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ABSTRACT

CRISPR is a revolutionary genome-editing tool that
has been broadly used and integrated within novel
biotechnologies. A major component of existing
CRISPR design tools is the search engines that find
the off-targets up to a predefined number of mis-
matches. Many CRISPR design tools adapted se-
quence alignment tools as the search engines to
speed up the process. These commonly used align-
ment tools include BLAST, BLAT, Bowtie, Bowtie2
and BWA. Alignment tools use heuristic algorithm to
align large amount of sequences with high perfor-
mance. However, due to the seed-and-extend algo-
rithms implemented in the sequence alignment tools,
these methods are likely to provide incomplete off-
targets information for ultra-short sequences, such
as 20-bp guide RNAs (gRNA). An incomplete list
of off-targets sites may lead to erroneous CRISPR
design. To address this problem, we derived four
sets of gRNAs to evaluate the accuracy of existing
search engines; further, we introduce a search en-
gine, namely CRISPR-SE. CRISPR-SE is an accurate
and fast search engine using a brute force approach.
In CRISPR-SE, all gRNAs are virtually compared with
query gRNA, therefore, the accuracies are guaran-
teed. We performed the accuracy benchmark with
multiple search engines. The results show that as ex-
pected, alignment tools reported an incomplete and
varied list of off-target sites. CRISPR-SE performs
well in both accuracy and speed. CRISPR-SE will im-
prove the quality of CRISPR design as an accurate
high-performance search engine.

INTRODUCTION

Clustered regularly interspaced short palindromic repeats
(CRISPR)/ CRISPR-associated (Cas) system was first dis-

covered in the prokaryotic genome and used to cleavage
foreign DNA sequence during phage infection in various
bacteria (1–3). Recently, CRISPR-Cas9 based technolo-
gies were adapted for genome-editing in mouse and hu-
man genomes (4,5). The CRISPR-Cas9 system could mod-
ify or delete genomic regions through the designed 20-mer
gRNA sequences with the upstream regions of photospacer
adjacent motif (PAM) (2,6–8). Various studies have shown
that CRISPR-Cas9 system could lead to off-target effect,
deletion or modification occurs at nontargeting genomic re-
gions; the binding of gRNA to target genomic region toler-
ates few mismatches located nearby PAM motif (9–11). To
minimize the potential off-target effects, a search engine for
list of off-target sites is desired for CRISPR design.

The off-target sites for a query gRNA are list of gRNAs
with less or equal to a predefined maximum number of mis-
matches found in the reference genome. For instance, there
are over 200 million unique gRNAs in human or mouse
genome. It is straightforward to perform a linear scan fol-
lowed with sorting to find of all unique gRNAs; however, it
would be very time-consuming to calculate off-target sites
in a large scale without optimized data structure and al-
gorithm. For example, the estimated processing time for
GuideScan (12) is at least three months for genome-wide
gRNA design. GuideScan uses the ‘trie’ data structure with
a brute-force algorithm that guarantees the search accuracy.
To speed up this process, many CRISPR design methods use
existing sequence alignment tools as a search engine to iden-
tify potential off-target sites. We listed 27 CRISPR design
methods found with detailed method descriptions and ac-
tive online-tools (Table 1). Note that not all CRISPR design
methods require list of off-target sets, and CRISPR design
methods differ in post processing, on-target scoring func-
tion, off-target scoring functions and many other research
focuses.

Common sequence alignment tools include BLAST (13),
BLAT (14), Bowtie (15), Bowtie2 (16), BWA (17) and cus-
tomized search engines (18–20). The BLAST tool was de-
veloped in 1990 by Samuel Karlin and Stephen Altschul; as
an early version of the sequence alignment tool, the BLAST
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Table 1. Many CRISPR design methods require a search engine to retrieve list of off-target sites. Newer methods are likely to use accurate brute force
approaches

