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Abstract
The emerging Coronavirus Disease 2019 (COVID-19) pandemic has posed a serious threat to the public health worldwide, 
demanding urgent vaccine provide. According to the virus feature as an RNA virus, a high rate of mutations imposes some 
vaccine design difficulties. Bioinformatics tools have been widely used to make advantage of conserved regions as well 
as immunogenicity. In this study, we aimed at immunoinformatic evaluation of SARS-CoV-2 proteins conservancy and 
immunogenicity to design a preventive vaccine candidate. Spike, Membrane and Nucleocapsid amino acid sequences were 
obtained, and four possible fusion proteins were assessed and compared in terms of structural features and immunogenicity, 
and population coverage. MHC-I and MHC-II T-cell epitopes, the linear and conformational B-cell epitopes were evaluated. 
Among the predicted models, the truncated form of Spike in fusion with M and N protein applying AAY linker has high rate 
of MHC-I and MCH-II epitopes with high antigenicity and acceptable population coverage of 82.95% in Iran and 92.51% 
in Europe. The in silico study provided truncated Spike-M-N SARS-CoV-2 as a potential preventive vaccine candidate for 
further in vivo evaluation.
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Abbreviations
ACE2	� Angiotensin-converting enzyme 2
COVID-19	� Coronavirus Disease 2019
E	� Envelope protein
M	� Membrane protein
N	� Nucleocapsid protein
RBD	� Receptor-binding domain
S	� Spike protein

Introduction

The COVID-19 pandemic caused by the SARS-CoV-2 
virus has unexpectedly affected global health since emerg-
ing. As of 1 December 2020, more 68 million cases have 

been confirmed in 216 countries with more than 1.5 mil-
lion deaths which clearly shows that a protective vaccine 
is urgently needed although several knowledge are still on 
this virus [1].

SARS-CoV-2 genome with ~ 30 kb size encodes multiple 
spike (S) protein, the envelope (E) protein, the membrane 
(M) protein, and the nucleocapsid (N) proteins and some 
non-structural ones. The spike (S) protein has pivotal roles in 
receptor binding, angiotensin-converting enzyme 2 (ACE2), 
and also membrane fusion. Therefore, it is widely investi-
gated as an attractive antigen in vaccine designs aiming at 
virus binding/fusion blocking antibodies to neutralize virus 
infection. Since SARS-CoV is an RNA virus that imposes 
an error-prone genome and results in host immune response 
escape, targeting the full-length S protein in vaccine stud-
ies have not brought protective immunity against SARS 
outbreaks [2–5]. Although the spike protein is a promis-
ing protective immunogenic, antigen design optimization is 
critical to achieving optimal immune response. The S1 subu-
nit includes the minimal receptor-binding domain (RBD, 
318–510 aa), a conserved target for neutralizing antibody 
induction [6–9]. Therefore, this region could be more practi-
cal in comparison with full-length S protein.
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The membrane glycoprotein)M) provides coronavirus 
assembly, is the most abundant envelope protein that facil-
itates viral components sortation and incorporation into 
virions coronavirus assembly [10–12]. M protein binding 
helps the virus to stabilize nucleocapsids and accelerates 
completion of viral assembly by N protein-RNA complex 
stabilization [13, 14]. The nucleocapsid protein (N) as 
a multifunctional RNA-binding protein is essential for 
viral RNA replication and transcription. It also has many 
vital roles in the viral RNA genome packaging, regula-
tion of viral RNA synthesis in replication/transcription, 
and infected cell metabolism modulation. Some studies 
demonstrated that N protein regulates host–pathogen 
interactions, including actin reorganization, cell cycle 
progress, and apoptosis. This protein is also considered 
highly immunogenic based on abundantly expression dur-
ing infection [15–17].

According to the critical demand on developing safe, 
effective approaches against SARS-CoV-2 have stepped on 
the way with some clinical evaluation worldwide [18–20]. 
There is no doubt that any approaches with generated vac-
cines could be highly valuable in possible outbreaks and 
probable seasonal re-emerging which is mainly depended 
on long-term protection evolution. MERS-CoV and SARS-
CoV-1 vaccines progressions over the last years are cru-
cial keys given their genetic similarity which provides vital 
awareness for SARS-CoV-2 vaccine development [21–25].

Therefore, multiple platforms have been under develop-
ment since the emerging, including DNA- and RNA-based 
platforms and recombinant-subunit vaccines. Nevertheless, 
SARS-CoV-2 vaccine development poses some challenges 
even with novel platforms. For instance, preclinical stud-
ies on SARS and MERS vaccine candidates have brought 
concerns about exacerbating lung disease as an outcome of 
antibody-dependent enhancement or direct impact. Hence, 
testing in a suitable animal model and rigorous safety moni-
toring in clinical trials will be critical [26, 27].

Traditional approaches in vaccination based on laboratory 
experiments in the outbreak situation could not meet the 
urgent needs, and many therapeutic agents are being inves-
tigated [28–31]. Bioinformatics study is a strong tool speci-
fied in sortation, organization, and process large amounts of 
available data generated from other experiments to provide 
a large-scale immunological platform within a limited time. 
Since the virus genome and its protein sequences informa-
tion are available, the presented epitopes and the virus char-
acteristics could be predicted by in silico analysis, which 
significantly accelerates the progress of vaccine develop-
ment [32–36].

