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Abstract

Two-phase designs involve measuring extra variables on a subset of the cohort where some 

variables are already measured. The goal of two-phase designs is to choose a subsample of 

individuals from the cohort and analyse that subsample efficiently. It is of interest to obtain an 

optimal design that gives the most efficient estimates of regression parameters. In this paper, we 

propose a multi-wave sampling design to approximate the optimal design for design-based 

estimators. Influence functions are used to compute the optimal sampling allocations. We propose 

to use informative priors on regression parameters to derive the wave-1 sampling probabilities 

because any pre-specified sampling probabilities may be far from optimal and decrease the design 

efficiency. The posterior distributions of the regression parameters derived from the current wave 

will then be used as priors for the next wave. Generalised raking is used in the final statistical 

analysis. We show that a two-wave sampling with reasonable informative priors will end up with a 

highly efficient estimation for the parameter of interest and be close to the underlying optimal 

design.
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1 | INTRODUCTION

Large epidemiological studies often collect information on disease status and a large number 

of covariates for the entire cohort. However, variables of interest, such as risk factors or 

some expensive exposures, are cost-prohibitive to collect. It is only possible to measure 

these variables on a subsample of individuals under a fixed budget. Two-phase stratified 

sampling1 can be useful in this situation. At phase 1, we collect relatively cheap information 

for the entire cohort, and at phase 2, we sample a small number of individuals from the strata 

defined by phase-1 data and measure the variables of interest. With considerate choices of 

stratification and phase-2 sampling probabilities, a two-phase design will result in efficient 

parameter estimations under a fixed budget constraint.2
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The estimation methods of two-phase designs have been extensively studied, which can be 

classified into design-based estimation methods and model-based estimation methods. For 

design-based estimators, weighted likelihood is the most widely used method which weights 

each observation by the inverse of its sampling probability. Generalised raking3,4 is a more 

efficient class of design-based estimators. It improves the efficiency by adjusting the 

sampling probability based on auxiliary variables. For model-based methods, efficiency 

gains can be achieved by making assumptions on the outcome model. The maximum 

likelihood estimators assume the outcome model is correctly specified, see Scott and Wild5; 

Breslow and Holubkov6 for discrete phase-1 data and Tao et al.7 for continuous or discrete 

phase-1 data. Typically, the maximum likelihood methods are the most efficient estimation 

methods but not robust to model misspecification.8 We focus on the design-based estimation 

methods in this work.

Compared with estimation methods, the sampling design has not been widely studied. It is 

of interest to obtain the optimal design, which will include more informative individuals in 

the phase-2 sample. However, the optimal design will be different for different estimation 

methods. For the maximum likelihood estimators, as the outcome model is assumed to be 

correctly specified, sampling one individual can allow us to extrapolate information about 

other individuals in the population. For the design-based estimators, it cannot because we do 

not make any assumptions on the outcome model. Recently, Tao et al.9 showed that the 

optimal design for the maximum likelihood estimators would sample from two extreme tails 

of the derivative of loglikelihood in each stratum when βx is not a strong predictor. This 

design does not even allow consistent estimations with design-based methods. The optimal 

design of design-based estimators is Neyman allocation10 applied to the influence functions, 

which samples relatively evenly across strata.

Optimal designs have been considered in some previous works. Reilly and Pepe11 derived a 

closed-form expression of the optimal design for their mean-score estimator. Since the 

expression depends on phase-2 data which are not available at the design stage, Reilly12 

suggested to estimate the expression using data from a further pilot study. McIsaac and 

Cook13 proposed to save this extra cost by using a multi-wave sampling. The idea is to 

sample wave 1 with some pre-specified sampling probabilities and then combine phase-1 

and wave-1 data to estimate design components. The later waves can then be sampled 

adaptively.

In this work, we exploit an optimal multi-wave sampling approach for design-based 

estimators. In survey literature, the well-known Neyman allocation10 is the optimal sampling 

strategy; it minimises the variance of population total for the variable of interest. The 

regression parameter can be written as the total of its influence functions,14 so Neyman 

allocation can then be adopted for minimising the variance of the regression parameter. The 

influence functions also depend on phase-2 data so that a multi-wave sampling can be 

useful.

