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Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical 
information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and 
typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects 
in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder 
with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular 
eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, 
with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis 
of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is 
evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, 
application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the 
molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we 
will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding 
of motile cilia and PCD pathogenesis.
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Introduction

For more than a century, the mouse has been an indis-
pensable tool for studying basic biological processes and 
modeling human disease [1–5]. Compared to other mam-
malian models, the mouse is an economic system with a 
small body size, a relatively short gestation period, and rela-
tively large litters. In addition, the mouse is a particularly 
powerful genetic model with an impressive toolkit. With 
fully sequenced inbred strains and highly effective technolo-
gies for genetic manipulation, there is a remarkable capa-
bility to generate and study a wide array of genetic alleles 

and modifiers of complex traits, including specific muta-
tions identified in patients with human disease. Extensive 
repositories exist worldwide with a wide range of mouse 
models and tools available for biomedical research. Many 
of these models have already been employed for elucidat-
ing genetic, epigenetic, molecular, and cellular mechanisms 
underlying diverse human diseases and developmental pro-
cesses. Mouse models have also been used successfully for 
pre-clinical testing of drug efficacy and safety, leading to 
clinical trials and FDA-approved disease therapeutics for 
several human disorders [6–9]. While the mouse is not with-
out limitations as a model, it is a mammalian system that 
has been studied in depth and recapitulates many biological 
processes and human diseases well.

Dysfunction of motile cilia results in the rare disease pri-
mary ciliary dyskinesia (PCD) [10–15]. Multiple motile cilia 
form on the surface of epithelial cells lining the respiratory 
tract, oviduct, and ventricles of the brain, where they play 
a critical role in flow or clearance of fluids and particles 
through coordinated, whip-like beating. Single motile cilia 
form on nodal cells in the early embryo and regulate the 
directional flow of signals required for the establishment of 

Cellular and Molecular Life Sciences

 * Lance Lee 
 lance.lee@sanfordhealth.org

1 Pediatrics and Rare Diseases Group, Sanford Research, 
Sioux Falls, SD, USA

2 Department of Pediatrics, Sanford School of Medicine 
of the University of South Dakota, Sioux Falls, SD, USA

3 Marsico Lung Institute/Cystic Fibrosis Center 
and Department of Pediatrics, University of North Carolina 
at Chapel Hill, Chapel Hill, NC, USA

http://orcid.org/0000-0002-8158-8699
http://orcid.org/0000-0002-7558-6603
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-020-03633-5&domain=pdf


770 L. Lee, L. E. Ostrowski 

1 3

left–right patterning, while the structurally related sperm 
flagella are responsible for cell motility. The highly con-
served ciliary structure, or axoneme, is composed of nine 
microtubule doublets surrounding a central pair apparatus 
of two single microtubules in a “9 + 2” arrangement (Fig. 1) 
[13, 16]. The inner dynein arms (IDAs) and outer dynein 
arms (ODAs) are comprised of dynein motor proteins that 
enable the ciliary beating and are regulated by the nexin-
dynein regulatory complex (N-DRC) and radial spokes. The 
axoneme is divided into a series of repeating 96 nm units 
along the length of the cilium, a consequence of the periodic 
organization of the main axonemal components. PCD is a 
genetically heterogeneous disorder that is typically inherited 
in an autosomal recessive manner, although rare cases of 
X-linked recessive and autosomal dominant inheritance have 
been described [11, 12, 17–20]. Defects in motile ciliary for-
mation or function often result in chronic rhinosinusitis, oti-
tis media, bronchiectasis, and neonatal respiratory distress. 
In addition, reduced fertility, heterotaxy and related con-
genital heart defects, and sporadic hydrocephalus are associ-
ated with PCD. There is currently no effective treatment for 
PCD. In contrast to the “9 + 2” motile cilia, many other cell 
types possess a primary cilium with a “9 + 0” microtubule 
ultrastructure and a mechanosensory function [15, 21–23]. 
Defects in primary cilia result in a class of related ciliopa-
thies [15, 21–23], which will not be discussed here.

Current understanding of motile cilia comes from work 
performed in a variety of model systems, including mouse 
and other organisms [24]. Perhaps most notable among 
lower eukaryotes is the flagellated alga Chlamydomonas 
reinhardtii, a particularly tractable model system that 
has enabled detailed genetic, biochemical, and structural 

analysis of flagella [16, 25–28]. While non-mammalian 
organisms, such as C. reinhardtii, zebrafish, and frogs, 
remain essential resources, there is significant value in 
utilizing and further developing a readily available mam-
malian system. Mammalian motile cilia form on terminally 
differentiated cell types, including epithelial cells differen-
tiating from airway progenitors, ependymal cells differen-
tiating from radial glia, and nodal cells in the developing 
embryo [29–31]. Motile cilia are spatially oriented, and 
their motility is tightly coordinated within and between 
cells to effectively enable fluid clearance and flow [14, 31]. 
In addition, defects in ciliary biogenesis and motility result 
in organ dysfunction or developmental defects, including 
loss of host defense and lung function in the airway, tis-
sue damage and hydrocephalus in the brain, and laterality 
defects in the developing embryo [10–15]. Finally, while 
the basic axonemal structure is well conserved across spe-
cies, there are differences in structure, protein composi-
tion, and function between mammalian motile cilia and 
C. reinhardtii flagella [32–36]. Unlike lower vertebrate 
models, the mouse is a mammalian system whose anatomy 
and physiology are closer to human, and mouse models 
phenocopy PCD remarkably well. The only exception is 
the association of hydrocephalus, which is more common 
in mouse models than human patients, possibly due to ana-
tomical differences in the brain ventricles and additional 
genetic modifiers that segregate in certain inbred mouse 
strains [37–39]. Understanding the mechanisms underlying 
mammalian motile cilia formation, regulation, and func-
tion, as well as the pathogenic process caused by defective 
cilia, will enable the development of specific PCD thera-
pies. Further, as evidenced by studies of other diseases, 

Fig. 1  Schematic diagram of 
the motile ciliary axoneme. 
Modified with permission 
from Bustamante-Marin and 
Ostrowski, 2017 [14]
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mice can ultimately serve as a suitable pre-clinical model 
to test the efficacy of those therapeutics.