In this study, we aimed at B-cell and T-cell epitope pre-
diction of SARS-CoV-2s Spike SARS-CoV-2 Spike recep-
tor-binding domain (RBD), M and N protein as fusion pro-
teins and comparison in silico immunogenicity by applying 

bioinformatics methods to provide a subunit vaccine candi-
date against COVID-19.

Materials and Methods

Sequence Retrieval

Viral amino acid sequences of SARS-CoV-2 Spike (S), 
Membrane (M) and nucleocapsid (N) proteins (accession 
numbers S: YP_009724390.1, QIX12195.1, QJD47706.1, 
QJD47860.1, QJD25757.1, QIU78767.1, QIX12148.2, 
QIU80900.1, BCB97891.1, M: YP_009724393.1, 
QJD47709.1 QJD47863.1 QJD25760.1 QIU78770.1 
QIX12151.1 QIX12198.1 QIU80903.1, BCB97894.1 and N: 
YP_009724397.2, QIU78775.1, QIX12156.1, QIX12203.1, 
MT186677.1, QIU80910.1, MT186677.1, BCB97898.1) 
were obtained from the GenBank [37]. The whole process 
is simply shown in Fig. 1.

T‑Cell Epitope and Antigenicity Prediction

The obtained sequences were submitted to MHCI- and 
MHCII-binding prediction tool http://tools​.iedb.org/mhc/n 
in IEDB using different methods including Artificial Neu-
ral Network (ANN), Stabilized Matrix Method (SMM) 
or Scoring Matrices derived from Combinatorial Pep-
tide Libraries (Comblib_Sidney2008) method. MHC-NP 
net CTLpan1.1server [38–40] and RankPEP server were 
also applied. The outcomes from all applied tools were 
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Fig. 1   Schematic view of the applied methods in the study
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in a similar range. Therefore, here, the IEDB outputs are 
reported.

T-cell epitopes lengths were defined as 9-mer for MHC 
class I and 15-mer for MHC class II for BALB/c and human 
separately. BALB/c MHC class I alleles included H2-Dd, 
H2-Kd and H2-Ld and MHC class II alleles were selected 
H2-IAd and H2-IEd. According to diversity of antigens and 
the recognition extent by the variable HLA molecules in a 
population and in considering the most popular HLA in the 
Persian population based on the available report [41–43], 
HLA-A*01, 02, 03, 11, 24, 26, 32, HLA-B*35, 51, 50, 27, 
57 for MHC class I and HLA-DRB1*15, 11, 13, 03, 04, 07 
for MHC class II were selected. The peptides which were 
predicted to bind to MHC class I and II molecules with per-
centile rank ≤ 1 were considered epitopic sequences.

The VaxiJen v2.0 online antigen prediction tool was 
applied to assess the antigenicity scores of predicted epitopes 
[44, 45], which provides antigen sorting according to the 
protein physicochemical qualities without the sequence 
alignment usage. Epitopes with antigenic score > 0.5 were 
considered antigenic.

Toxicity Analysis

We investigated the selected model of 4 for toxicity using 
ToxinPred [46]. This tool provides the confirmation of non-
toxicity of epitopes for the host according to all physic-
chemical parameters.

Population Coverage and Epitope Conservancy

MHC I and MHC II potential binders from the selected 
fusion form of model 4 were computed for population cov-
erage analysis against the whole world population, especially 
the Persian population, with the selected human MHC I and 
MHC II interacting molecules using the IEDB population 
coverage calculation tool. Population coverage calculation 
is based on total HLA hits score which is achieved from the 
IEDB. These data are derived from a relative of an allele’s 
relative frequency at a particular locus in a population 
(Sequence identity threshold ≥ 100). In addition, we assessed 
the conservancy level of each potential epitope by searching 
identities in 10 amino acid sequences of S protein, 12 amino 
acid sequences of M protein and 12 amino acid sequences 
of N protein from different geographical area retrieved from 
the database.

B‑Cell Epitope Prediction

BepiPred linear epitope prediction server [47] from the 
Immune Epitope Database was applied to predict linear B 
cell epitopes with threshold 0.35 and epitopes length is var-
ied from 6 to higher residues.

For Recognition of other physicochemical properties of 
amino acids such as the antigenicity (Kolaskar and Ton-
gaonkar) [48], surface accessibility [49], flexibility (Kar-
plus and Schulz) [50], hydrophilicity [51] and beta-turns 
(Chou and Fasman) [52] methods were also assessed by the 
available tools at the platform of Immune Epitope Database 
(IEDB) Analysis Resource (http://tools​.iedb.org/bcell​). The 
protein sequence scanning window length for all methods 
was adjusted to seven residues. We applied ElliPro [53] at 
IEDB online tool for discontinuous B-cell epitope prediction 
with minimum score value set at 0.50. This method predicts 
epitopes by considering both the sequence- and structure-
based information.

