:

p(θr) ∝

exp{∑i = 1
n ri(αr + γrTzmis, i* + βrTξmis, i + ϕymis, i)

− 1
2(θr − θr0)TΣr0

−1(φ − φ0)}

∏i = 1
n {1 + exp(αr + γrTzmis, i* + βrTξmis, i + ϕymis, i)}

.

This distribution is also not in a closed form. We again use the Metropolis–Hastings 

algorithm to sample from it. The proposed distribution is chosen as N(0, σr2Σr), where

Σr−1 = Σr0
−1 + 1

4 ∑
i = 1

n
eieiT ,

in which ei = (1, zmis, i
* ⊤ , ξmis, i

T )T , and σr2 is chosen to appropriately control the acceptance rate.

Appendix D: Results of Robustness Check 1
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Table D1.

Bayesian parameter estimates of the BSOI-NN model with the STGP technique for 

estimating β(·) in the analysis of the ADNI dataset.

BSOI-NN-STGP

Covariates Para Est SD

 Scalar on image regression

Imaging covariate β(·) Sparse

Gender γ1 −0.253 0.266

Age γ2 0.017 0.019

Educational level γ3 0.109* 0.044

Race γ4 0.024 0.479

Whether ever married γ5 −1.554* 0.728

APOE4 γ6 −0.663* 0.207

Whether have MCI or AD γ7 −3.490* 0.461

 Exponential tilting model

Eigenimage 1 βr1 −0.039 .318

Eigenimage 2 βr2 −0.002 0.018

Eigenimage 3 βr3 −0.374 0.494

Eigenimage 4 βr4 0.547 0.805

Eigenimage 5 βr5 −0.060 0.214

Gender γr1 −0.278 0.685

Age γr2 −0.105 0.152

Race γr3 −0.273 0.173

Whether ever married γr4 −0.402* 0.126

APOE4 γr5 −0.475* 0.135

Whether have MCI or AD γr6 −0.357* 0.137

Learning score φ −0.891* 0.306

*
Zero is not contained in the 95% credibility interval
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Figure 1. 
Learning scores at the baseline of the subjects from two groups in the ADNI dataset, where 

Group 1 includes the patients who exhibit missing learning scores at the 36th month and 

Group 2 contains the patients with observed learning scores at the same month.
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Figure 2. 
True (top row), estimated mean (2nd row), 5th pointwise percentile (3rd row), and 95th 

pointwise percentile (bottom row) grayscale eigenimages in Simulation 1 with the sample 

size n = 500.
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Figure 3. 
Q-Q plots between the true and estimated eigenscores and the boxplots of ξ ik − ξik in 

Simulation 1 with the sample size n = 500.
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Figure 4. 
Coefficient image β(·) in Part 2 of Simulation 2, where the first (second) column is for case 

1 (case 2).
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Figure 5. 
First 30 BIC scores of the BSOI-NN method with different number K of eigenimages in the 

ADNI data analysis.
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Figure 6. 
The coronal, axial, and sagittal planes of the estimated first eigenimage in the analysis of 

ADNI dataset, where the upper three rows represent the positive values and the lower three 

rows denote the negative values. Note that the sign of an eigenimage is not identifiable in 

FPCA, and the +/− signs are used here only for separating the regions of eigenimages that 

exhibit opposite signs.
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Figure 7. 
The coronal, axial, and sagittal planes of the estimated coefficient image β(·) in the analysis 

of ADNI dataset, where the upper three rows represent the positive values and the lower 

three rows denote the negative values.
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Figure 8. 
The coronal, axial, and sagittal planes of several positive parts of the estimated coefficient 

image β(·), which are located in the brain regions of the “frontal gyrus” (top row), “superior 

temporal gyrus and insula”(middle row), and “medial temporal lobe, perirhinal and 

entorhinal cortex”(bottom row), respectively.
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Figure 9. 
The coronal, axial, and sagittal planes of several negative parts of the estimated coefficient 

image β(·), which are located in the brain regions of “lateral ventricle and caudate nucleus”

(top row) and “central sulcus”(bottom row), respectively.
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Table 4.

Out-of-sample prediction accuracy in Part 3 of Simulation 2 with n=500.

BSOI-Full BSOI-IN BSOI-NN STGP TV

 Mechanism 1 of Simulation 1

Mean 0.843 0.833 0.839 0.822 0.832

Median 0.844 0.832 0.840 0.823 0.834

SD 0.018 0.022 0.019 0.025 0.021

 Remove imaging covariate, X(·)

Mean 0.626 0.619 0.624

Median 0.624 0.620 0.624

SD 0.042 0.044 0.042

 Remove one covariate,Z1

Mean 0.811 0.799 0.809 0.794 0.798

Median 0.812 0.800 0.808 0.797 0.796

SD 0.021 0.026 0.021 0.028 0.023
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Table 5.

Bayesian parameter estimâtes for the BSOI-NN and BSOI-IN models in the analysis of the ADNI dataset.