The mouse is not without its limitations as a model for 
studying motile cilia. Historically, C. reinhardtii and other 
ciliated or flagellated unicellular organisms have enabled 
advancements in ciliary structure and protein biochemis-
try that have been difficult to accomplish in a mammalian 
system [25, 40]. Zebrafish and frogs have been particularly 
useful for developmental studies, as these organisms develop 
ex utero and are transparent during embryonic development 
[24, 41]. In addition, mutagenesis and gene knockdown are 
typically more rapid in these non-mammalian species. There 
are also anatomical and physiological differences between 
mouse and human, most notably regarding the development 
of the brain ventricular system [37]. Finally, cell biologi-
cal applications using mouse models typically rely on the 
culture of primary tracheal epithelial or brain ependymal 
cells, which necessitate highly specific growth conditions 
and require viral transduction for exogenous gene expres-
sion [42–44]. Despite these limitations, extensive genetic 
resources and an emerging cell biology toolkit are helping 
to overcome many of the historical challenges and making 
the mouse a particularly powerful model for understanding 
motile cilia and ciliary disease.

This review will discuss advancements in genetics and 
cell biology of motile cilia obtained using mouse mod-
els. Models of PCD have generated extensive information 
about multiciliated cell differentiation, ciliogenesis, ciliary 
function, and disease pathogenesis, as well as identified 
novel genes involved in ciliary mechanisms. Cell biologi-
cal advancements are emerging in areas such as imaging, 
transcriptomics, and pharmacological modulation of motile 
cilia that can be applied to cultured ciliated cells or mouse 
tissues to answer new questions about the biology of cilia 
and multiciliated cells. When combined, genetic and cell 
biological applications in mice have the power to uncover 
the molecular and cellular mechanisms underlying mam-
malian motile cilia function and PCD pathogenesis.

Genetic models of cilia dysfunction and PCD

Over the last two decades, mouse models have provided an 
enormous amount of information about the genes, genetic 
mechanisms, and patterns of inheritance underlying PCD 
and motile ciliary function. Both forward and reverse genetic 
approaches have been used to study ciliary genetics, and a 
wide spectrum of genetic models has been reported, includ-
ing spontaneous mutations, transgenic and gene-targeted 
knockout alleles, CRISPR/Cas9-edited alleles, gene-trapped 
alleles, and knock-in mice. In addition, large-scale N-ethyl-
N-nitrosourea (ENU) mutagenesis screens have generated a 
large number of new models and unique alleles, particularly 

when screening for congenital heart defects and other lat-
erality defects [45, 46]. As with human PCD patients, the 
mouse models display genetic and phenotypic heterogeneity, 
with most exhibiting a combination of some PCD-associated 
phenotypes, including mucus accumulation in the sinus cav-
ity, otitis media, male infertility, female infertility, hydro-
cephalus, and heterotaxy or congenital heart defects. Each 
type of genetic model brings its own benefits to advance the 
field, which has enabled detailed histopathological analysis 
of phenotype and comprehensive evaluation of cilia structure 
and function in multiple cell types. These models have also 
validated PCD genes identified in human patients, identified 
new genes required for motile cilia function, and uncovered 
the effects of a large number of alleles on disease pathogen-
esis, multiciliated cell differentiation, and ciliary structure 
and function.

Dynein assembly and function

Ciliary beating is driven by the inner and outer dynein arms 
(Fig. 1), protein complexes comprised of heavy, interme-
diate, and light dynein chains that are tightly regulated to 
generate normal motility (reviewed in detail in King, 2016 
and Viswanadha et al. 2017) [26, 47]. ODAs generate the 
motor force and regulate beat frequency, while the IDAs are 
believed to regulate ciliary bend. The dynein arm complexes 
undergo substantial cytoplasmic pre-assembly prior to trans-
port into the cilium and docking with the doublet micro-
tubules. A number of genes encoding dynein heavy and 
intermediate chains have been evaluated in mouse models, 
as well as axonemal and cytoplasmic proteins required for 
assembly of dynein arm components. Table 1 shows mouse 
models with mutations in IDA and ODA genes, demonstrat-
ing that mutations in each gene result in PCD-associated 
phenotypes and defects in ciliary motility or flow.

Mouse models have been reported with mutations in three 
ODA genes: Dnah5, Dnaic1/Dnai1, and Dnah11. Dynein 
axonemal heavy chain 5 (DNAH5) is commonly mutated 
in PCD patients [11, 12, 48]. Two mouse models, one with 
a targeted null mutation and one with an ENU-induced 
allele, show an absence of ODAs by transmission electron 
microscopy (TEM) analysis [49–51]. Cilia-driven flow was 
assessed ex vivo via analysis of fluorescent particles over 
brain slices from the knockout mouse [50], an effective and 
highly employed high-speed video microscopic technique 
that has enabled analysis of ciliary physiology on multiple 
cell types and tissue samples. A reduction in ciliary beat 
frequency (CBF) and mucus transport were also assessed in 
a second ENU mutant, named Dakshi, through use of micro-
optical coherence tomography (μOTC) analysis ex vivo 
[52]. Loss of ODAs is also associated with mutations in 
Dynein axonemal intermediate chain 1 (DNAI1), the first 
PCD gene identified in human patients [53]. The phenotype 
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was confirmed through detailed airway analysis in an adult 
mouse, which was enabled by crossing a conditional tar-
geted allele of the mouse homolog Dnaic1 to a tamoxifen-
inducible CreER line [54]. Importantly, infection of mutant 
mouse tracheal epithelial cells (mTECs), which are cultured 
and differentiated into multiciliated cells at an air–liquid 
interface, with a lentivirus expressing wild type Dnaic1 
in vitro rescues the ciliary phenotype [55], demonstrating 
the potential for gene therapy treatment of PCD. Mouse 
models with mutations in Dynein axonemal heavy chain 11 
(Dnah11), originally referred to as left/right-dynein, were 
initially identified by their prominent laterality phenotypes. 
The spontaneous, heritable mutant inversus viscerum (iv), 
a targeted knockout, and three models identified in ENU 
screens for heterotaxy and congenital heart defects (lrm3, 
lrm5, and avc4) all have laterality defects, with a full PCD 
phenotype reported for the iv mutant [45, 56–59]. Immotile 
cilia without structural defects detected by TEM are com-
mon in these models [59, 60], although TEM tomography 