Structural Analysis

Physicochemical properties of fragments including weight, 
aliphatic index and Grand average of hydropathicity 
(GRAVY), theoretical pI and atomic composition were ana-
lyzed using Expasy’s ProtParam server [54]. Self-optimized 
prediction method with alignment (SOPMA) and Jpred tools 
were applied to generate and evaluate the secondary struc-
ture and assessment of a-helix, b sheets, random coils of the 
proteins [55, 56].

Homology Modeling and Validation

The 3D model were analyzed using the Threading ASSEm-
bly Refinement (I-TASSER) online server program [57] 
and IntFOLD Integrated Protein Structure and Function 
Prediction Server [58] that provides 3D models along with 
confidence score (C-Score) and model quality score. The 
further pattern evaluation was done by three indicators: Ste-
reochemical qualities, C-score and DFIRE2 energy profile 
[59]. The Stereo chemical analysis of the 3D model was 
assessed by PROCHECK, ERRAT, VERIFY 3D and veri-
fied by structural Analysis and Verification server [60–62].

Results

The amino acid sequences of chain B, SARS-CoV-2 Spike 
receptor-binding domain (RBD), Spike, Membrane and 
Nucleocapsid proteins were obtained and four fusion forms 
as shown in Fig. 2 were predicted to be compared in term of 
immunogenicity. A proteasomal linker (AAY) was used to 
fuse the applied proteins.

MHC Class I and II Binding Prediction in BALB/c

We applied 9-mer and 15-mer lengths coverage of T-cell 
epitopes to design a vaccine model. Spike, M and N pro-
teins were subjected to IEDB MHC I and MHCII binding 

http://tools.iedb.org/bcell
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prediction tool. The IEDB recommended, RANKPEP, net 
CTLpan1.1, MHC-NP, and netMHCpan3.0 server were used 
to predict the epitopes from selected proteins. High-affinity 
peptides with antigenic features are listed in Tables 1 and 2 
(percentile rank ≤ 1).

According to the generated data, in comparison between 
MCHI and MHCII in predicted models, the number of 
MHCI epitopes are clearly higher, meaning that the designed 
models could elicit cellular immunity responses in a mouse 
model. Moreover, among the 4 models, the last one, which 
is composed of truncated Spike, full M and full N proteins 
includes 14 MHCI epitopes with high antigenic scores 
rather than other models. In contrast with MHCI, analysis 
MHCII binders, only predicted model 2 and model 4 contain 
epitopic peptides with high antigenicity score (> 0.5).

Human T‑Cell Epitope Prediction

According to the T-cell epitopes in mice, Models 2 and 4 
had more antigenic epitopes. Therefore, we continued T-cell 
epitopes in human most prevalent HLA I and HLA II. The 
results are summarized in Tables 3 and 4. Model 2 and 
Model 4 contain at least 166 and 300 epitopes, respectively, 
from which we here only report the highly antigenic ones. 
Therefore, we continued the human epitope prediction study 
with truncated Spike + full M + full N as the best model. 
This fusion form has also 42 HLA class II epitopes (percen-
tile rank < 1), from which 29 binders were assessed antigenic 
and are shown in Table 4.

Toxicity Analysis

Model 4 at the final step was tested for toxicity using Tox-
inPred tool, as shown in Tables 3 and 4.

Population Coverage and Conservancy Analysis

Peptides predicted to interact with MHCI and II molecules 
in the selected Model 4 were tested for population cover-
age analysis using the IEDB population coverage tool to 
cover most HIV chronic infected individuals specifically the 

Persian population. Furthermore, we selected North Amer-
ica, Southwest Asia, South Asia, Europe, South America and 
Africa continent. The results of total population coverage 
in Persian and the other populations are listed in Table 5. 
The selected Model 4 has an acceptable coverage of 82.95% 
for MHC class I and II in the Persian population. To iden-
tify the Conservancy of predicted peptides of Model 4, we 
used the IEDB tool. Therefore, all peptides (with an anti-
genic score > 0.5) were submitted against related S, N, M 
sequences at a high threshold. Finally, we determined all 
epitopes were fully conserved (100%) epitopes.

B‑Cell Epitopes Recognition

The four predicted models were assessed by BepiPred server, 
and the antigenicity of predicted epitopes was evaluated by 
VaxiJen. The amino acid sequences, peptide lengths, and 
positions of these epitopes are shown in Table 5.

Among the predicted models, Model 2 (RBD + M + N) 
and Model 4 (Truncated Spike + M + N) have a high num-
ber of B-cell epitopes in comparison with the other models 
in agreement with T-cell prediction. Moreover, Model 4 
includes 14 B-cell antigenic epitopes which shows to have 
the highest potency in the humoral response.

Surface accessibility, flexibility, hydrophilicity and anti-
genicity are essential features of B cell antigenic indexes in 
vaccine design. The selected Model 4 was assessed by dif-
ferent prediction at the BepiPred Sequential B-Cell Epitope 
Predictor, as shown in Fig. 3.