However, the wave-1 sampling probability and sampling size of each stratum turn out to be 

important. If the wave-1 sampling probabilities are far from optimal, we may oversample 

individuals from some less interesting strata. Moreover, a small wave-1 sample size may 
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lead to the influence functions to be poorly estimated. In this paper, we show that 

informative priors on model parameters can improve both two-phase designs and 

estimations, even for a non-Bayesian final analysis. An efficient wave-1 sampling can be 

derived with the help of reasonable informative priors. For the following waves, the posterior 

distributions obtained from the previous wave will be used as priors for the current wave. 

The priors both improve the design efficiency and regularise the analysis for each wave.

The rest of this paper is organised as follows. In Section 2, we define notations and 

introduce Neyman allocation. In Section 3, the proposed multi-wave sampling and 

generalised raking are discussed in details. We report the results of simulation studies in 

Section 4. The performance of the proposed sampling method is illustrated using the 

National Wilms’ Tumor Study (NWTS)15,16 dataset example in Section 5. Code for all the 

simulation studies is available from https://github.com/T0ngChen/multiwave. Remarks are 

made in Section 6.

2 | TWO-PHASE DESIGNS AND NEYMAN ALLOCATION

2.1 | Notation

Consider a two-phase sampling design, let N and n be the phase-1 and phase-2 sample size 

respectively. Let Y denote an outcome variable, Z denote inexpensive covariates and A 
denote auxiliary variables. We have variables Z, A and Y measured for everyone in the 

cohort at phase 1. Let X be a variable of primary interest and X is only measured on the 

phase-2 subsample. Let Ri be an indicator variable, if Ri = 1, individual i is in the phase-2 

sample, otherwise Ri = 0. The probability for individual i selected in the phase-2 sample is 

(Ri|Z,A,Y ) = πi. The sampling weight for ith observation can then be defined as wi = 1/πi.

We refer to P(Y |X,Z;β) as the outcome model and P(X|Z,A;α) as the imputation model, so 

that Z are the components of phase-1 information that we want to put in the outcome model 

and A are auxiliary variables that are not in the outcome model, but can be used for 

stratification and imputation.

In two-phase designs, we assume that the missingness on X only depends on phase-1 data 

(P(R|X,Y, Z,A) = P(R|Y, Z,A)), so that the phase-2 data are missing at random.17 We use the 

generalised raking estimator as described in Section 3.3 in the statistical analysis, and our 

goal is to minimise the variance of βx by utilising the optimal multi-wave sampling design.

2.2 | Neyman allocation

Suppose a cohort is divided into H strata, and the unbiased estimator of the population total 

for the outcome variable Y can be written as

TY = ∑
ℎ = 1

H
Nℎyℎ, (1)

where yℎ is the sample mean for stratum ℎ. Neyman10 derived the optimal sampling 

allocation to minimise the sampling variance of an estimator of a total with respect to the 

constraint n1 + n2 + ⋯ + nH = n. It can be expressed as
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ni = nNiσi
∑ℎ = 1

H Nℎσℎ
, (2)

where σi is the population standard deviation for stratum i, ni and Ni are the phase-2 and 

phase-1 sample size for stratum i respectively.

However, Neyman allocation treats n as a continuous variable, so the value of ni calculated 

from Equation (2) is not an integer in general. The usual practice is to round to the nearest 

integer and adjust iteratively if needed, but this does not always lead to the optimal 

allocation. Recently, Wright18 developed an algorithm to find an exact optimal allocation; 

this algorithm is related to the Huntington-Hill method used to assign US Congress seats to 

states.

3 | MULTI-WAVE SAMPLING FOR DESIGN-BASED ESTIMATORS

3.1 | Neyman allocation for βx

We are interested in improving the efficiency for the regression parameter βx, so we need to 

write βx as a total. Breslow et al.14 noted that an estimator of the regression parameter can 

be written as a total of its influence functions, so we have

N(β − β0) = ∑
i = 1

N
hi(β) + op N−1/2 , (3)

where hi(β) is the influence function for observation i in the cohort. It can be approximated 

by the delta-beta which is the change in β  when observation i is deleted. According to 

Equation (3), a weighted estimator βw can be written as

n(βw − β0) = ∑
i = 1

n
wihi(β) + op n−1/2 . (4)