Year Method Search Engine Mismatches URL

2016 PhytoCRISP-Ex (35) BLAST 2 http://www.phytocrispex.biologie.ens.fr/CRISP-Ex/
2013 CRISPRTarget (36) BLAST 1 http://bioanalysis.otago.ac.nz/CRISPRTarget
2014 CRISPR-P (37) BLAST 4 http://cbi.hzau.edu.cn/crispr/
2014 CRISPR-GA (38) BLAT 1 http://crispr-ga.net
2014 CRISPR-ERA (22) Bowtie 2 http://CRISPR-ERA.stanford.edu
2016 CHOPCHOP (23) Bowtie 2 https://chopchop.cbu.uib.no/
2014 CasFinder (24) Bowtie 2 http://arep.med.harvard.edu/CasFinder/
2015 CCTop (25) Bowtie 4 http://crispr.cos.uni-heidelberg.de/
2014 GT-Scan (26) Bowtie 3 http://gt-scan.braembl.org.au/gt-scan/
2016 CLD (27) Bowtie 3 https://github.com/boutroslab/cld
2014 E-CRISP (28) Bowtie 3 http://www.e-crisp.org/E-CRISP/
2018 CRISPR-RT (29) Bowtie2 3 http://bioinfolab.miamioh.edu/CRISPR-RT/
2016 CT-Finder (30) Bowtie2 4 http://bioinfolab.miamioh.edu/ct-finder/
2016 BreakingCas (31) BWA 4 http://bioinfogp.cnb.csic.es/tools/breakingcas
2013 CRISPR-DO (32) BWA 3 http://cistrome.org/crispr/
2016 CRISPOR (33) BWA 4 http://crispor.tefor.net/
2017 CRISPETa (34) BWA 2 http://crispeta.crg.eu/
2014 CRISPy (18) K-mer 3 http://staff.biosustain.dtu.dk/laeb/crispy/
2015 off-spotter (19) K-mer 5 https://cm.jefferson.edu/Off-Spotter/
2014 CRISPRdirect (20) K-mer 5 http://crispr.dbcls.jp/
2017 GuideScan (12) Brute force 2 https://bitbucket.org/arp2012/guidescan public
2014 Cas-OffFinder (54) Brute force Any http://www.rgenome.net/cas-offinder/
2018 FlashFry (55) Brute force 5 https://github.com/aaronmck/FlashFry
2019 Crisflash (56) Brute force 4 https://github.com/crisflash
2019 CRISPRitz (21) Brute force Any https://github.com/pinellolab/CRISPRitz
2020 Crackling Brute force 4 https://github.com/bmds-lab/Crackling
2020 CRISPR-SE BruceForce Any http://renlab.sdsc.edu/CRISPR-SE/

tool can align a query against the whole RefSeq database
in a few minutes, where the RefSeq database includes >1.9
trillion nucleotides. BLAST is commonly used with a small
amount of input up to a few thousands of bases.

BLAT is the BLAST-like alignment tool. It was de-
veloped by Jim Kent at UCSC in early 2000, and it is
well-known as a sequence alignment tool integrated within
UCSC genome browser. Bowtie use developed in 2009 by
Ben Langmead et al. at the University of Maryland. In
2011, the Bowtie 2 was released. Bowtie 2 is suitable to find
longer, gapped alignment; it also runs faster with longer
reads, supports gapped alignment and has no upper limit
on read length. BWA was developed by Heng Li in 2009.
BWA is another sequence alignment tool that was com-
monly used in standard data processing pipelines. Bowtie,
Bowtie 2 and BWA are used to map millions of next-
generation sequencing (NGS) reads to the user-specified
genome.

Alignment tools first create indices from the reference
genome using a K-mer (seed) hash table; the K-mer hash
table store both K-mer sequences and the locations of the
sequence. For each query sequence, the K-mer table is used
to trace the locations of all K-mer sub-sequence within the
query sequences; then the sequence alignment tools merge
these locations as potential alignment sites; next, the top
candidates are selected base on the extended alignment to
the complete query sequence (Supplementary Figure S1).
The seed-and-extend approaches are efficient for sequence
alignment with exact match. For instance, many sequence
alignment tools use a hash-table with approximately 20-
mer, and the query sequences are normally longer (≥50 bp);
the locations of the query sequences can be traced-back
quickly when a single K-mer sub-sequence in query se-

quence matches entries in K-mer table; next, the local exten-
sions are performed to match the complete query sequence;
the extension processes allow multiple mismatches in the
extended regions which make it appealing to be a fast off-
targets search engine.