In order to find conformational B-cell epitope in 3D struc-
ture, Ellipro was used. Ellipro predicted six discontinues 
epitopes for Model 1 with maximum score of 0.942 and 
minimum score of 0.542, eight epitopes for model 2 with 
maximum score of 0.802 and minimum score of 0.502 and 
nine epitopes for model 3 with maximum score of 0.816 
and minimum score of 0.55 (data were not shown). Ellipro 
predicted a total of 61 discontinues epitopes for the cho-
sen Model 4 with a maximum score of 0.994. Those scores 
greater than 0.8 were selected (Table 6).

Primary and Secondary Structure Analysis

Physiochemical characterization of selected Model 4 fusion 
protein was achieved using Expasy’s ProtParam server based 
on estimated molecular weight, theoretical isoelectric point, 
and average hydropathicity that indicates the solubility and 
hydrophobicity of protein. The fusion Model 4 with 1602 
amino acids and 176.443 Da with pI: 8.77 and 157 posi-
tively charged residues (Arg + Lys) in the polypeptide and 
134 negatively charged residues (Asp + Glu). This Model is 
also predicted to be soluble and hydrophilic (Grand average 
of hydropathicity (GRAVY): − 0.234).

RBD
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319-527
AAY

Truncated Spike
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Fig. 2   Schematic view of predicted constructs with the flexible spacer 
(AAY)
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SOPMA tool was used to predict secondary structure 
of Model 4 features, including alpha helixes, beta turns, 
random coils contribution, and C-score. Random coils and 
extended strands greater ratios are correlated with protein 

antigenic epitope formation enhancement. Subsequently, it 
is composed of 31.27% α-helix and 4.99% β-sheet, which 
beside the 42.88% of random coils, which is potential to 
form higher antigenic epitopes (Fig. 4a).

Table 1   BALB/c MHC class I 
epitopes in predicted models

Antigenicity score Percentile rank Allele Length End Start Peptide

Model 1
 1.426 0.3 H-2-Kd 9 69 61 CYGVSPTKL
 0.596 0.3 H-2-Dd 9 195 187 YQPYRVVVL
 0.578 0.64 H-2-Kd 9 178 170 CYFPLQSYG
 0.5003 0.7 H-2-Kd 9 40 32 VYAWNRKRI
 0.5107 0.8 H-2-Dd 9 179 171 YFPLQSYGF
 0.5453 0.92 H-2-Ld 9 174 166 EGFNCYFPL

Model 2
 1.4263 0.3 H-2-Kd 9 69 61 CYGVSPTKL
 0.5964 0.3 H-2-Dd 9 195 187 YQPYRVVVL
 0.4821 0.4 H-2-Kd 9 314 306 SYFIASFRL
 0.578 0.64 H-2-Kd 9 178 170 CYFPLQSYG
 0.734 0.68 H-2-Ld 9 550 542 SPRWYFYYL
 0.5003 0.7 H-2-Kd 9 40 32 VYAWNRKRI
 0.8519 0.7 H-2-Kd 9 625 617 SQASSRSSS
 0.611 0.75 H-2-Ld 9 746 738 WPQIAQFAP
 0.5107 0.8 H-2-Dd 9 179 171 YFPLQSYGF
 0.5453 0.92 H-2-Ld 9 174 166 EGFNCYFPL

Model 3
 1.4177 0.2 H-2-Kd 9 898 890 QYIKWPWYI
 1.4263 0.3 H-2-Kd 9 69 61 CYGVSPTKL
 0.596 0.3 H-2-Dd 9 195 187 YQPYRVVVL
 0.8274 0.62 H-2-Kd 9 396 388 AYSNNSIAI
 0.578 0.64 H-2-Kd 9 178 170 CYFPLQSYG
 0.5003 0.7 H-2-Kd 9 40 32 VYAWNRKRI
 0.853 0.7 H-2-Kd 9 408 400 FTISVTTEI
 1.29 0.7 H-2-Kd 9 445 437 QYGSFCTQL
 0.5107 0.8 H-2-Dd 9 179 171 YFPLQSYGF
 0.5453 0.92 H-2-Ld 9 174 166 EGFNCYFPL

Model 4
 1.4177 0.2 H-2-Kd 9 898 890 QYIKWPWYI
 1.4263 0.3 H-2-Kd 9 69 61 CYGVSPTKL
 0.5964 0.3 H-2-Dd 9 195 187 YQPYRVVVL
 0.4821 0.4 H-2-Kd 9 363 355 SYQTQTNSP
 0.8274 0.62 H-2-Kd 9 396 388 AYSNNSIAI
 0.578 0.64 H-2-Kd 9 178 170 CYFPLQSYG
 0.734 0.68 H-2-Ld 9 1296 1288 SPRWYFYYL
 0.5003 0.7 H-2-Kd 9 40 32 VYAWNRKRI
 0.8535 0.7 H-2-Kd 9 408 400 FTISVTTEI
 1.2906 0.7 H-2-Kd 9 445 437 QYGSFCTQL
 0.8519 0.7 H-2-Kd 9 1371 1363 SQASSRSSS
 0.611 0.75 H-2-Ld 9 1492 1484 WPQIAQFAP
 0.5107 0.8 H-2-Dd 9 179 171 YFPLQSYGF
 0.5453 0.92 H-2-Ld 9 174 166 EGFNCYFPL
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Homology Modeling Prediction and Validation