detected subtle ODA defects in human PCD patients with 
DNAH11 mutations [61–63]. In addition to the ODA genes, 
Dynein axonemal heavy chain 1 (DNAH1) or mouse Mdhc7, 
is the only IDA gene reported in a mouse model to date. Its 
importance was first uncovered in a knockout mouse exhibit-
ing male infertility and having tracheal epithelial cilia with a 
reduced CBF [64]. The infertility was confirmed in the ENU 
mutant ferf1 [65]. DNAH1 mutations have been reported in 
human patients diagnosed with PCD [66], as well as patients 
diagnosed only with multiple morphological abnormalities 
of the sperm flagella (MMAF) [67], a milder phenotype con-
sistent with the mouse models.

Several genes encoding axonemal proteins involved in 
dynein assembly and docking have been studied in mouse 
models. Table 2 shows that mutations in four genes required 
for proper ODA attachment, Armc4, Ccdc151, Mns1, and 
Ttc25, result in PCD phenotypes with absent ODAs. The 
novel Armadillo repeat-containing 4 (ARMC4), which is 
not found in lower organisms like C. reinhardtii, has been 

Table 1  Mouse models of dynein genes

HC hydrocephalus, HT heterotaxy (including situs inversus and congenital heart defects), KO knockout, MI male infertility (including spermato-
genesis and sperm motility defects), OM otitis media, N/A not reported, Sinus sinus abnormalities (including mucus accumulation and sinusitis), 
Sp spontaneous

Gene Allele PCD phenotypes Cilia structure Cilia function References

DNAH1 KO MI Defects not detected Reduced CBF Neesen [64]
ENU (ferf1) MI N/A N/A Hu [65]

DNAH5 KO HC, HT, OM, sinus No ODA Decreased flow Ibanez-Tallon [49, 50]
ENU HT No ODA N/A Tan [51]
ENU (Dakshi) N/A N/A Reduced CBF, 

decreased flow
Solomon [52]

DNAH11 Sp (iv) HT, OM, sinus Defects not detected Immotile Layton [56], Supp [57], Lucas [60]
ENU (lrm3) HT Defects not detected Immotile Ermakov [45], Lucas [60]
ENU (lrm5) HT N/A N/A Ermakov [45]
ENU (avc4) HT N/A N/A Burnicka-Turek [58]
KO HT N/A Immotile Supp [59]

DNAI1 Inducible KO Sinus No ODA Decreased flow Ostrowski [55]

Table 2  Mouse models of dynein docking genes

HC hydrocephalus, HT heterotaxy (including situs inversus and congenital heart defects), KO knockout, MI male infertility (including spermato-
genesis and sperm motility defects), N/A not reported

Gene Allele PCD phenotypes Cilia structure Cilia function References

ARMC4 ENU (Aotea) HC, HT No ODAs N/A Hjeij [68], Onoufriadis [69]
CCDC39 ENU HC, HT N/A Reduced CBF, decreased flow Solomon [52]

ENU (prh) HC No IDAs Reduced CBF, decreased flow Abdelhamed [76]
CCDC40 ENU (links) HT N/A N/A Becker-Heck [79]
CCDC151 ENU (snowball) HT No ODAs N/A Hjeij [70]

Inducible KO HC, HT, MI N/A N/A Chiani [71]
MNS1 KO HC, HT, MI No ODAs N/A Zhou [72]
TTC25 CRISPR HT No ODAs N/A Wallmeier [74]
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implicated in PCD in human patients and the ENU mouse 
model Aotea and is believed to play a role in the docking of 
ODA components [68, 69]. Mutations in Coiled coil domain 
containing 151 (CCDC151) result in absence of ODAs in 
PCD patients [70]. The phenotype was confirmed in the 
ENU mutant snowball (snbl) and a tamoxifen-inducible 
targeted knockout, although only laterality defects were 
reported for snbl mutants [70, 71]. The knockout model 
replaces exons 2 and 3 with a LacZ reporter gene, which 
enabled microcomputed tomography (microCT) X-ray 
analysis of LacZ staining in heterozygous brains to detect 
Ccdc151 expression throughout the ventricular system [71]. 
The importance of Meiosis-specific nuclear structural pro-
tein 1 (MNS1), which encodes a cytoplasmic and axonemal 
protein involved in the ODA docking complex assembly, was 
identified in a targeted knockout model and confirmed in 
patients with PCD phenotypes [72, 73]. Similarly, Tetratri-
copeptide repeat domain 25 (TTC25), which is also believed 
to play a role in ODA docking complex assembly, was 
evaluated in a null allele generated through CRISPR/Cas9 
gene editing [74]. Mutants were only reported to have situs 
inversus, but the absence of ODAs was observed in cilia 
from mutant mice and PCD patients with TTC25 mutations 
[74]. In addition, IDA and N-DRC docking are dependent 
on and determined by CCDC39 and CCDC40, which were 
shown in C. reinhardtii to interact to form the molecular 
ruler that determines the 96 nm axonemal repeat unit [75]. 
CCDC39 is required for proper IDA and N-DRC structure 
in human patients, and two ENU-induced mouse models 
exhibit PCD, reduced CBF, and perturbed ciliary clearance 
[52, 76–78]. Analysis of brains from the ENU mutant pro-
gressive hydrocephalus (prh) demonstrated increased gliosis 
and disrupted cerebrospinal fluid (CSF) flow in vivo [76]. 
Mutations in CCDC40 have also been identified in human 
PCD patients and the ENU allele lnks [79]. Homozygous 
lnks mutants have shortened nodal cilia, indicating a defect 

in cilia assembly, and randomized expression of left–right 
patterning in the gastrulating embryo [79, 80].