According to the proposed sampling design in Section 3.2, within each wave, the missing 

values of X will be imputed, and the influence functions for all individuals can then be 

estimated. Replacing σi with the standard deviation of influence functions Var(hi(β))1/2 in 

Equation (2), we have the optimal continuous allocation

ni = nNiVar hi(β) 1/2

∑ℎ = 1
H NℎVar hℎ(β) 1/2 . (5)

This is the same formula as McIsaac and Cook13 who derived by directly minimising the 

estimated variance. In this work, we use the integer-valued algorithm18 to find a global 

optimal allocation which is slightly more efficient than simply rounding off to the nearest 

integer.
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3.2 | Multi-wave sampling with priors

The influence functions depend on the primary variable of interest X, and we do not have 

any information about it at the design stage. McIsaac and Cook13 showed that a multi-wave 

sampling was helpful. Based on their ideas, the wave 1 can be sampled with pre-specified 

sampling probabilities, and the influence functions can then be estimated.

The efficiency gains can be realized by finding a better choice of wave 1. On the one hand, 

any pre-specified sampling probabilities may be far from optimal, so bad decisions of wave 

1 will oversample some less informative individuals. On the other hand, as we want the 

influence functions h(β) but end up with having the estimated influence functions h(β ), a 

relatively small sample size may lead to the influence functions to be poorly estimated.

If we have reasonable informative priors on the parameters in both outcome and imputation 

model, the influence functions can be derived by combining phase-1 data and priors. An 

efficient wave-1 sampling allocation can be estimated by Equation (5). After wave 1, the 

efficiency gains can be realized by using the posterior distribution obtained from the 

previous wave as the priors for the current wave. Based on this idea, we propose the 

following optimal multi-wave sampling design:

1. Combine priors, phase-1 data, outcome model and imputation model to compute 

posterior distributions for α, β, and X.

2. Impute X for all the cohort subjects and estimate the influence functions.

3. Derive the optimal wave-1 sampling allocations using integer-valued Neyman 

allocation18 and sample wave 1.

4. The posterior distributions of α and β obtained from wave 1 are used as priors at 

wave 2. Repeat steps 1–3 to sample wave 2. Note that during the wave-2 

sampling process, we need to put in wave-1 data when computing the posterior 

distributions.

The later waves can be sampled adaptively if needed. We also add a constraint ni ≥ 2 for i = 

1, 2, …, H in the wave-1 sampling process to ensure a valid variance estimation for each 

stratum.

3.3 | Generalised raking

Generalised raking is a more efficient class of design-based estimators. Suppose the 

objective is to estimate the population total Tx = ∑i = 1
N Xi and the population totals of a 

vector of auxiliary variables Si are known. The idea of generalised raking is to adjust 

weights so that the estimated population totals of Si equal the true population totals. The 

generalised raking estimator is Txr = ∑i = 1
N Riwi*Xi, where wi* = gi/πi are calibrated weights. 

The calibration constraints can be written as

∑
i = 1

N
Riwi*Si = ∑

i = 1

N
Si . (6)

Chen and Lumley Page 5

Stat Med. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The calibrated weights wi* can be obtained by minimising the total weight change under a 

given distance measure

∑
i = 1

N
Rid

gi
πi

, 1
πi

,

while satisfying the calibration constraints.3 We use distance function d(a,b) = a log(a/b) + 

(b − a) in this work.

In two-phase designs, we are interested in improving the efficiency of regression parameters 

in the outcome model. The variables in the outcome model cannot be directly used as 

generalised raking variables because the generalised raking variables should be linearly 

correlated with regression parameters β , and X and Y are approximately uncorrelated with 

hi(β).4 According to Equation (3) and (4), influence functions can be used as generalised 

raking variables. The efficient design-based estimators use [hi(β0)|A, Y, Z] as the auxiliary 

variable. This is the same class as AIPW19 estimators.4

Kulich and Lin20 derived an efficient doubly weighted estimator and proposed a “plug-in” 

method to approximate the optimal choice of auxiliary variables. Breslow et al.14,21 adopted 

the “plug-in” method to conduct imputation generalised raking for case-cohort studies; 

Rivera and Lumley22 used the same method in the analysis of counter-matched samples. We 

use the same technique to get the generalised raking variables in our final statistical analysis. 