The three-dimensional structure of Model 4 was predicted 
using the IntFOLD Integrated Protein Structure and Func-
tion Prediction Server, which generates five top models with 
global model quality score. The one with the highest global 
model quality score represents the best model. This value 
of selected Model 4 was in the acceptable score. Chimera 
version v1.2 was applied to generate the protein image [62] 
(Fig. 4b). Moreover, the Ramachandran plot generated by 
the PROCHECK. Described the amino acid positions in 
the plot as well as the overall quality of the protein model. 

The plot showed that 91.7% amino acids were arranged in 
most favored core regions with 7% in allowed region, 1.1% 
generously allowed region, and 0.3% in disallowed region 
(Fig. 4c). Z-Score for 3D structure of model was − 5.62.

Discussion

Apart from the human coronaviruses, which are continu-
ously circulating among human population, the originated 
viruses from animals have been shown to be lethal patho-
gens via crossing species barriers. Effective preventive 

Table 2   BALB/c MHC class II 
epitopes in predicted models

Antigenicity score Percentile rank Allele Length End Start Peptide

Model 1
 0.3676 0.07 H2-IEd 15 29 43 FASVYAWNRKRISNC
 0.4243 0.1 H2-IEd 15 28 42 RFASVYAWNRKRISN
 0.3086 0.14 H2-IEd 15 30 44 ASVYAWNRKRISNCV
 0.4963 0.14 H2-IEd 15 27 41 TRFASVYAWNRKRIS
 0.1089 0.17 H2-IEd 15 130 144 NYNYLYRLFRKSNLK
 0.2254 0.17 H2-IEd 15 131 145 YNYLYRLFRKSNLKP
 0.3301 0.3 H2-IEd 15 31 45 SVYAWNRKRISNCVA
 0.1801 0.36 H2-IEd 15 129 143 GNYNYLYRLFRKSNL
 0.0415 0.38 H2-IEd 15 132 146 NYLYRLFRKSNLKPF
 0.0814 0.71 H2-IEd 15 133 147 YLYRLFRKSNLKPFE
 0.0207 0.74 H2-IEd 15 128 142 GGNYNYLYRLFRKSN

Model 2
 0.4243 0.1 H2-IEd 15 42 28 RFASVYAWNRKRISN
 0.4614 0.14 H2-Ied 15 534 520 QIGYY​RRA​TRRIRGG​

0.4963 0.14 H2-IEd 15 41 27 TRFASVYAWNRKRIS
 0.4072 0.27 H2-Ied 15 322 308 FIASFRLFARTRSMW
 0.6649 0.27 H2-IEd 15 535 521 IGYY​RRA​TRRIRGGD
 0.4424 0.3 H2-IEd 15 323 309 IASFRLFARTRSMWS
 0.7304 0.57 H2-Ied 15 324 310 ASFRLFARTRSMWSF
 0.7955 0.73 H2-IEd 15 325 311 SFRLFARTRSMWSFN
 0.7387 0.94 H2-Ied 15 260 246 LLQFAYANRNRFLYI
 0.8634 0.98 H2-IEd 15 416 402 DSGFAAYSRYRIGNY

Model 3
 0.4243 0.1 H2-IEd 15 42 28 RFASVYAWNRKRISN
 0.4963 0.14 H2-Ied 15 41 27 TRFASVYAWNRKRIS

Model 4
 0.4243 0.1 H2-IEd 15 42 28 RFASVYAWNRKRISN
 0.4614 0.14 H2-IEd 15 1280 1266 QIGYY​RRA​TRRIRGG​
 0.4963 0.14 H2-IEd 15 41 27 TRFASVYAWNRKRIS
 0.4072 0.27 H2-IEd 15 1068 1054 FIASFRLFARTRSMW
 0.6649 0.27 H2-IEd 15 1281 1267 IGYY​RRA​TRRIRGGD
 0.4424 0.3 H2-IEd 15 1069 1055 IASFRLFARTRSMWS
 0.7304 0.57 H2-IEd 15 1070 1056 ASFRLFARTRSMWSF
 0.7955 0.73 H2-IEd 15 1071 1057 SFRLFARTRSMWSFN
 0.7387 0.94 H2-IEd 15 1006 992 LLQFAYANRNRFLYI
 0.8741 0.98 H2-IEd 15 1162 1148 DSGFAAYSRYRIGNY
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approaches are urgent needs at the current situation. Potent 
epitopic vaccines predicted by bioinformatic analysis makes 
the vaccine design straightforward and fast compared to 
traditional vaccine approaches, which has been used in 
COVID-19 vaccine design recently [35, 63–65].

In this study, we evaluated four possible fusion forms of 
structural SARS-CoV-2 proteins in order to achieve the most 
immunogenic protein, which could elicit humoral and cel-
lular immune responses as well. The amino acid sequences 
were applied to predict the probable antigenic epitopes of 
T-Cell, linear and conformational B-cell.