Sequence alignment tools rely on minimum one K-mer
exact match, the algorithm is likely to miss off-targets of
high number of mismatches for the ultra-short gRNAs (20-
mer). Incomplete off-target information will lead to unex-
pected off-target effects and generate false-positive results
for downstream analysis. To the best of our knowledge,
these problems have not been solved.

Recently, numerous methods have been developed with
brute-force approaches (12-21). GuideScan uses a ‘trie’ data
structure with a brute-force algorithm that guarantees the
search accuracy. Cas-OfFinder uses GPU to speed up the
search. FlashFry uses a block-compressed binary format
to keep potential gRNA information. FlashFry is written
in Scala language and run with Java virtual machine. Cr-
isflash used an N-ary tree structure, which search up to
four mismatches. CRISPRitz used a four-bit-based encod-
ing to represent each nucleotide to allow for efficient bitwise
operations. CRISPRitz supports off-targets with both mis-
matches and indels. Crackling focused on off-targeting scor-
ing. Crackling use the Inverted Signature Slice Lists (ISSL)
for the off-target search.

In order to test the accuracy and performance of the
K-mer based alignment methods and the brute force ap-
proaches, we created four clusters of gRNAs based on the
minimum numbers of mismatches to the gRNAs in the ref-
erence genome. We then evaluated the accuracy of K-mer
based alignment methods and the speed of different search
engines. We show that using optimized data structure and
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algorithm Figure 1. CRISPR-SE identifies list of off-target
sets quickly and accurately.

MATERIALS AND METHODS

To evaluate the accuracy and performance of existing search
engines, we constructed four gRNA clusters derived from
the hg38 and mm10 reference genome (Supplementary Ta-
ble S1). The gRNAs were clustered based on the mini-
mum number of mismatches compared to all other gR-
NAs in the reference genome. A gRNA is named as N-
mm gRNA when it has exactly N mismatches with at least
one gRNA. To identify the N-mm gRNAs clusters (N = 1–
4), we first used CRISPR-SE to search gRNAs with mini-
mum N or more mismatches (n = 1–5) to any other gRNAs.
The gRNA datasets found with 1 or more mismatches are
named as 1+mm dataset. Next, we constructed gRNA sets
from 2+mm to 5+mm dataset. We further construct the 1-
mm gRNAs cluster by excluding all 2+mm gRNAs from
1+mm; therefore, the gRNAs in 1-mm cluster have exactly
1 mismatch with at least another one gRNA. Similarly, we
derived 2-mm to 4-mm clusters for the benchmark of gRNA
search engines by excluding all [N+1]+mm dataset from
N+mm dataset. As an example, the 4-mm gRNA TGGT
GTACGATCTACTCTCG locates at chr1:858163-858182
on hg38; it has four mismatches with the gRNA TGGTGT
ACAATCTAGTCACA at chr18:63700374-63700393; the
4-mm gRNA have four or more gRNAs compared with any
other gRNAs found in hg38 reference genome. The repeated
gRNAs with exact matches are 0-mm cluster since there are
at least two such gRNAs having the same gRNA sequence.
In the benchmark, we also validate the gRNA clusters base
on the off-targets searching results of each search engine to
ensure the correctness of the cluster construction.

Benchmark

We perform the off-target search using the five common
K-mer based alignment methods: BLAST, BLAT, Bowtie,
Bowtie 2 and BWA; for the brute force approaches, we in-
cluded FlashFry, Crisflash and CRISPR-SE. GuideScan
(12) computes the genome wide gRNAs, the estimated pro-
cessing time for GuideScan is at least three months for
the genome-wide gRNA design. We also excluded Cas-
OffFinder because the software requires the presence of
GPU hardware. Also, we excluded the CRISPRitz method
because CRISPRitz has been reported slower than Flash-
Fry. The Crackling method was also excluded because
Crackling focuses on the scoring function and the method
does not report the alignment information. For each of the
search engine, we performed the off-targets search using
1-mm to 4-mm gRNA datasets. Due to the time limit, only
the first 10 000 gRNAs from each cluster are used. All pro-
grams were provided with the same computational resource
(8 x 2300 MHz AMD Opteron 6276 processors, up to 384
GB memory).