The procedures are described as follows:

1. Fit imputation models using phase-2 data to impute the partially missing 

variables X for all individuals.

2. Fit the outcome model using phase-1 data and the imputed values of X, and then 

compute the estimated influence functions hi(β ) for all individuals.

3. Using the estimated influence functions hi(β ) as auxiliary variables in generalised 

raking, and estimate the parameter of interest β by weighted likelihood using the 

calibrated weights.

It is worth to note that, priors are not used in the statistical analysis because currently it is 

not standard in these fields to do a Bayesian analysis. Arguably even a better option would 

be to do the Bayesian analysis, but we show that we can still gain from prior information in 

the design even if we cannot do that. The generalised raking is only used in the final 

statistical analysis and not used during the sampling process.

4 | SIMULATION STUDY

We conducted extensive simulation studies to evaluate the efficiency of our proposed 

sampling design. We examined the situation that the exposure of interest X is cost-

prohibitive, but there exists an inexpensive surrogate variable for it.
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1000 phase-1 samples of size 1000 were simulated. A binary variable of interest X was 

generated with 15% exposure, so X ∼ Bern(0.15). A surrogate variable A was simulated 

with pre-specified sensitivity and specificity. We also simulated a continuous covariate Z1 ∼ 
U(0,1) and a binary covariate Z2 ∼ Bern(0.6). A binary outcome variable Y was simulated 

using the outcome model

P Y |X, Z1, Z2 = expit β0 + β1X + β2Z1 + β3Z2 ,

where expit(X) = exp(X)/(1 + exp(X)), β0 = −2 and β2 = β3 = 1. The imputation model was 

(X|A,Z1,Z2).

The data were divided into 8 strata based on Z2, A and Y. We were interested in priors 

centered either close to or far from the truth with small or moderate variances. Typically, 

two-wave sampling designs were considered because they were widely used and relatively 

easy to implement. We implemented the following designs in our simulation studies:

1. A single-wave proportional stratified sampling design where phase-2 strata sizes 

were proportional to phase-1 strata sizes.

2. A single-wave balanced stratified sampling design where phase-2 strata sizes 

were the same.

3. An optimal sampling design where the sampling allocations were derived using 

the whole data (X also available for individuals not in phase-2 sample). This 

cannot be done in practice.

4. Two-wave sampling designs where balanced or proportional stratified sampling 

was used at wave 1.

5. Our proposed two-wave sampling designs (Section 3.2) where informative 

normal priors on the parameters of the outcome model and imputation model 

were used. 4 different normal priors were considered, specifically,

• prior 1 represented a well-calibrated tight prior with 

βi ∼ N βi − 0.1/2, 0.1 , αj ∼ N αj − 0.1/2, 0.1 ;

• prior 2 represented a well-calibrated flat prior with 

βi ∼ N βi − 0.1/2, 1 , αj ∼ N αj − 0.1/2, 1 ;

• prior 3 represented a poorly-calibrated tight prior with βi ∼ N(βi − 

1/2,0.1), αj ∼ N(αj − 1/2,0.1);

• prior 4 represented a poorly-calibrated flat prior with βi ∼ N(βi − 1/2,1), 

αj ∼ N(αj − 1/2,1).

Let na be the number of individuals sampled at wave 1. For two-wave sampling designs, we 

considered 5 different choices for the proportion of phase-2 samples selected at wave 1 (na/

n), which ranged from 1/6 to 5/6 in 1/6 increments. In the statistical analysis, generalised 

raking described in Section 3.3 was followed.
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Results were presented in terms of Mean Squared Error (MSE) and Empirical Relative 

Efficiency (ERE) to the optimal design for the parameter of interest β1. MSE is the average 

squared difference between the estimated values β1 and the actual value β1. Larger values of 

MSE indicate lower efficiencies. ERE of design D is defined as the ratio of the empirical 

variance of β1 from the optimal design to the empirical variance of β1 from design D.13 

Values of ERE smaller than 1 indicate a loss of efficiency compared with the optimal design.

Results were shown in Table 1. Two-wave sampling designs were slightly more efficient 

than optimal design in some settings, these were consistent with the simulation studies of 

McIsaac and Cook13, because the underlying optimal designs are only optimal when sample 

size goes to infinity. Besides that, Neyman allocation is not the optimal design for the 

generalised raking estimator. However, the optimal design of the generalised raking 

estimators requires the true influence functions, which are not available in practice.