Among the four analyzed models, we found model 4 
composed of truncated Spike, the full form of M and N 
proteins (S: 528–1293 + AAY + M + AAY + N) is the most 
immunogenic fusion form. The evaluation of Murine T-cell 
epitopes showed that it contains 14 MHCI binders which 
are all antigenic and also 10 MHCII peptides from which 
5 are antigenic epitopes. Human investigation resulted in 
24 highly immunogenic human MHC class I and 29 human 
MHC class II. Moreover, there are four epitopes, including 
KTFPPTEPK, VTYVPAQEK, KAYNVTQAF and KMK-
DLSPRW, which can bind to different HLAs.

B-cell evaluation also showed that this model contains 
14 B-cell linear and 61 discontinues epitopes with maxi-
mum score of 0.994. Therefore, the in silico comparative 

analysis predicted this model to have a high potency in both 
immune arms induction. Structural analysis revealed that the 
selected model is a 176.443 Da protein composed of 1602 
amino acids and 42.88% of random coils. In addition, the 
Ramachandran plot showed that 91.7% amino acids were 
arranged in most favored core regions. The predicted model 
is totally non-toxin with a great rate of population coverage 
especially in Iran and the Europe.

In a study by Joshi et al., SARS-COV-2 multiple virus 
proteins were assessed by in-silico methods. The obtained 
results showed that two epitopes ITLCFTLKR and VYQL-
RARSV are highly practical after docking and molecular 
dynamics simulation. Furthermore, these two epitopes were 
subjected to population coverage and toxicity analysis [66]. 
In our study, KTFPPTEPK from N protein was found highly 
potential to associate with two frequent HLA-A*03:01 
and HLA-A*11:01. It is also a part of B-cell epitopes 
KTFPPTEPKKDKKKKADETQALPQRQKKQQ with a 
high score in the predicted method (Table 7).

Chen et al. investigated another in silico analysis [67]. 
They predicted 63 sequential B-cell epitopes of spike pro-
tein. They also showed that four peptides of Spike, including 
S 315–324, S 333–338, S 648–663 and S 1064–1079 are 
highly antigenic with optimum surface accessibility. In our 
study, one of the discontinuous B-cell predictions includes 

Table 3   Human class I epitopes 
in predicted model 4

Antigenicity score Percentile rank Allele Toxicity End Start Peptide

0.7571 0.01 HLA-A*03:01 Non-toxin 1552 1544 KTFPPTEPK
0.7571 0.01 HLA-A*11:01 Non-toxin 1552 1544 KTFPPTEPK
0.8132 0.01 HLA-A*11:01 Non-toxin 755 747 VTYVPAQEK
0.7014 0.01 HLA-A*03:01 Non-toxin 710 702 ASANLAATK
1.4278 0.01 HLA-B*35:01 Non-toxin 586 578 IPFAMQMAY
0.5669 0.01 HLA-B*57:01 Non-toxin 1457 1449 KAYNVTQAF
0.882 0.01 HLA-B*51:01 Non-toxin 404 396 IPTNFTISV
0.5669 0.01 HLA-B*57:01 Non-toxin 1457 1449 KAYNVTQAF
0.8132 0.01 HLA-A*03:01 Non-toxin 755 747 VTYVPAQEK
1.4177 0.02 HLA-A*24:02 Non-toxin 898 890 QYIKWPWYI
1.7462 0.02 HLA-B*57:01 Non-toxin 1291 1283 KMKDLSPRW
0.53 0.02 HLA-B*50:01 Non-toxin 871 863 KEIDRLNEV
0.7052 0.02 HLA-B*51:01 Non-toxin 402 394 IAIPTNFTI
1.2394 0.02 HLA-B*27:02 Non-toxin 1070 1062 ARTRSMWSF
1.7462 0.02 HLA-B*57:01 Non-toxin 1291 1283 KMKDLSPRW
0.5107 0.03 HLA-A*24:02 Non-toxin 179 171 YFPLQSYGF
1.1141 0.03 HLA-B*27:02 Non-toxin 17 9 VRFPNITNL
1.6639 0.04 HLA-A*02:01 Non-toxin 107 99 KIADYNYKL
0.8597 0.04 HLA-B*50:01 Non-toxin 1100 1092 LESELVIGA
0.5781 0.04 HLA-A*11:01 Non-toxin 517 509 TLADAGFIK
0.7785 0.05 HLA-B*35:01 Non-toxin 1003 995 FAYANRNRF
0.9457 0.05 HLA-B*35:01 Non-toxin 1136 1128 VATSRTLSY
0.6409 0.05 HLA-B*50:01 Non-toxin 1102 1094 SELVIGAVI
0.7585 0.05 HLA-B*51:01 Non-toxin 1257 1249 FPRGQGVPI
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38 residues (residues: L900, G901, F902, I903, A904, G905, 
L906, I907, A908, I909, V910, M911, V912, T913, I914, 
M915, L916, C917, C918, M919, T920, S921, C922, C923, 
S924, C925, L926, K927, G928, C929, C930, S931, C932, 

G933, S934, C935, C936, K937) with high score of 0.886. 
They also assessed HLA-binding peptides of nucleocapsid 
protein, which led to 81 and 64 peptides able to bind to MHC 
class I and MHC class II molecules. The HLA I and HLA 
II binders in our study were predicted lower due to the fact 
that we only considered the antigenic peptides at the high 
threshold (Tables 3 and 4).