Several additional proteins typically referred to as 
dynein axonemal assembly factors localize exclusively to 
the cytoplasm and function in pre-assembly of dynein arm 
components. Mouse models have been reported with PCD 
phenotypes and absence of inner and outer dynein arms 
due to mutations in genes encoding DNAAF1/LRRC50, 
DNAAF2/KTU, DNAAF4/DYX1C1, LRRC6, RUVBL1/
PONTIN, DNAAF6/PIHD3, and DNAAF7/ZMYND10 
(Table 3). Dynein axonemal assembly factor 1 (DNAAF1), 
also known as Leucine-rich repeat containing 50 (LRRC50), 
is required for dynein arm assembly in C. reinhardtii [81]. 
DNAAF1 mutations were also identified in PCD patients, 
patients with congenital heart disease, and fetuses with 
neural tube defects and hydrocephalus [82–85], as well 
as an ENU mutant mouse with immunofluorescence (IF) 
analysis showing partial ODA assembly [86]. Mutations 
in DNAAF2, also known as Kintoun (Ktu), were identified 
in human PCD patients [87]. Ependymal cells in a tradi-
tional targeted knockout showed abnormal basal foot ori-
entation and rotational polarity [88]. DNAAF2 expression 
was observed prior to ciliogenesis in mTECs, confirming an 
early role in cilia assembly. Interestingly, a second targeted 
allele reported by Cheong et al. has a severe developmental 
phenotype characterized by a morphologically abnormal 
node and left–right patterning defects during gastrulation 
[89]. Although both models removed exons at the 5′ end of 
the gene, the model reported by Cheong et al. is a congenic 
line on the C57BL/6NJ genetic background compared to the 
mixed genetic background reported for the earlier model by 
Matsuo et al., suggesting that genetic modifiers may influ-
ence the developmental phenotype.

Loss of DNAAF4, also known as Dyslexia susceptibil-
ity candidate 1 (DYX1C1), results in PCD with dynein arm 
defects in human patients, a phenotype that was confirmed 

Table 3  Mouse models of dynein pre-assembly genes

HC hydrocephalus, HT heterotaxy (including situs inversus and congenital heart defects), KO knockout, MI male infertility (including spermato-
genesis and sperm motility defects), N/A not reported, Sinus sinus abnormalities (including mucus accumulation and sinusitis)

Gene Allele PCD phenotypes Cilia structure Cilia function References

DNAAF1/LRRC50 ENU HC, HT, sinus N/A N/A Ha [86]
DNAAF2/KTU KO HC, HT No IDAs, no ODAs N/A Matsuo [88]

KO HT N/A N/A Cheong [89]
DNAAF4/DYX1C1 KO HC, HT No IDAs, no ODAs N/A Tarkar [90]

ENU (sharpei) HT N/A N/A Tarkar [90]
LRRC6 KO HC, HT No ODAs Reduced CBF Inaba [93]
DNAAF6/PIH1D3 KO MI N/A N/A Dong [96]
RUVBL1/PONTIN Conditional KO HC, MI No IDAs, no ODAs N/A Dafinger [95], Li [94]
DNAAF7/ZMYND10 KO HC, sinus No IDAs, no ODAs N/A Cho [99]

CRISPR HC, HT, sinus No IDAs, no ODAs Reduced CBF Mali [100]
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in mice with a traditional targeted allele and the ENU allele 
Sharpei [90]. The role of the novel Leucine-rich repeat 
containing 6 (LRRC6) in ODA assembly and cilia motility 
was identified in PCD patients and a traditional knockout 
mouse [91–93]. RuvB-like AAA ATPase (RUVBL1), also 
known as PONTIN, is an ATPase believed to function as a 
chaperone in cytoplasmic dynein arm pre-assembly [94]. 
Conditional knockout in cells assembling motile cilia using 
a tamoxifen-inducible Foxj1-CreER mouse line results in 
hydrocephalus and mislocalization of dynein proteins in 
ependymal cells [95], while conditional knockout in testis 
using a Stra8-Cre line results in immotile sperm with ODA 
defects [94]. A targeted mouse model lacking the cytoplas-
mic DNAAF6, also known as PIH1 domain-containing 3 
(PIH1D3), was reported to have spermatogenesis defects 
with a loss of flagellar dynein arms, suggesting a role in 
pre-assembly of axonemal dynein arms [96]. PIH1D3 muta-
tions in human PCD patients represent rare cases of X-linked 
recessive inheritance of PCD [17, 18]. Finally, a role for 
the novel DNAAF7, also known as Zinc finger MYND-type 
containing 10 (ZMYND10) was identified in PCD patients 
and confirmed in knockout mouse models generated by 
traditional gene targeting and CRISPR/Cas9 gene edit-
ing [97–100]. Co-immunoprecipitation (co-IP) in cultured 
mTECs and IP/mass spectrometry analysis in mouse tes-
tis showed that ZMYND10 interacts with several proteins 
involved in the cytoplasmic chaperone system required for 

dynein pre-assembly and maintenance of dynein stability 
[99, 100]. Taken together, models with mutations in genes 
encoding dynein arm proteins and assembly factors under-
score the importance and complexity of the axonemal dynein 
system.