In our simulation studies, single-wave balanced stratified sampling designs were more 

efficient than single-wave proportional stratified sampling designs, but single-wave sampling 

designs did not achieve near optimality.

Two-wave sampling designs with pre-specified wave 1 generally performed better than 

single-wave sampling designs except in the situation that wave 1 sample size na was small, 

because influence functions tended to be poorly estimated with a small amount of phase-2 

data. With the increase of wave-1 sample size, we got more precise estimates of influence 

functions which would lead to a better wave-2 sampling design, but the disadvantage was 

that we also had to sample fewer people at wave 2. When wave-1 sample size was around 

half (na ≈ n/2), two-wave designs had a better performance and were more efficient than 

single-wave sampling designs. These findings were a confirmation of findings in McIsaac 

and Cook,13 they showed there is a bias-variance trade-off when deciding the wave-1 sample 

size na for a two-wave design and recommended to sample nearly the same number of 

individuals at wave 1 and wave 2. In addition to the choice of na, the wave-1 sampling 

probabilities were also essential. In our simulation studies, single-wave balanced sampling 

was even more efficient than a two-wave design with proportional sampling at wave 1.

Table 1 showed that our proposed designs were very close to the optimal design for the 

priors centered either close to or far from the truth with small or moderate variances. This 

indicated that all the 4 priors resulted in good wave 1 allocations, so a small wave 1 sample 

size na did not lose efficiencies with reasonable informative priors.

Other simulation studies (not shown here) showed that when the normal priors centered 

exactly at the truth, tight priors did slightly better than flat priors, and wave-1 sample size na 

did not affect the design efficiency. However, when the normal priors centered at wrong 

values (α and β all centered at −1.5 for the simulation studies in this section), flat priors 

performed better than tight priors, and they were all worse than the single-wave balanced 

sampling design. A smaller wave-1 sample size na was also preferable under this 

circumstance. In practice, we will not have priors either centered at the truth or wrong 

values, but these simulations indicated tight priors had some risks. Furthermore, as weakly 
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informative priors prevented us from getting extreme inference,23 we recommended to use 

weakly informative priors.

5 | DATA EXAMPLE

We illustrated the performance of our proposed sampling design using data from the 

National Wilms’ Tumor Study (NWTS).15,16 The data consisted of N = 3915 observations. 

The variables available for all individuals included histology evaluated by the institution 

(favorable vs. unfavorable (instit)), histology evaluated by the central lab (favorable vs. 

unfavorable (histol)), stage of disease (I-IV (stage)), age at diagnosis (age), diameter of 

tumor (tumdiam), study (3 vs. 4 (study)) and indicator of relapse (relapse). We assumed 

central lab histology was only available at phase 2 and was the variable of primary interest. 

All the other variables were assumed to be available for the whole cohort. We fitted a similar 

outcome model20,21,22:

P (relapse|histol,age1 , age2, stage1, tumdiam) = expit(β0 + β1histol + β2age1
+ β3age2 + β4stage1 + β5tumdiam + β6tumdiam × stage1),

where age1 and age2 were a linear spline with separate slope for greater or less than 1 year 

old and stage1 was a binary indicator (III–IV vs. I–II). We took institutional histology as 

central lab histology measured with error, so it was a good surrogate variable. Central lab 

histology was imputed using a logistic model with predictors institutional histology, age3 

(>10 years vs. <10 years), stage2 (IV vs. I–III), study and the interaction between study and 

stage2.

The data were divided into 8 strata based on institutional histology, relapse and study with 

strata sizes (1257, 1769, 107, 113, 223, 284, 84, 78). In the simulation study, 720 individuals 

were sampled at phase 2. Based on above outcome model and the whole cohort data, the 

optimal phase-2 sample sizes for each stratum were nopt = (156, 241, 38, 39, 75, 111, 36, 

24).