The other bioinformatics-based assessment to achieve 
a vaccine against SARS-CoV-2 by Sahoo et al. focused 
on T-cell epitopes of similar targets including S, M and N 
[68]. Their study showed 36 T-cell potential epitopes that 
interacting with MHC-I alleles and also 25 T-cell epitopes 
interacting with MHC-II alleles. Among the predicted pep-
tides, IGYY​RRA​TR and YYR​RAT​RRI from N protein and 
FRLFARTRS, FIASFRLFA and FARTRSMWS from M 
are predicted to interact by human alleles. These peptides 
are also supposed to be a BALB/c MHCII binder in our 
study (Table 2). FVLAAVYRI from M protein is predicted 
to interact with 31 HLA II and 3 HLA I. In our study, this 

Table 4   Human MHC class II epitopes in predicted Model 4

Antigenicity score Percentile rank Allele Toxicity End Start Peptide

0.6031 0.12 HLA-DRB1*11:04 Non-toxin 1414 1400 AALALLLLDRLNQLE
0.5057 0.12 HLA-DRB1*11:04 Non-toxin 1415 1401 ALALLLLDRLNQLES
0.5669 0.12 HLA-DRB1*11:04 Non-toxin 1417 1403 ALLLLDRLNQLESKM
0.5531 0.12 HLA-DRB1*11:04 Non-toxin 1413 1399 DAALALLLLDRLNQL
0.7357 0.12 HLA-DRB1*11:04 Non-toxin 1416 1402 LALLLLDRLNQLESK
0.6286 0.12 HLA-DRB1*11:04 Non-toxin 1418 1404 LLLLDRLNQLESKMS
0.6019 0.16 HLA-DRB1*11:04 Toxin 918 904 AGLIAIVMVTIMLCC
0.6693 0.16 HLA-DRB1*11:04 Toxin 919 905 GLIAIVMVTIMLCCM
0.7442 0.16 HLA-DRB1*11:04 Toxin 921 907 IAIVMVTIMLCCMTS
0.6171 0.16 HLA-DRB1*11:04 Toxin 920 906 LIAIVMVTIMLCCMT
0.6806 0.16 HLA-DRB1*07:01 Non-toxin 409 395 AIPTNFTISVTTEIL
0.7719 0.4 HLA-DRB1*07:01 Non-toxin 408 394 IAIPTNFTISVTTEI
1.1349 0.51 HLA-DRB1*07:01 Non-toxin 411 397 PTNFTISVTTEILPV
0.8294 0.52 HLA-DRB1*07:01 Non-toxin 410 396 IPTNFTISVTTEILP
1.1691 0.52 HLA-DRB1*07:01 Non-toxin 412 398 TNFTISVTTEILPVS
0.6336 0.58 HLA-DRB1*15:01 Non-toxin 445 431 CSNLLLQYGSFCTQL
0.9934 0.58 HLA-DRB1*07:01 Non-toxin 1525 1511 GTWLTYTGAIKLDDK
0.6215 0.58 HLA-DRB1*07:01 Non-toxin 1524 1510 SGTWLTYTGAIKLDD
1.2416 0.58 HLA-DRB1*07:01 Non-toxin 1526 1512 TWLTYTGAIKLDDKD
0.8305 0.6 HLA-DRB1*15:01 Non-toxin 446 432 SNLLLQYGSFCTQLN
0.6128 0.69 HLA-DRB1*15:01 Non-toxin 19 5 TESIVRFPNITNLCP
1.2905 0.7 HLA-DRB1*07:01 Non-toxin 1034 1020 LACFVLAAVYRINWI
0.7635 0.72 HLA-DRB1*15:01 Non-toxin 444 430 ECSNLLLQYGSFCTQ
0.8668 0.75 HLA-DRB1*15:01 Non-toxin 447 433 NLLLQYGSFCTQLNR
0.8548 0.76 HLA-DRB1*07:01 Non-toxin 1031 1017 PVTLACFVLAAVYRI
1.0450 0.76 HLA-DRB1*07:01 Non-toxin 1032 1018 VTLACFVLAAVYRIN
1.1115 0.88 HLA-DRB1*07:01 Non-toxin 1035 1021 ACFVLAAVYRINWIT
1.3132 0.88 HLA-DRB1*07:01 Non-toxin 1033 1019 TLACFVLAAVYRINW
0.6125 0.92 HLA-DRB1*15:01 Non-toxin 20 6 ESIVRFPNITNLCPF

Table 5   Predicted epitopes of Model 4 interacting with combined of 
human MHC class I and II among different population worldwide

a Projected population coverage

Average of epitope 
hits

MHCI and MHCII Com-
bined PPCa (%)