A gRNA has a fixed off-target sets searched against a ref-
erence genome, we evaluate the accuracy of a search engine
by checking if the search engine can report an off-target
with the minimum number of mismatches, as to classify an

N-mm gRNA correctly. If the classification is incorrect, it
is sufficient to show that the off-targets searching results
are incomplete. For each of the five K-mer based alignment
method, we evaluate both the accuracy and speed. For the
brute force approaches, we only perform the speed test be-
cause the methods would report the same results using the
same parameters as long as the method is implemented cor-
rectly.

Parameters

We used the search parameters found in the publications
as well as from the source code (Supplementary Table S2).
For the K-mer based alignment methods, the most impor-
tant parameters are ‘-a’ for Bowtie that reports all align-
ments (22–28); ‘-k 100’ for Bowtie2 to report up to 100
alignments (29,30); ‘-N’ for BWA to search all hits (31–34);
‘-task blastn’ for BLAST for short sequences (35–37); and
‘-oneOff=1’ for BLAT to triggers all alignments (38). Note
that these parameters are required for the alignment meth-
ods to perform off-target search; the alignment tools will
run in a ‘slow mode’ that enforce the alignment tools to
report more alignments. We also extended the query gR-
NAs from 20-mer to 23-mer by adding each of the four nu-
cleotides followed by GG. The extensions were applied to
overcome the error of ‘query sequence too short’ and not
all search engines accept the wild nucleotide ‘N’ in the in-
put such as Bowtie. For the brute force approaches, we used
the default parameters for each method.

RESULTS

Validation

Alignment validation. A search engine also acts as a se-
quence alignment tool that reports the original positions
of the gRNAs on the reference genome. For each of the
methods, we compared the positions of the alignments with
the original location of the gRNAs. We confirmed that the
search engines align the query gRNAs to their original po-
sitions. The comparisons include all of the five alignment
tools and the methods using brute force approaches.

Cluster validation. For each of the searching result, we ver-
ified that none of the search engines report gRNAs with
less than expected mismatches. For instance, none of the
off-targets identified for a 3-mm query gRNA have two
mismatches or less compared to the query gRNA. This
confirmed that the clusters were constructed correctly. A
search engine may classify a 2-mm gRNA as a 3-mm clus-
ter when the off-targets search is incomplete. To the best
of our knowledge, similar datasets have not been reported
elsewhere.

Accuracy comparison

We performed the accuracy comparison of the five align-
ment tools and the CRISPR-SE. The alignment tools use
the seed-and-extend algorithm (Figure 1): in the process-
ing of tracing back K-mer positions using indices (step B),
the off-targets may not be found when all K-mer subse-
quences contain one or more mismatches; for instance, to
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Figure 1. Schematic of CRISPR-SE: (A) CRISPR-SE scans all of the 20-nucleotides (20-mer) gRNAs; (B) sort all gRNAs by the proximal region (10-nt
close to PAM sequence); (C) Group gRNAs with the same proximal regions. (D) Calculate the mismatches in the proximal region; add the mismatches in
the distal region only with similar proximal region. Using this approach, a query gRNA are virtually compared with all gRNAs.

search four mismatches within 20-mer gRNAs, there could
be one mismatch in every 5-mer sub-sequence; or perfect
match in a 16-mer sub-sequence. Therefore, the algorithm
is more likely to miss potential off-targets as the number of
matches increase. As shown in Table 2A, all alignment tools
partially classified one or more of the four gRNA clusters.
The percentages of the correctly classified gRNAs drop as
the required number of mismatches increases.