Central pair apparatus structure and assembly

The dynein motor force and ciliary waveform are believed to 
be regulated by the central pair apparatus (CPA) (Fig. 1), an 
intricate structure consisting of C1 and C2 singlet microtu-
bules and an array of associated protein projections (C1a-f, 
C2a-e) (reviewed in detail in Loreng and Smith 2016 and 
Teves et al. 2016) [25, 101]. Several proteins associated with 
the CPA or required for CPA assembly have been studied in 
genetic mouse models of PCD, many of which have CPA 
structural defects and reduced CBF (Table 4). Because nodal 
cilia do not possess a CPA, laterality defects are never asso-
ciated with the PCD phenotypes in these models. The spon-
taneous hy3 mouse was first identified in the 1940s because 
of its severe hydrocephalus, although a nasal discharge 
was also observed in homozygous mutants [102–106]. The 
hy3 phenotype was later found to result from a mutation in 
the gene encoding C2b projection protein Hydrocephalus-
inducing (HYDIN), with mutant mouse cilia lacking the C2b 
projection and exhibiting abnormal ciliary bending and fluid 
flow [107–109]. Another hydrocephalic model, ove459, was 

Table 4  Mouse models of central pair apparatus (CPA) structure and assembly genes

HC hydrocephalus, KO knockout, Lung lung abnormalities (including bronchitis and bronchiectasis), MI male infertility (including spermato-
genesis and sperm motility defects), OM otitis media, N/A not reported, Sinus sinus abnormalities (including mucus accumulation and sinusitis), 
Sp spontaneous, Tg transgene

Gene Allele PCD phenotypes Cilia structure Cilia function References

CFAP54 Gene trapped HC, MI, sinus CPA defects Reduced CBF, decreased 
flow

McKenzie [136]

CFAP221/PCDP1 Sp (nm1054) HC, MI, sinus Defects not detected Reduced CBF Lee [134]
HYDIN Sp (hy3) HC, sinus CPA defects Reduced CBF, decreased 

flow
Berry [103], Gruneberg 

[102], Lawson [105], 
McLone [106], Raimondi 
[104], Davy [110], Lech-
treck [108]

Tg insertion (ove459) HC N/A N/A Davy [110]
SPAG6 KO HC, MI, OM CPA defects Reduced CBF Li [113], Sapiro [112], 

Teves [114]
SPAG16 KO (SPAG16L) MI N/A N/A Zhang [115]
SPAG6; SPAG16L Double KO HC, lung Defects not detected N/A Zhang [118]
SPAG17 Conditional KO HC, MI, lung, sinus CPA defects N/A Teves [121], Kazarian [122]
SPEF2/KPL2 Sp (bgh) HC, MI, sinus Defects not detected Reduced CBF Sironen [127]

Conditional KO HC, MI Defects not detected N/A Lehti [128, 129]
STK36/FUSED KO HC, MI, OM, sinus N/A N/A Merchant [137]

KO HC, MI, OM, sinus N/A N/A Vogel [138]
KO None CPA defects Reduced CBF Chen [140], Nozawa [141], 

Wilson [254]
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reported to result from a transgene insertion that disrupted 
the Hydin gene [110]. HYDIN mutations were confirmed in 
human PCD patients with CPA defects [109].

A targeted mutation in Sperm associated antigen 6 
(Spag6), which encodes a C1 microtubule-associated pro-
tein required for C1 stability in C. reinhardtii, results in a 
PCD phenotype with CPA structural defects, disorganized 
basal feet, and abnormal ciliary polarity [111–114]. Scan-
ning electron microscopy (SEM) revealed reduced num-
bers of motile cilia on tracheal epithelial and ependymal 
cells, suggesting a potential role for SPAG6 in ciliogenesis 
[114]. Targeted loss of the flagellar long form of SPAG16 
(SPAG16L), which interacts with SPAG6 and localizes to 
the CPA microtubule bridge in C. reinhardtii, results in sper-
matogenesis defects [115–117]. Crossing the Spag16l and 
Spag6 knockout lines result in a severe PCD phenotype in 
double mutants, demonstrating a genetic interaction between 
the two CPA genes [118].

SPAG17 localizes to the C1a projection in C. reinhardtii 
and is required for proper C1a assembly [119, 120]. Cross-
ing a conditional Spag17 knockout with a ubiquitous CMV-
Cre line produces a PCD phenotype with CPA assembly 
defects [121], and crossing to a Sox2-Cre line to ensure loss 
in germ cells demonstrated severe defects in spermatogen-
esis [122]. These phenotypes were confirmed by identifica-
tion of SPAG17 mutations in PCD patients and patients with 
asthenozoospermia [123, 124]. Loss of Sperm flagellar 2 
(Spef2), also known as Kpl2, which encodes a C1b projec-
tion protein in C. reinhardtii, results in PCD phenotypes 
without ciliary axonemal defects detected by TEM in the 
spontaneous mouse line big giant head (bgh) and a targeted 
knockout [125–129]. Confirming its role, SPEF2 mutations 
were recently identified in human PCD patients and MMAF 
patients without PCD [130–132]. Similarly, PCD without 
apparent axonemal defects in the spontaneous mouse model 
nm1054 results from the deletion of Cilia and flagella asso-
ciated protein 221 (Cfap221), also known as Primary ciliary 

dyskinesia protein 1 (Pcdp1), which encodes a C1d projec-
tion protein in C. reinhardtii [133, 134]. CFAP221 mutations 
were also recently identified in human PCD patients [135]. 
Another member of the C1d projection complex, CFAP54, 
was studied in a mouse model with a gene-trapped allele that 
results in a similar phenotype but with a detected loss of the 
C1d projection by TEM [133, 136]. Finally, two separate 
targeted knockout mouse models lacking Ser/Thr kinase 36 
(Stk36), also known as Fused, showed a PCD phenotype 
[137, 138], and a third targeted allele was reported to have 
motile cilia lacking a CPA [139–141]. Although the precise 
localization of STK36 in the CPA is unknown, mouse mod-
els and PCD patients with STK36 mutations demonstrate 
an important role in CPA assembly [142]. Taken together, 
mouse models with mutations in CPA genes highlight the 
striking complexity of this critical ciliary structure.