Population

4.92 82.95 Iran
4.86 74.74 Southwest Asia
7.03 79.57 South Asia
7.87 92.51 Europe
6.83 89.20 North America
3.21 64.37 South America
3.04 48.97 Africa
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Fig. 3   Graphical representation 
of B cell epitopes prediction by 
a Parker hydrophilicity predic-
tion (threshold: 1.474), b Emini 
surface accessibility prediction 
(threshold: 1.000), c Karplus 
and Schulz flexibility prediction 
(threshold: 0.999), d Chou and 
Fasman beta turn prediction 
(threshold: 1.004) and e Kolas-
kar and Tongaonkar Antigenic-
ity (threshold: 1.0). The yellow 
regions above the threshold (red 
line) are supposed to be a part 
of B cell epitope whereas the 
green areas are not (Color figure 
online)
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peptide is also a part of seven HLA II-predicted epitopes 
(Table 4).

Therefore, immunoinformatics approaches have been 
already used identification of possible epitopes of novel 
human coronavirus, SARS-CoV-2. The outbreak of infec-
tion caused by this virus has brought great obstacles and 

challenges to public health. Thus, fast identification of 
immune epitopes and possible viral immunogenic prod-
ucts would be a superior way to monitor the candidates for 
vaccine development in comparison with other approaches 
at the impending pandemic era.

Table 6   B-cell linear epitopes for selected Model 4

Antigenicity Length B cell (position) Proteins

1.2606 14 VRQIAPGQTGKIAD (89) Model 1
0.7136 12 YGFQPTNGVGYQ (177)
0.8904 9 NNLDSKVGG (121)
1.3668 6 RVQPTE (1)
0.5455 53 GTTLPKGFYAEGSRGGSQASSRSSSRSRNSSRNSTPGSSRGTSPARMAGNGGD (601) Model 2
0.5302 38 SKMSGKGQQQQGQTVTKKSAAEASKKPRQKRTATKAYN (669)
0.5605 30 KTFPPTEPKKDKKKKADETQALPQRQKKQQ (798)
0.5570 28 QHGKEDLKFPRGQGVPINTNSSPDDQIG (495)
1.1728 15 AFGRRGPEQTQGNFG (710)
1.2606 14 VRQIAPGQTGKIAD (89)
0.7136 12 YGFQPTNGVGYQ (177)
0.8771 12 RIRGGDGKMKDL (530)
2.1298 10 KLDDKDPNFK (775)
0.8904 9 NNLDSKVGG (121)
1.3668 6 RVQPTE (1)
0.6838 6 TDYKHW (733)
1.2606 14 VRQIAPGQTGKIAD (89) Model 3
0.7136 12 YGFQPTNGVGYQ (177)
0.5322 12 ILPDPSKPSKRS (487)
1.4039 11 KNHTSPDVDLG (839)
0.8904 9 NNLDSKVGG (121)
1.3668 6 RVQPTE (1)
0.5455 53 GTTLPKGFYAEGSRGGSQASSRSSSRSRNSSRNSTPGSSRGTSPARMAGNGGD (1347) Model 4
0.5302 38 SKMSGKGQQQQGQTVTKKSAAEASKKPRQKRTATKAYN (1415)
0.5605 30 KTFPPTEPKKDKKKKADETQALPQRQKKQQ (1544)
1.1728 15 AFGRRGPEQTQGNFG (1456)
1.2606 14 VRQIAPGQTGKIAD (89)
0.7136 12 YGFQPTNGVGYQ (177)
0.5322 12 ILPDPSKPSKRS (487)
0.8771 12 RIRGGDGKMKDL (1276)
1.4039 11 KNHTSPDVDLG (839)
2.1298 10 KLDDKDPNFK (1521)
0.8904 9 NNLDSKVGG (121)
1.3668 6 RVQPTE (1)
0.7417 6 DSLSST (618)
0.6838 6 TDYKHW (1479)
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Conclusion

This study resulted in possible fusion forms prediction of 
SARS-CoV-2 structural proteins, which could be potential 
targets of neutralizing antibodies. The in silico evaluation 
of different fusion models have been effective in selecting 
the best fused model of S, M and N proteins. Truncated 

Spike + M + N is composed of 24 highly immunogenic 
human MHC class I and 29 MHC class II with 82.95% 
population coverage in Iran along with 14 B-cell linear 
and 61 discontinues epitopes.

The selected recombinant protein could highly elicit 
immune responses and will be evaluated in  vitro and 
in vivo at the next step.

Fig.4   Sequence and structural analysis of Model 4. a Secondary 
structure by SOPMA tool, b Three dimensional structure by PyMOL 
and c Ramachandran Plot generated to validate the modeled 3 struc-

ture of model 4 protein which indicates that 91.7% of residues are in 
the favored region
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Table 7   Discontinuous B-cell epitopes predicted by Ellipro for model 4
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Table 7   (continued)
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Table 7   (continued)



403Molecular Biotechnology (2021) 63:389–409	

1 3

Table 7   (continued)
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Table 7   (continued)
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