Partial classification. All alignment tools misclassified one
or more of the four gRNA clusters. We evaluated the accu-
racy of a search engine using the percentage of correct clas-
sifications. This is a simplified condition to check if a classi-
fication is correct. There are more stringent conditions such
as checking if all off-targets match the expected. If a search
classified a gRNA incorrectly, it implies that the off-targets
do not match the expected; and when the off-targets match
the expected, the search must classify the gRNA correctly.
The search results show that the ratio of correct classifica-
tions varies from 100% (mostly with 1-mm) to 0% (mostly
with 4-mm). The results show that the simplified condition
is sufficient to demonstrate that the off-target search using
alignment tools are incomplete.

We further compared the off-targets identified using
Bowtie with CRISPR-SE, we found that Bowtie not only
classified the gRNAs correctly for 1-mm to 3-mm, the off-
targets reported by Bowtie also match 100% with CRISPR-
SE. Bowtie search off-targets up to three mismatches; for
all gRNAs in 4-mm clusters, Bowtie only reports the source
of the gRNAs as expected. CRISPR-SE reports 100% off-
targets for all four clusters.

Number of mismatches. The percentages of the correctly
classified gRNAs mostly stay the same or drop as the re-
quired number of mismatches increases. For 1-mm clusters,
four alignment tools perform well: Bowtie and Bowtie 2
score 100% of accuracy, BLAST and BLAT reach 99%/99%
and 94%/88% for hg38/mm10. For 2-mm clusters, there are
>50% of gRNAs are 2-mm clusters (Supplementary Table
S1), the accuracies stay 100% for Bowtie, drop to 43%–51%
for BLAST and BLAT, drop much quicker for Bowtie 2
(15% and 24% for hg38 and mm10); and BWA drop to 0%
for both reference genome. For the 3-mm clusters, the ac-
curacies for BLAT increased to 57% from 49.7% for hg38,
and drop to 48% from 51.2% for mm10; Bowtie remains
100% high accuracy; and the accuracies for BLAST keep
dropping to 31% and 26% for hg38 and mm10; and Bowtie
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Table 2. (A) The ratio of correctly classified off-targets using the first 10 000 1-mm to 4-mm gRNA datasets. (B) Processing time with the same 1-mm to
4-mm datasets (seconds)

1-mm(%) 2-mm(%) 3-mm(%) 4-mm(%)

hg38 mm10 hg38 mm10 hg38 mm10 hg38 mm10

(A) Accuracy comparisons:
Alignment tools:
BLAST 99 99 46 43 26 31 7 8
BLAT 88 94 51 50 48 57 36 39
Bowtie 100 100 100 100 100 100 0 0
Bowtie2 100 100 24 15 0 0 0 0
BWA 25 36 0 0 0 0 0 0
Brute force:
CRISPR-SE 100 100 100 100 100 100 100 100
(B) Speed comparisons:

1-mm(s) 2-mm(s) 3-mm(s) 4-mm(s)
hg38 mm10 hg38 mm10 hg38 mm10 hg38 mm10

Alignment tools:
BLAST 23 595 14 333 19 344 14 718 14 523 15 083 8869 8897
BLAT 2874 4325 2144 3100 1286 2161 622 853
Bowtie 58 122 483 565 384 482 271 234
Bowtie2 949 936 876 943 920 926 981 743
BWA 4092 5827 5144 6316 4469 6171 3409 3554
Brute force:
FlashFry 122 151 194 282 531 563 1828 1851
Crisflash 155 182 1,641 1799 10 376 11 619 53 359 55 863
CRISPR-SE 235 260 229 232 270 235 282 274
Top Bowtie Bowtie FlashFry SE SE SE SE SE

2 and BWA drop to 0%. For the 4-mm clusters, BLAST
and BLAT drop to 7–8%, and Bowtie, Bowtie 2, and BWA
drop to 0%. Comparing to the accuracy changes by differ-
ent number of clusters, the accuracies between hg38 and
mm10 are much less different. Bowtie has the best perfor-
mance(100%) up to three mismatches; BLAT reach higher
accuracies than BLAST for all four clusters. Bowtie 2 reach
100% accuracy only for 1-mm cluster; and the BWA per-
formed the lowest accuracies with all four clusters.