Radial spoke structure and assembly

The radial spokes connect the outer A microtubule to the 
CPA, with the stalk attached to the microtubule and the 
spoke head associating with the CPA (Fig. 1) (reviewed in 
detail in Zhu et al. 2017) [28]. Along with the CPA, the 
radial spokes play a pivotal role in regulating ciliary beat fre-
quency and waveform. Mouse models with mutations in the 
radial spoke genes exhibit PCD phenotypes and axonemal 
assembly defects that often lead to a rotational ciliary wave-
form rather than planar beating (Table 5). Radial spoke head 
component 1 (RSPH1), a spoke head protein implicated in a 
relatively mild human PCD phenotype with CPA and spoke 
head defects, was studied in a traditional targeted mouse 
with CPA and waveform defects preventing proper muco-
ciliary clearance [35, 143–146]. Similarly, traditional TEM 
and high-resolution cryo-electron tomographic analyses in a 
targeted knockout mouse lacking another radial spoke head 
gene, Rsph4a, showed spoke head defects, and CPA defects 
were observed in PCD patients with RSPH4A mutations 

Table 5  Mouse models of radial 
spoke structure and assembly 
genes

HC hydrocephalus, KO knockout, MI male infertility (including spermatogenesis and sperm motility 
defects), N/A not reported, Sinus sinus abnormalities (including mucus accumulation and sinusitis)

Gene Allele PCD phenotypes Cilia structure Cilia function References

CFAP206 KO HC, MI, sinus N/A Increased CBF Beckers [156]
DNAJB13 CRISPR HC N/A N/A Oji [153]

Chimeric with 
biallelic muta-
tions

MI N/A N/A Oji [153]

NME5 KO HC, MI, sinus N/A N/A Vogel [138]
RSPH1 KO HC, sinus CPA defects Rotational waveform, 

decreased flow
Yin [146]

RSPH4 KO HC RS defects Rotational waveform Shinohara 
[149], Yoke 
[150]



776 L. Lee, L. E. Ostrowski 

1 3

[147–150]. Mutations in Non-metastatic 5 (Nme5), which 
encodes a nucleoside diphosphate kinase that localizes to 
the radial spoke stalk in C. reinhardtii, result in a PCD phe-
notype in mice with a traditional targeted allele and human 
patients with radial spoke and CPA defects [138, 151, 152]. 
DnaJ heat shock protein family member B13 (DNAJB13), a 
heat shock protein 40 (HSP40) co-chaperone that localizes 
to the radial spoke, was studied in a CRISPR/Cas9 gene-
edited mouse model that exhibits severe hydrocephalus and 
early mortality, while chimeric mice with bi-allelic muta-
tions have male infertility due to spermatogenic defects [153, 
154]. Human mutations result in PCD with CPA defects 
[155]. Finally, a traditional targeted allele of Cfap206, which 
is required for radial spoke and dynein docking in Tetrahy-
mena, results in PCD with increased ciliary motility [156, 
157]. These models support the hypothesis of an important 
functional link between the radial spokes and CPA, as well 
as demonstrate the critical role of both structures in regulat-
ing ciliary waveform.

The nexin‑dynein regulatory complex

The N-DRC is a large complex associated with the outer 
microtubule doublets that regulates doublet alignment and 
sliding during axonemal bending, as well as other pro-
tein complexes within the 96 nm repeat unit (Fig. 1) [158, 
159]. Genetic manipulation of two genes resulting in PCD 
has shed light on this structure (Table 6). The novel cili-
ary protein Growth arrest-specific 8 (GAS8), also known 
as Dynein regulatory complex 4 (DRC4), is required for 
N-DRC assembly and structural integrity in C. reinhardtii, 
and human mutations result in PCD with N-DRC assembly 
defects [160–163]. Mice with a gene-trapped allele have dis-
organized microtubule doublets resulting in abnormal ciliary 
waveform and reduced motility [163]. Crossing these null 
mice to a knock-in line with a missense mutation found in 
human patients resulted in compound heterozygotes display-
ing only mild hydrocephalus and lacking significant ciliary 
motility defects, suggesting that the compound heterozygous 
mouse is a hypomorph [163]. In addition, a PCD phenotype 
results from an ENU-induced missense mutation in LRRC48, 
also known as DRC3, which encodes an N-DRC protein that 

regulates C. reinhardtii flagella [86, 164]. Although it has 
been less studied in mouse models than other ciliary con-
stituents, mutations affecting the N-DRC highlight its impor-
tance in regulating ciliary function.

Multiciliated cell differentiation

Differentiation of multiciliated cells from epithelial pro-
genitors is a complex process initiated by inactivation of 
Notch signaling, which drives expression of a cascade of 
transcription factors that include GEMC1, E2F, MCIDAS, 
TAp73, and ultimately, the direct regulators of the ciliary 
transcriptome FOXJ1 and multiple RFX family transcrip-
tion factors (reviewed in detail in Boutin and Kodjabachian 
2019 and Spassky and Meunier 2017) [30, 31]. This pathway 
drives proper cell polarity, formation and apical localization 
of basal bodies derived from centrioles, and ciliogenesis on 
the apical surface of the cell. Formation of motile cilia is 
driven by the intraflagellar transport (IFT) machinery that 
carries ciliary cargo to the tip for assembly and recycles 
cargo for continued ciliary growth [165]. Table 7 shows that 
mouse models with mutations in genes driving multiciliated 
cell differentiation typically have PCD phenotypes and loss 
of motile cilia.

Forkhead box J1 (Foxj1), also known as Hepatocyte 
nuclear factor 3 forkhead homolog 4 (Hfh4), encodes a 
winged-helix transcription factor expressed only in cells 
assembling motile cilia and, in 1998, was the first gene 
required for motile cilia formation or function to be studied 
in a knockout mouse model [166, 167]. Two separate tar-
geted alleles showed an absence of motile cilia on the airway 
epithelial surface and loss of ependymal differentiation from 
radial glia in the brain [167–169]. While the presence of 
basal bodies in both models indicates a commitment to the 
ciliated cell fate upstream of FOXJ1, the basal bodies are 
disorganized and not properly localized to the apical surface 
[170, 171]. Gene expression studies demonstrated a direct 
role for FOXJ1 in driving the ciliary transcriptome. Micro-
array analysis of the rostral forebrain identified a number 
of ciliary genes that are down-regulated in knockout mice, 
identifying FOXJ1 as a master regulator of ciliogenesis 
[169]. FOXJ1 mutations were recently identified in PCD 

Table 6  Mouse models of nexin-dynein regulatory complex (N-DRC) genes

HC hydrocephalus, HT heterotaxy (including situs inversus and congenital heart defects), KO knockout, MI male infertility (including spermato-
genesis and sperm motility defects), N/A not reported, Sinus sinus abnormalities (including mucus accumulation and sinusitis)

Gene Allele PCD phenotypes Cilia structure Cilia function References

GAS8/DRC4 Gene trapped HC, HT Microtubule defects Abnormal waveform, reduced 
CBF, decreased flow

Lewis [163]

Gene trapped; 
CRISPR knock-in

HC N/A Normal Lewis [163]

LRRC48/DRC3 ENU HC, HT, sinus N/A N/A Ha [86]
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patients and, unlike the mouse models, represent the only 
known example of autosomal dominant PCD [20].

