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Abstract

Echo-planar spectroscopic imaging (EPSI) sequence with spectrally interleaving is often used to 

rapidly collect metabolic MRI data. The main problem in using it on high field scanners is the 

presence of spurious peaks resulting from phase distortions between interleaves as well as the low 

signal to noise ratio. We introduce a novel structured low-rank framework for the simultaneous 

denoising and deinterleaving of spectrally interleaved EPSI data. The proposed algorithm exploits 

annihilation relations resulting from the linear predicability of exponential signals as well as due to 

uncorrected phase relations between interleaves. The algorithm is formulated as a structured 

nuclear norm minimization of a block Hankel matrix, derived from the interleaves. Experiments 

using hyperpolarized 13C mouse kidney EPSI data demonstrate the ability of the algorithm to 

remove ghost peaks from EPSI data collected using bipolar readout gradients.
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1. INTRODUCTION

Shortening scan time has been a prime focus of magnetic spectroscopic imaging (MRSI) 

research [1, 2]. EPSI [?, ?] achieves accelerated data acquisition by using echo-planar 

readouts to simultaneously encode one spectral and one spatial dimension in one acquisition. 

This approach offers a speed up that is equal to number of points along one spatial 

dimension. However, it imposes high demands on the gradient system to maintain sufficient 

spectral resolution on high field systems that have greater spectral dispersion. A common 

practice to achieving sufficient spectral resolution is spectral interleaving, where the 

readouts are delayed in time for each spectral interleave. The data from multiple interleaves 

are upsampled and interlaced to form the final spectrum. A challenge associated with this 

strategy is the phase inconsistencies between interleaves, resulting from timing errors in the 

applied gradient trains, drifts in the magnetic field, and dependence on field inhomogeneity 

distortions. This problem is similar to Nyquist ghosting artifacts in echo-planar imaging 

(EPI), which manifests as Nyquist ghosts in the phase encoding dimension. In EPSI 

acquisitions, the phase inconsistencies manifest as spurious peaks in the spectra, which often 

makes the interpretation of the data challenging. Specifically, the proximity of a spurious 

peak from a strong metabolite may result in lineshape changes, affecting the accurate 
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quantification of a relatively weak metabolite. Likewise, the intensity of the true peak may 

also be reduced since the energy is split between the true peak and ghost peak.

Several methods have been developed for the reduction of spectral ghosts in EPSI data. The 

conventional approach processes the odd and even echoes separately [6] reducing the 

spectral bandwidth by half; hence is not an option for high field scanners. Methods relying 

on theoretical estimates of k-t space trajectory such as the interlaced Fourier transform 

method [7] or the Fourier shift method [8] ignore the phase distortion between the echos. 

Echo misalignment [6, 7] correction has shown good potential in the reduction of spurious 

peaks, contingent to accurate estimation of k-t space trajectory that is often not practical in 

the presence of drifts and B0 inhomogeneity. Another popular method is to estimate the 

phase inconsistencies from the center of k-space and correct for the misalignment between 

the echoes [5] during data processing. Even though this method has shown promise in fat-

water imaging, its utility for low-intensity metabolites is yet to be seen.

We introduce a novel reconstruction method for EPSI data which does not depend on 

accurate estimates of phase inconsistencies or k-t space trajectory to suppress the spectral 

ghosts. We exploit the annihilation relations in spectrally interleaved EPSI data resulting 

from the linear predictability of exponential signals and phase relations between the 

interleaves. We pose the problem as a recovery of two signals at each pixel, corresponding to 

the odd and even interleaves. The proposed framework is inspired by our MUSSELS 

strategy used in multishot EPI acquisitions [9], which is conceptually similiar to [10, 11]. 

Unlike these methods [9, 10, 11] that rely on coil sensitivity information or signal 

smoothness to avoid the trivial solution resulting from uniform undersampling, we rely on 

the annihilation property due to linear predictability of the exponentials. We construct a 

block Hankel matrix, whose entries correspond to the two echoes, that capture the 

annihilation relations in a compact way; the annihilation relations translate to a low-rank 

block Hankel matrix, which we recover from undersampled measurements using structured 

nuclear norm minimization. / We demonstrate the results of the proposed method using high 

resolution 13C MRSI data of mouse kidney acquired at 9.4T using bipolar EPSI readout 

gradients. The proposed methods show improvement in the signal of Pyruvate maps due to 

recovery of real spectral peaks and reduction of spurious peaks leading from combination of 

odd and even echoes.