1000 phase-2 samples were simulated. Similarly to previous simulation studies, we 

examined five choices of wave-1 sample size na and implemented a single-wave balanced 

sampling design, a single-wave optimal sampling design based on the full data, a two-wave 

sampling design with balanced sampling at wave 1 and our proposed sampling designs. We 

considered 4 different normal priors, specifically,

• prior 1 represented a well-calibrated tight prior with βi ∼ N βi − 0.1/2, 0.1 , 

αj ∼ N αj − 0.1/2, 0.1 ;

• prior 2 represented a well-calibrated flat prior with βi ∼ N βi − 0.1/2, 1 , 

αj ∼ N αj − 0.1/2, 1 ;

• prior 3 represented a poorly-calibrated tight prior with βi ∼ N(βi − 1/2,0.1), αj ∼ 
N(αj − 1/2,0.1);

• prior 4 represented a poorly-calibrated flat prior with βi ∼ N(βi − 1/2,1), αj ∼ 
N(αj − 1/2,1).
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Proportional stratified sampling was not considered because the sampling probabilities for 

each stratum were (0.32, 0.45, 0.03, 0.03, 0.06, 0.07, 0.02, 0.02). If 100 individuals were 

sampled at wave 1, it would only sample 2 individuals from seventh and eighth strata, so the 

influence functions would be very poorly estimated and the variance of influence functions 

for these strata might not exist.

Results were presented in Table 2. Single-wave balanced stratified sampling design was not 

close to optimal. Two-wave sampling with balanced sampling at wave 1 performed slightly 

better but still was not close to optimal for all the choices of wave-1 sample size. Our 

proposed designs were still very close to the optimal design for all the 4 priors. As the 

NWTS data had rich phase-1 information, efficiency gains of our proposed design were also 

from using the rich phase-1 data at the design stage.

6 | DISCUSSION

We describe a multi-wave adaptive sampling approach to approximate the optimal two-phase 

design for fitting a regression model using design-based estimators. The prior knowledge of 

parameters and phase-1 data combine to be usable to obtain an efficient wave 1, so we use 

the whole cohort information at the design stage even before phase-2 sampling. After wave 

1, we propose to use the posterior distributions obtained from the previous wave as priors for 

the current wave. With reasonable well-calibrated informative priors, our proposed design is 

very close to the underlying optimal design.

There are two main advantages of using priors. It is obviously that priors help us put in 

available information. Based on analysing the rich and readily available medical data (e.g., 

electronic health record), genuine clinical knowledge and previous studies, it is reasonable to 

have useful prior knowledge. Moreover, even if we do not have much information, weakly 

informative priors are also found to be useful because they regularise extreme estimations in 

the analysis of each wave which occasionally happen if we are using completely non-

informative priors or maximum likelihood.23

However, there is a bias-variance trade-off in the design process, since the true parameters 

are unknown. Over hypothetical repetitions of the design procedure, a stronger prior will 

lead to designs that are less variable, but are optimised for a parameter value that is 

influenced more strongly by the prior. If the prior is poorly-calibrated, these parameter 

values may be far from the true value. Conversely, a weaker prior leads to designs targeting 

parameter values that are more variable, but are less biased. Stronger priors are valuable 

when they are well-calibrated, but as we have shown, relatively weak priors can be valuable 

even if they are not well-calibrated. For this reason, we argue that the bias-variance trade-off 

leans towards relatively weak priors.

In addition to the choice of prior, the wave-1 sample size na needs to be decided. If the priors 

are well-calibrated, wave-1 sample size does not matter because the wave-1 design is 

efficient and close to optimal. If the priors are poorly-calibrated but strong, as discussed in 

Section 4, wave-1 design is far from optimal and this indicates a small na is preferable 

because it will give us more chance to learn from data. In practice, we are less likely to have 
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priors either centered at the truth or values that are obviously wrong, so that a relatively 

small wave 1 is preferable in general. The ability to use a relatively small first wave is one of 

the benefits of using priors.

Our results confirm that single-wave sampling designs are not efficient in general. Balanced 

stratified sampling designs are more efficient than proportional stratified sampling designs, 

but still do not often achieve near optimality.2 Like McIsaac and Cook,13 we find that multi-

wave sampling can improve over single-wave sampling. One contribution of our work is to 

show that McIsaac and Cook’s optimal allocation is the same as Neyman allocation with 

influence functions.