Several members of the Regulatory factor X (RFX) tran-
scription factor family play varied roles in regulating mul-
ticiliated cell differentiation. Rfx2, which is expressed in 
both motile and primary ciliated cells, has been studied in 
two targeted knockout mouse models and one gene-trapped 
allele, all of which have spermatogenic defects but no other 
PCD phenotypes [172–174]. Quantitative RT PCR, RNA 
sequencing (RNA-seq), and ChIP-sequencing (ChIP-seq) 
analyses in testis from both knockout models identified a 
large number of ciliary genes that are regulated by RFX2 
[173, 174]. Mice with a targeted allele of Rfx3 have short-
ened cilia that are also fewer in number and have a reduced 
CBF [175–177]. Quantitative RT PCR and ChIP experi-
ments showed regulation of ciliary genes, including Foxj1, 
in mutant ependymal cells [177]. Finally, family member 
Rfx4 has been studied in a conditional targeted knockout and 
an ENU allele [178, 179]. Breeding the conditional knockout 
to a Sox2-Cre mouse line removed Rfx4 during development 
and resulted in a severe phenotype of hydrocephalus and 
holoprosencephaly, accompanied by a reduced number of 

ependymal cilia [178]. The missense mutation in the ENU 
mutant prevents proper nuclear localization of RFX4 and 
similarly results in severe brain developmental defects and 
early post-natal mortality [179]. Gene expression studies in 
brains from wild type and the knockout mouse showed that 
RFX4 is also a direct regulator of Foxj1 expression [178].

Mutations in the gene encoding transcription factor 
Multiciliate differentiation and DNA synthesis associ-
ated cell cycle protein (MCIDAS), also known as Multi-
cilin, result in human PCD with a reduced number of cilia 
assembled on respiratory epithelial cells [180]. A mouse 
model lacking MCIDAS through CRISPR/Cas9 gene edit-
ing has airway epithelial cells with defects in basal body 
formation and ciliogenesis [181]. A role for transcription 
factor Geminin coiled-coil domain containing 1 (Gemc1) 
was uncovered in traditional and conditional knockout 
models lacking multiciliated cells [182–185]. Microar-
ray analyses of mutant trachea and oviduct showed down-
regulation of several ciliary genes, including Mcidas and 
Foxj1 [184], indicating that GEMC1 acts upstream of these 
factors to regulate differentiation. Experiments involving 
electroporation of Gemc1 or Mcidas into E14.5 mouse 

Table 7  Mouse models of multiciliated cell differentiation genes

FI female infertility, HC hydrocephalus, HT heterotaxy (including situs inversus and congenital heart defects), KO knockout, MI male infertility 
(including spermatogenesis and sperm motility defects), N/A not reported, Sinus sinus abnormalities (including mucus accumulation and sinusi-
tis)

Gene Allele PCD phenotypes Cell structure Cilia function References

CCNO KO HC, sinus Fewer cilia, centriole defects N/A Funk [188]
KO HC, MI, FI No cilia N/A Nunez-Olle [189]

FOXJ1/HFH4 KO HC, HT No cilia, basal body defects N/A Chen [167], Gomperts [171], You [170]
KO HC, HT No cilia, basal body defects N/A Brody [168], Gomperts [171], You [170]

GEMC1 Conditional KO HC No cilia N/A Arbi [182], Lalioti [183]
KO HC, MI, FI No cilia N/A Terre [184, 185]

MCIDAS CRISPR N/A Fewer cilia, basal body defects N/A Lu [181]
MT1-MMP KO HC Fewer cilia, shorter cilia, basal 

body defects
Decreased flow Jiang [195]

RFX2 Gene trapped MI N/A N/A Shawlot [172]
KO MI N/A N/A Kistler [173]
KO MI N/A N/A Wu [174]

RFX3 KO HC, HT Fewer cilia, shorter cilia Reduced CBF Baas [176], Bonnafe [175], El Zein [177]
RFX4 Conditional KO HC Fewer cilia N/A Xu [178]

ENU None N/A N/A Ashique [179]
SNX27 KO HC Fewer cilia N/A Wang [196]
TAp73 KO HC, sinus No cilia N/A Gonzalez-Cano [191], Nemajerova [192], 

Yang [190]
KO N/A No cilia N/A Marshall [193]
Conditional KO HC N/A N/A Fujitani [194]
Knock-in HC N/A N/A Fujitani [194]

ULK4 KO HC, sinus N/A N/A Vogel [138]
KO HC Microtubule defects Decreased flow Liu [200]

VPS35 Conditional KO HC Fewer cilia N/A Wu [199]
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apical progenitor cells or radial glia showed that expres-
sion of either gene drives differentiation into ependymal 
cells [186]. A GEMC1 mutation was identified in a patient 
with congenital hydrocephalus [183]. Cell cycle regula-
tor Cyclin O (CCNO), which is regulated by the GEMC1 
cascade, has been implicated in human PCD and stud-
ied in two targeted knockout models with loss of motile 
cilia [187–189]. Mutant mice have structurally abnormal 
centrioles, indicating that CCNO plays a role in centri-
ole maturation [188]. Similarly, mutations in the gene 
encoding transcription factor Tumor-associated protein 
73 (TAp73), also known as p73, have been reported in 
two traditional knockout mice and one conditional targeted 
allele crossed to an inducible Foxj1-CreERT2 line, all of 
which lack multiciliated cells [190–194]. Applications of 
RNA-seq, ChIP, ChIP-seq, and luciferase experiments in 
mTECs showed direct regulation of several cilia-related 
genes, including Foxj1, Rfx2, and Rfx3 [192, 193]. Consist-
ent with the knockout lines, an additional TAp73 knock-in 
mouse with the TAp73 gene disrupted by insertion of a 
LacZ/neomycin cassette was also reported to have severe 
hydrocephalus [194].