Covariates Para

BSOI-NN BSOI-IN

Est SD Est SD

 Scalar on image regression

eigenimage 1 β1 0.720* 0.158 0.530* 0.137

eigenimage 2 β2 0.668* 0.152 0.330* 0.132

eigenimage 3 β3 0.665* 0.140 0.267* 0.122

eigenimage 4 β4 0.502* 0.151 0.091 0.135

eigenimage 5 β5 0.870* 0.149 0.434* 0.131

gender γ1 −0.190 0.332 −0.173 0.289

age γ2 0.066* 0.023 0.031 0.023

educational level γ3 0.152* 0.044 0.071 0.043

race γ4 −0.035 0.534 −0.127 0.454

whether ever married γ5 −2.605* 0.879 −1.168 0.816

APOE4 γ6 −0.482* 0.202 −0.327 0.182

whether have MCI or AD γ7 −3.332* 0.295 −2.291* 0.245

 Exponential tilting model

eigenimage 1 Βr1 0.147 0.204

eigenimage 2 βr2 −0.054 0.176

eigenimage 3 βr3 −0.207 0.162

eigenimage 4 βr4 −0.256 0.150

eigenimage 5 βr5 0.062 0.182

gender γr1 −0.043 0.431

age γr2 0.025 0.017

race γr3 −0.610 0.586

whether ever married γr4 −0.055 0.822

APOE4 γr5 −0.051 0.241

whether have MCI or AD γr6 −1.105* 0.510

learning score φ −1.287* 0.215

*
Zero is not contained in the 95% credibility interval.
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Table 6.

Bayesian parameter estimates for the BSOI-NN and BSOI-IN models in the analysis of the ADNI 

datasetwithoutthe instrumental variable, educational level.

Covariates Para

BSOI-NN BSOI-IN

Est SD Est SD

 Scalar on image regression

eigenimage 1 β1 0.653* 0.155 0.497* 0.129

eigenimage 2 β2 0.600* 0.171 0.326* 0.124

eigenimage 3 β3 0.547* 0.160 0.236* 0.115

eigenimage 4 β4 0.408* 0.180 0.071 0.131

eigenimage 5 β5 0.767* 0.182 0.407* 0.130

gender γ1 −0.050 0.325 −0.132 0.277

age γ2 0.047* 0.019 0.023 0.020

educational level γ3

race γ4 0.050 0.500 −0.121 0.456

whether ever married γ5 −2.556* 0.897 −1.327 0.802

APOE4 γ6 −0.523 0.198 −0.357 0.174

whether have MCI or AD γ7 −3.314* 0.379 −2.357* 0.236

 Exponential tilting model

eigenimage 1 βr1 0.108 0.168

eigenimage 2 βr2 −0.112 0.179

eigenimage 3 βr3 − 0.245 0.156

eigenimage 4 βr4 −0.282 0.152

eigenimage 5 βr5 −0.060 0.208

gender γ r1 −0.003 0.373

age γ r2 0.012 0.019

race γr3 − 0.483 0.581

whether ever married γr4 0.118 0.795

APOE4 γr5 −0.051 0.222

whether have MCI or AD γr6 − 0.648 0.777

learning score φ −1.046* 0.429

*
Zero is not contained in the 95% credibility interval

J Am Stat Assoc. Author manuscript; available in PMC 2021 February 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Feng et al. Page 51

Table 7.

Bayesian parameter estimates for the BSOI-NN and BSOI-IN models with the considération of the baseline 

learning scores.

Covariates Para

BSOI-NN BSOI-IN

Est SD Est SD

 Scalar on image regression

eigenimage 1 β 1 0.691 * 0.145 0.525* 0.130

eigenimage 2 β 2 0.598* 0.140 0.304* 0.125

eigenimage 3 β 3 0.590* 0.132 0.248* 0.116

eigenimage 4 β 4 0.500* 0.149 0.116 0.125

eigenimage 5 β 5 0.759* 0.145 0.381 * 0.124

gender γ1 0.026 0.311 0.031 0.270

age γ2 0.055* 0.018 0.028 0.021

educational level γ3 0.105* 0.036 0.044 0.038

race γ4 −0.063 0.466 −0.116 0.423

whether ever married γ5 −2.153* 0.826 − 0.947 0.785

APOE4 γ6 −0.267 0.193 −0.155 0.172

whether have MCI or AD γ7 −2.294* 0.318 −1.570* 0.253

baseline learning score γ8 0.407* 0.050 0.317* 0.045

 Exponentialtilting model

eigenimage 1 βr1 0.184 0.205

eigenimage 2 βr2 −0.084 0.195

eigenimage 3 βr3 −0.238 0.166

eigenimage 4 βr4 −0.226 0.188

eigenimage 5 βr5 0.018 0.192

gender γ r1 0.112 0.404

age γ r2 0.013 0.017

race γr3 −0.553 0.608

whether ever married γr4 0.180 0.845

APOE4 γr5 0.029 0.254

whether have MCI or AD γr6 −0.873 0.591

baseline learning score γr7 0.164* 0.082

learning score φ −1.257* 0.225

*
Zero is not contained in the 95% credibility interval
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