Implementation details. The accuracy comparison imply
that (i) the K-mer alignment algorithm partially reports
the off-targets and (ii) different alignment tools imple-
ment off-targets search details differently. For instance,
the accuracy comparison shows that BLAT, a newer ver-
sion of the BLAST-like alignment tool, performs bet-
ter than BLAST; BLAST and BLAT identifies 7.9% and
39.1% of 4-mm clusters. For the 3-mm clusters, Bowtie
2 report 0% of off-targets as Bowtie report 100% accu-
rately; whereas Bowtie and Bowtie 2 are developed by
same group. (iii) Alignment tools are top candidates for se-
quence alignment. Bowtie and Bowtie 2 are actively devel-
oped in 2020, and BWA is commonly used in standard se-
quence alignment pipeline for large consortiums like EN-
CODE(https://www.encodeproject.org/) and 4DN(https://
www.4dnucleome.org/).

Speed comparison

We performed the speed comparison for both alignment
and brute force methods (Table 2B). It is mandatory for the
alignment tools run in the ‘slow mode’ to search the off-
targets for the ultra-short 20-mer gRNAs. Alignment tools
using default parameters will run much faster for align-
ment; however, it will yield to very low off-targets informa-

tion. Bowtie reported that it ‘aligns short DNA sequences
(reads) to the human genome at a rate of over 25 million 35-
bp reads per hour’, equivalent to ∼7000 reads per second,
which yield to <2 s for each 10 000 cluster. The alignment
tools are mostly used to align millions of reads (50–300 bp).
As NGS reads getting longer with higher sequencing quali-
ties, the alignment tools focus on mapping high quality read
with less mismatches and speed. For example, Bowtie 2 runs
faster with longer reads, supports gapped alignment, and
has no upper limit on read length.

Alignment tools. The processing time varies between
alignment tools. BLAST took the longest time as 23 595
seconds, almost 6.5 h for the 1-mm cluster (99.4%); where
bowtie finished in 58 s for the same 1-mm cluster(100%),
with about 400 times different. The differences drop as the
number of mismatches increases: BLAST took about 15 000
s for 3-mm clusters with 26.0–30.6% accuracy as bowtie
took 384–482 seconds, about 30 times different. Similar
trends are observed between other alignment tools.

The processing time is likely dependent on individual
methods. In most cases, the speed are ordered by Bowtie >
Bowtie 2 > BLAT > BWA > BLAST. The processing time
of BLAST and BLAT drop as the number of maximum mis-
matches increase. For Bowtie 2 and BWA, the processing
time are less affected by the number of mismatches. Bowtie
run 6–8 times faster for 1-mm than 2-mm and 3-mm clus-
ters.

A longer processing time does not necessarily lead to
higher accuracy. Bowtie performs 100% up to 3-mm clus-
ters, meanwhile, the processing time is the least among all
five alignment methods. The processing time of Bowtie 2
drops from 100% (1-mm) to 14.8% (2-mm) where the pro-
cessing time only drops 8% (from 949 to 876 s) with the
hg38 dataset.

https://www.encodeproject.org/
https://www.4dnucleome.org/
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Brute force approaches. The speed differences in brute
force are related to number of mismatches. Brute force ap-
proaches use tree structures to speed up the processes. The
tree structures are preferably used for exact match, where a
search identifies a target without traveling the tree structure
back and forth. The off-targets search with multiple mis-
matches requires visiting the tree multiple times to search
for multiple mismatches. Thus, the numbers of visiting in-
crease exponentially as the number of mismatches increase.
This is the primary reason that FlashFry slows down rapidly
as the required number of mismatches increase. CRISPR-
SE applied multiple methods to optimization the process:
(i) Minimize the number of tree depth to two, such that the
searching speed would not be affected much by the number
of mismatches. (ii) Use 2-bit representation to minimize the
memory usage; as the guide RNA candidate pool is large, a
computer runs faster with less memory by introducing less
page faults. (iii) Multi-threading: CRISPR-SE uses an array
data structure that shared by multiple processors to calcu-
late the off-targets in parallel.