We have treated the strata as prespecified constraints. There is potential for improving the 

design by optimising the choice of strata. For a single-wave two-phase sampling design, the 

design efficiency increases with the increase in the number of strata, and the optimal stratum 

size is two. The situation is more complicated for multi-wave designs, since a parameter 

must be estimated for each stratum to construct each wave of the design and very small 

strata are undesirable. Even so, optimisation of the stratum boundaries is likely to give 

improved designs. Prior information of the form we used here will be valuable in 

constructing strata, and we plan to consider choice of stratum boundaries in future work.
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TABLE 1

Mean squared error (MSE) and empirical relative efficiency (ERE) to the optimal design for β1 based on 1000 

Monte Carlo simulations.

Opt Prior 1 Prior 2 Prior 3 Prior 4 Two.prop Two.bal Single.prop Single.bal

(β1, 
se, 
sp)

na/
n MSE* MSE* ERE MSE* ERE MSE* ERE MSE* ERE MSE* ERE MSE* ERE MSE* ERE MSE* ERE

(0.5, 
0.8, 
0.8) 1/6 0.74 0.79 0.94 0.80 0.93 0.82 0.91 0.77 0.96 2.32 0.32 1.54 0.49 1.07 0.70 0.88 0.85

2/6 0.74 0.87 0.86 0.83 0.90 0.77 0.96 0.78 0.95 1.09 0.68 0.95 0.79 1.07 0.70 0.88 0.85

3/6 0.74 0.74 1.00 0.77 0.97 0.86 0.87 0.82 0.91 1.11 0.67 0.89 0.84 1.07 0.70 0.88 0.85

4/6 0.74 0.81 0.92 0.77 0.96 0.84 0.88 0.87 0.85 0.92 0.80 0.82 0.90 1.07 0.70 0.88 0.85

5/6 0.74 0.81 0.92 0.76 0.98 0.84 0.88 0.84 0.88 1.00 0.74 0.84 0.89 1.07 0.70 0.88 0.85

(0.5, 
0.9, 
0.9) 1/6 0.54 0.55 0.99 0.59 0.92 0.59 0.92 0.55 0.99 1.14 0.48 0.67 0.81 0.84 0.65 0.62 0.88

2/6 0.54 0.57 0.94 0.57 0.96 0.59 0.93 0.58 0.94 0.65 0.84 0.63 0.86 0.84 0.65 0.62 0.88

3/6 0.54 0.58 0.94 0.58 0.94 0.54 1.00 0.56 0.96 0.65 0.83 0.59 0.93 0.84 0.65 0.62 0.88

4/6 0.54 0.56 0.96 0.60 0.91 0.62 0.88 0.55 0.99 0.70 0.78 0.60 0.92 0.84 0.65 0.62 0.88

5/6 0.54 0.58 0.93 0.56 0.97 0.62 0.87 0.60 0.90 0.73 0.74 0.58 0.94 0.84 0.65 0.62 0.88

(1, 
0.8, 
0.8) 1/6 0.78 0.79 0.99 0.78 1.00 0.82 0.94 0.83 0.94 2.48 0.33 1.65 0.50 1.04 0.74 0.90 0.87

2/6 0.78 0.81 0.96 0.77 1.01 0.89 0.87 0.77 1.01 1.19 0.66 0.98 0.82 1.04 0.74 0.90 0.87

3/6 0.78 0.74 1.05 0.82 0.95 0.85 0.91 0.82 0.94 1.02 0.76 0.91 0.89 1.04 0.74 0.90 0.87

4/6 0.78 0.80 0.97 0.82 0.94 0.83 0.94 0.81 0.96 0.96 0.80 0.90 0.88 1.04 0.74 0.90 0.87

5/6 0.78 0.83 0.94 0.80 0.97 0.78 0.99 0.84 0.92 1.04 0.75 0.89 0.87 1.04 0.74 0.90 0.87

(1, 
0.9, 
0.9) 1/6 0.57 0.58 0.98 0.62 0.91 0.58 0.98 0.59 0.96 4.58 0.13 0.75 0.77 0.81 0.70 0.61 0.94

2/6 0.57 0.59 0.96 0.55 1.03 0.59 0.96 0.58 0.98 0.78 0.75 0.61 0.93 0.81 0.70 0.61 0.94

3/6 0.57 0.57 1.00 0.56 1.02 0.61 0.93 0.58 0.98 0.63 0.92 0.58 1.00 0.81 0.70 0.61 0.94