2. BACKGROUND

We assume that the true spectrum at a specified pixel r as a multi-exponential model:

ρ[r, n] = ∑
k = 1

K
ck[r] νk

n; n = 0, .., N − 1 (1)

where K is the number of exponentials with parameters

νk = exp − 1
T2, k* + j2πfk T , (2)
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and ck are amplitudes. Here 1
T2, k* + j2πfk  are the exponential parameters of the kth 

exponential and T is the Nyquist sampling interval. We will omit the dependence of the 

signal on the spatial location for simplicity in the future discussions. The Fourier transform 

of the signal along n, specified by

ρ[k] = ∑
n = 1

N
ρ[n]exp −j2π

N kn (3)

will have K peaks at frequencies fk; the basic goal in MR spectroscopy is to estimate the 

amplitudes ck from the data.

Since the bandwidth of the spectrum is too large in high field scanners, it is often impossible 

to sample the signal at the Nyquist rate using EPSI. It is a common practice to acquire the 

data using spectral interleaving, where the signal is sampled twice with a sampling interval 

of 2T. Specifically, one would acquire two signals ρo[n] and ρe[n], where the readout of the 

odd signal is delayed by T, These signals are later combined as

ρcombined[n] =
ρe[n] if n is even
ρo[n] if n is odd (4)

Unfortunately, ρe and ρo are acquired at two different acquisitions and hence would differ in 

terms of a phase distortion. The distortion is often a complex function of the readout delay T 
and the field inhomogeneity at the spatial location r. Hence, the combined signal (4) often 

suffers from spectral ghosts, shifted from the original point by N/2 spectral points; the 

distribution of the amplitudes to the two peaks is dependent on the phase distortion. A 

schematic diagram explaining the signal formation is shown in Fig.1.

3. METHODS

We introduce an algorithm for the removal of spurious peaks as well as the denoising of 

spectroscopic MRI data. The algorithm exploits the annihilation relations induced by the 

spectral model (1) as well as the phase relations in (5) & (6). We use a lifting strategy, where 

a structured matrix is formed using the entries of the measured signals ρe and ρo to exploit 

the annihilation relations. The rank of the structured matrix is very low due to the 

annihilation relations. We use the low-rank property to jointly recover the fully sampled 

signals ρe[n]; n = 0,..,N − 1 and ρo[n]; n = 0,..,N − 1 from their undersampled 

measurements.

We model the phase distortions in ρe and ρo as convolutions by finite impulse response 

filters ge[n] and go[n], respectively. Specifically, we assume that

ρe[k] = ρ[k] ge[k] (5)

ρo[k] = ρ[k] go[k], (6)
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where the signals ge[k] and go[k] are specified by

g[k] = ∑
p = − M

M
c[k]exp −j2πpk

N (7)

Note that the above model can easily account for differences in phases and differences in 

frequencies in a small range determined by T, between the two acquisitions.

3.1. Annihilation relations induced by exponential model

Exponential signals in (1) satisfy an annihilation relation [12, 13]:

ρ[n] ∗ ℎ[n] = 0, (8)

where h is the FIR filter of the form

ℎ(z) = ∏
i = 1

K
1 − νkz−1 . (9)

Since ρe(z) = ρ(z)he(z) and ρo = ρ(z)ho(z), both of these signals also satisfy (8) with the 

same filter. The convolution relation in (8) can be expressed as in the matrix form as Qeh = 0 

and Qoh = 0, where Qe and Qo are (N − K + 1) × K dimensional Hankel matrices formed 

from the samples of ρo and ρe, respectively. In reality, the number of exponentials K is 

unknown, when one can overestimate it as P. In this case, any filter specified by hn(z) = 

h(z)η(z) such that hn is a P tap filter also annihilates the signal. Since one can find P − K 
linearly independent filters η(z), the rank of the (N − P + 1) × P dimensional matrices Qo 

and Qe can be shown to be equal to K − 1 (see [12] for details).

3.2. Annihilation property induced by phase relations

The model specified by (6) and (5) implies that there exists annihilation relations between 

the two signals

ρe[n] ∗ go[n] − ρe[n] ∗ ge[n] = 0. (10)

This annihilation relation can be represented in the matrix form as

Qe, Qo
Q

go
−ge

= 0, (11)

where Qo = T ρo  and Qe = T ρe  are (N − M + 1) × M dimensional convolution (Hankel) 

matrices obtained from the samples ρo[n] and ρe[n], respectively.

In reality, one often does not know the precise value of M needed to model the phase 

distortion; we overestimate the support to P ≥ M. In this case, there are multiple annihilation 

relations, involving filters go(z) = go(z)γ(z) and ge(z) = ge(z)γ(z), where γ(z) is an arbitrary 

filter such that ℎo(z) and ℎe(z) are still support limited within M. This implies that the matrix 

H is low-rank.
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We note that the combined lifting will benefit from both the exponential structure and phase 

relations. Specifically, we have

Qe, Qo
Q

go ∗ γ h ∗ η 0
−ge ∗ γ 0 h ∗ η = 0, (12)

Both the annihilation relations together result in a matrix with small rank.