Speed comparison. For all the search engine, Bowtie uses
the least time for 1-mm cluster; FlashFry runs faster for the
2-mm cluster in hg38; CRISPR-SE runs faster for the other
clusters. With the 4-mm cluster, CRISPR-SE runs six times
faster than FlashFry, and about 200 times faster than Cr-
isflash.

CRISPR-SE. CRISPR-SE support off-targets search in
query mode and batch mode; in the query mode, user pro-
vides query sequences, such as the four clusters used in
the benchmark. In the batch mode, CRISPR-SE search all
genome-wide gRNAs against itself without query sequence.
On average, CRISPR-SE processes ∼40 gRNAs per second
in query mode, and the processing time was less dependent
on the number of mismatches. In the batch mode, CRISPR-
SE processes ∼193 gRNAs/s, about 6 h with 48 CPUs, to
design genome-wide gRNAs with genome size similar to
human or mouse genome.

Scoring function

Scoring function is another important component for
CRISPR design. Numerous research have been conducted
for gRNAs on-target (efficiency) and off-target (specificity)
scores functions as also summarized in the review of (39).
The on-target scores evaluate the cleavage efficiency and the
off-target scores assess the risks of genome modifications
at the nonintended cutting sites. Despite of much progress
made by many methods, both computational design for on-
target and off-target prediction remain challenging due to
experimental limitations, affects of multiple on-target fea-
tures and computational complexities for off-target effects
prediction.

On-target cleavage efficiency. CRISPR cleavage efficiency
is affected by various sets of features including sequence
compositions, nucleotide positions, GC contents, chro-
matin accessibility, gene coding, RNA secondary structures,
melting temperatures and free energies. Using various sets
of features, multiple computation models, algorithm and

machine learning methods have been developed to predict
the cleavage efficiency and many web-tools are available
with integrated scoring functions (28,40–53). For instance,
as a comprehensive web-tool, CRISPOR provides 10 differ-
ent on-target scoring functions and FlashFry outputs two
on-target scoring functions.

Off-target cutting specificity. Many CRISPR off-target
scoring function rely on list of potential off-target sites
identified by sequence alignment tools (54–57,58). The off-
target score can also be evaluated using a weight matrix
where the weight matrix are derived from large scale ex-
perimental tests (25,46,53,59–63). Two commonly used off-
target scoring functions are MIT score (59) and CFD score
(46). Both CRISPOR and FlashFry reports MIT and CFD
scores. Similar to on-target scoring function, collective off-
target scoring functions are developed using machine learn-
ing, linear regression and deep learning methods. These
methods utilize the off-target sites identified using align-
ment tools as well as the features utilized in on-target scor-
ing function (61–63).

CRISPR-SE. CRISPR-SE was initially developed to
overcome the accuracy problem exists in heuristic algorithm
(Table 2A) and the computational challenges in large scale
CRISPR design (64). In the study, we designed >10 000
pairs of gRNA within two million base POU5F1 locus in
human embryonic stem cells; we chose gRNAs with at least
four mismatch-counts with any other gRNA found in the
reference genome, where the mismatches in the proximal re-
gion where counted twice.

CRISPR-SE can effortlessly be used to replace existing
alignment tools for complete lists of off-target sites. As for
demonstration, we provided the instructions of how to re-
place BWA with CRISPR-SE in CRISPOR web-site, a live-
demo of CRISPOR integrated with CRISPR-SE and a sim-
ple input. We also provided a script that converts the out-
put of CRISPR-SE into FlashFry format to use additional
scoring functions.

CONCLUSION

CRISPR-Cas9 based technology has been broadly applied
in many biotechnologies and we showed that the gRNAs
selected using heuristic approaches are incomplete, which
would lead to higher off-target effects. CRISPR-SE serves
as an accurate and high-performance search engine for
CRISPR design and it can be utilized for precise genome-
editing applications and novel biotechnology studies.
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