4/6 0.57 0.58 0.98 0.59 0.96 0.60 0.96 0.60 0.95 0.74 0.77 0.54 1.07 0.81 0.70 0.61 0.94

5/6 0.57 0.60 0.94 0.58 0.98 0.61 0.93 0.59 0.97 0.76 0.75 0.62 0.92 0.81 0.70 0.61 0.94

(1.5, 
0.8, 
0.8) 1/6 0.88 0.93 0.95 0.89 0.98 0.98 0.90 0.92 0.95 9.69 0.10 4.87 0.19 1.20 0.73 1.05 0.84

2/6 0.88 0.92 0.96 0.90 0.97 0.91 0.97 0.92 0.96 1.79 0.54 1.32 0.72 1.20 0.73 1.05 0.84

3/6 0.88 0.91 0.97 0.92 0.96 0.89 0.98 0.84 1.04 1.19 0.76 1.06 0.91 1.20 0.73 1.05 0.84

4/6 0.88 0.85 1.03 0.94 0.93 0.95 0.92 0.88 0.99 1.15 0.77 0.99 0.93 1.20 0.73 1.05 0.84

5/6 0.88 0.90 0.98 0.93 0.95 1.02 0.86 0.93 0.95 1.07 0.82 1.02 0.88 1.20 0.73 1.05 0.84

(1.5, 
0.9, 
0.9) 1/6 0.59 0.58 1.00 0.59 1.00 0.60 0.98 0.59 0.99 8.53 0.07 0.77 0.79 0.91 0.64 0.63 0.92
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Opt Prior 1 Prior 2 Prior 3 Prior 4 Two.prop Two.bal Single.prop Single.bal

(β1, 
se, 
sp)

na/
n MSE* MSE* ERE MSE* ERE MSE* ERE MSE* ERE MSE* ERE MSE* ERE MSE* ERE MSE* ERE

2/6 0.59 0.63 0.93 0.59 0.99 0.60 0.97 0.60 0.97 1.09 0.58 0.61 0.98 0.91 0.64 0.63 0.92

3/6 0.59 0.58 1.02 0.56 1.04 0.60 0.98 0.58 1.02 0.75 0.80 0.58 1.04 0.91 0.64 0.63 0.92

4/6 0.59 0.59 0.99 0.61 0.96 0.64 0.91 0.59 1.00 0.67 0.88 0.60 0.99 0.91 0.64 0.63 0.92

5/6 0.59 0.62 0.94 0.63 0.93 0.61 0.97 0.64 0.91 0.82 0.71 0.59 0.99 0.91 0.64 0.63 0.92

MSE*: MSE×10; Se, sensitivity used to generate auxiliary variable A; Sp, specificity used to generate auxiliary variable A; Opt, optimal design 
based on the full data; Two.prop, a two-wave design with proportional stratified sampling at wave 1; Two.bal, a two-wave design with balanced 
stratified sampling at wave 1; Single.prop, a single-wave proportional stratified sampling design; Single.bal, a single-wave balanced stratified 
sampling design.
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TABLE 2

Mean squared error (MSE) and empirical relative efficiency (ERE) to the optimal design for β1 based on 1000 

Monte Carlo simulations.

Opt Prior 1 Prior 2 Prior 3 Prior 4 Two.bal Single.bal

na/n MSE* MSE* ERE MSE* ERE MSE* ERE MSE* ERE MSE* ERE MSE* ERE

1/6 0.16 0.15 1.03 0.17 0.92 0.17 0.92 0.16 0.96 0.29 0.56 0.26 0.60

2/6 0.16 0.17 0.91 0.17 0.93 0.17 0.91 0.16 0.98 0.26 0.66 0.26 0.60

3/6 0.16 0.17 0.92 0.17 0.94 0.16 1.00 0.16 0.96 0.25 0.67 0.26 0.60

4/6 0.16 0.17 0.94 0.16 0.95 0.17 0.96 0.15 1.04 0.26 0.62 0.26 0.60

5/6 0.16 0.18 0.89 0.17 0.94 0.17 0.90 0.18 0.90 0.26 0.62 0.26 0.60

MSE*: MSE ×10; Opt, optimal design based on the full data; Two.bal, a two-wave design with balanced stratified sampling at wave 1; Single.bal, a 
single-wave balanced stratified sampling design.
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