3.3. Proposed structured low-rank algorithm

We use the low-rank structure of Q to recover the two signals μo and μe from their 

undersampled measurements:

μo, μe = arg min
μo, μe

Aoμo − ρo
2 + Aeμe − ρe

2

+ λ‖ T μo , T μe
Q

‖*, (13)

where Ao and Ae are undersampling operators corresponding to ρo and ρe, respectively. We 

use an iteratively reweighted nuclear norm minimization algorithm to minimize the above 

cost function and recover the signals. Post recovery, we will use root mean square of μo & μe 

as the recovered spectrum. Since exponential signals with fewer exponential parameters are 

associated with lower rank, the proposed formulation performs simultaneous denoising and 

deinterleaving.

The periodic undersampling pattern that results from interleaved sampling may result in a 

trivial solution, if the spectral annihilation relations are not exploited [11]. Specifically, the 

trivial solution μo = ρcombined = μe will satisfy the data consistency relations and the trivial 

annihilation relation μe[n] ∗ δ[n] − μe[n] ∗ δ[n] = 0, resulting in a matrix of rank P. However, 

when the signal follow a multiexponential model as in (1), we observe that the trivial 

solution has 2K (double the number of exponential parameters), when compared to the true 

solution due to aliasing. This shows that the trivial solution is not the one that satisfies the 

data consistency constraints and yield the minimum rank of Q.

4. EXPERIMENTS AND RESULTS

A 9.4T small animal imaging scanner (Bruker BioSpin MRI GmbH, Germany) equipped 

with 1H−13C dual-tuned mouse volume Tx/Rx coil was used for all experiments [15]. 

[1-13C] pyruvic acid doped with 15mM Trityl radical and 1.5M Dotarem was polarized for 1 

hour using HyperSense DNP polarizer (Oxford Instruments, Oxford, UK). Hyperpolarized 

sample was dissolved with Tris/EDTA-NaOH solution, and 350ul of pyruvate was injected 

into Balb/c mouse through tail vein catheter over duration of 5s. Axial oriented slice 

containing mouse kidney of 3 mm thickness was selected, and the scan was started at 5s 

after injection of the pyruvate. All procedures of the animal experiments were approved by 

the local animal care and use committee. EPSI data of matrix size 64 × 64 was collected 

using a bipolar gradient with 64 spectral points. Combination of odd and even echoes 

achieved a spectral bandwidth of 1562.5 Hz.
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We compared the algorithm with phase correction method [5]. In Fig.2(a) the reference 1H 
image with three reference pixels are shown. Fig.2(b–d) & (f–g) show the spurious peak 

frame and pyruvate maps for all methods. The spurious peak frame shows reduced intensity 

for the proposed method which corresponds to improved removal of spurious peaks. The 

proposed method shows improved signal concentration for the pyruvate maps in areas as 

shown by the arrows. The percentage difference map in Fig.2(e) shows upto 70% increased 

signal recovered by the proposed method compared to the uncorrected data.

The spectra in Fig.3 from three regions of the kidney (aorta, cortex & medulla) show 

complete removal of spurious peaks and also exhibits denoising. The phase correction 

provides no denoising and also has sub-optimal performance especially for the renal medulla 

(blue) pixel.

5. CONCLUSION

In this work we proposed a novel algorithm for denoising and deinterleaving of EPSI data 

without directly estimating phase or relying on theoretical k-space trajectory. We further 

demonstrated the improvement offered by the proposed method compared to the classical 

phase correction method. The proposed scheme would be highly beneficial in reconstruction 

and correction of high-resolution EPSI, especially for the acquisition from high field 

magnets.
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Fig. 1: 
The FID at each pixel rho are corrupted by different phase distortion functions ϕ1 & ϕ2 

before combining the odd (ρo) and even (ρe) as shown in the data acquisition block as 

described in Eqn:4. Standard schemes form the interleaved signal ρcombined as shown in the 

reconstruction block. We propose to replace the reconstruction by Eqn: 13.
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Fig. 2: 
Metabolite maps: (a) 1H reference image of mouse kidney with reference pixels marked in 

three regions. (b-d) Intensity map at the spurious peak corresponding to Pyruvate and (f-h) 

Pyruvate maps, for the uncorrected data, phase correction method and proposed method 

respectively. (e) Map showing percentage increase of signal intensity provided by proposed 

method compared to uncorrected data. Pixels show upto 70% increase.
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Fig. 3: 
Metabolite spectra: First (a-c), second (d-f) and third (g-i) row show the spectra at aorta, 

renal cortex and renal medulla respectively (refernce pixel location marked in Fig.2(a)) for 

the uncorrected data, phase correction method and the proposed method respectively.
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