A traditional targeted allele of Membrane type 1 matrix 
metalloproteinase (MT1-MMP) results in early mortality and 
hydrocephalus due to impaired ependymal cell differentia-
tion and abnormal basal body polarity [195]. Mutant epend-
ymal cells assemble fewer and shorter cilia with reduced 
motility, and treatment of brains with a Notch inhibitor 
ex vivo rescued the ciliogenesis defects, suggesting that 
MT1-MMP drives ependymal differentiation through inhibi-
tion of Notch signaling. A similar phenotype of hydrocepha-
lus and perturbed ependymal differentiation was reported for 
a traditional knockout mouse lacking endosomal trafficking 
protein Sorting nexin 27 (SNX27) [196]. The hydrocephalus 
was ameliorated by injection of Notch signaling inhibitors 
into E14.5 embryos in utero, suggesting that SNX27 also 
regulates differentiation of ciliated ependymal cells through 
Notch inhibition. Vacuolar protein sorting-associated protein 
35 (VPS35), a component of the retromer complex involved 
in transmembrane protein recycling, was initially implicated 
in late-onset Parkinson’s Disease [197, 198]. However, 
crossing a conditional knockout mouse to the Foxj1-CreER 
and GFAP-CreER mouse lines to assess loss in ependyma 
resulted in hydrocephalus and defects in ciliated ependymal 
cell differentiation [199]. A role for serine/threonine kinase 
Unc-51 like kinase 4 (ULK4) was identified in two targeted 
knockout mice with PCD phenotypes [138, 200]. Ependymal 
cilia have microtubule defects that reduce CSF flow, and 
RNA-seq analysis showed that Foxj1 expression is perturbed 
in the mutant cerebral cortex [200]. Overall, mouse models 
have been instrumental in understanding muticiliated cell 
differentiation and elucidating the molecular cascade driving 
these critical cellular changes.

Ciliogenesis and IFT

The IFT process responsible for the formation of both 
motile and primary cilia involves the assembly of IFT-A 
and IFT-B complexes into multi-unit IFT trains that carry 
cargo to the tip (anterograde transport) via the kinesin-2 
motor protein and multi-unit IFT trains that recycle (retro-
grade transport) via the cytoplasmic dynein-2 motor pro-
tein (reviewed in detail in Ishikawa and Marshall 2017, 
Nakayama and Katoh 2020, and Prevo et al. 2017) [165, 
201, 202]. A more detailed understanding of motile cili-
ogenesis has come from mouse models with mutations 
in genes involved in basal body formation, intracellular 
trafficking, and intraflagellar transport, as well as genes 
encoding several novel proteins. Table 8 shows that these 
models exhibit a wide range of PCD-related phenotypes 
but commonly display basal body defects and a reduced 
number of motile cilia. While additional mouse models 
lacking IFT proteins exhibit defects in primary cilia or 
sperm flagella, only those with aberrations in or a direct 
connection to motile cilia are discussed here.

Mice with a targeted allele of Centrosomal protein 164 
(Cep164) have a variety of developmental defects consist-
ent with a primary ciliopathy, but conditional loss using a 
Foxj1-Cre mouse line shows a role in motile ciliogenesis 
with fewer cilia, defects in vesicle trafficking to the basal 
bodies, and abnormal localization of basal body proteins in 
mTECs [203]. The basal body protein CHIBBY (CBY) was 
revealed through a targeted mouse allele to play a pivotal 
role in ciliogenesis, with mutants having an altered ciliary 
structure, abnormally positioned basal bodies, a reduced 
number of ciliary vesicles, and defects in the recruitment 
of the CEP164 complex to the basal body [204–207]. A tra-
ditional knockout mouse lacking the Retinitis pigmentosa 
GTPase regulator (RPGR), which is thought to play a role 
in photoreceptor connecting cilium transport and localizes to 
the motile ciliary transition zone between the basal body and 
axoneme, showed an X-linked retinitis pigmentosa pheno-
type [208, 209]. A subsequent model with transgenic over-
expression of Rpgr showed an absence of sperm flagella in 
the mutant testis [210], indicating that dysregulation of Rpgr 
perturbs spermatogenesis. A requirement in motile cilia was 
confirmed in human patients, where RPGR mutations result 
in X-linked PCD with associated retinitis pigmentosa, as 
well as defects in airway ciliary orientation and motility [19, 
211]. The requirement of IFT-B complex member IFT88, 
also known as Polaris, in motile and primary ciliogenesis 
has been uncovered in a mouse line with a transgene inser-
tion disrupting Ift88 (orpk) and a conditional knockout 
[212–214]. Mutant motile cilia are fewer in number, abnor-
mally shaped, and have a reduced CBF [212–214]. In addi-
tion, WDR69 was identified in C. reinhardtii as an adaptor 
protein involved in the transport of ODA components [215, 
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216]. An ENU-induced allele of Wdr69 was shown to have 
dyskinetic cilia using μOTC analysis [52].

Novel roles for CYLD, CFAP157, ODF2, JHY, and 
NHERF1 in ciliogenesis have also been revealed through 
mouse models. A traditional targeted allele of CYLD lysine 
63 deubiquitinase (Cyld), which is thought to be required 
for de-ubiquitination and proper localization of centrosomal 
proteins, has defects in both motile and primary ciliogen-
esis, including abnormal axonemal structures and shortened 
motile cilia [217]. The novel CFAP157 localizes to the basal 
bodies of motile and primary ciliated cells, and male mice 
with a traditional targeted allele have reduced fertility due 
to flagellar axonemal defects [218]. A targeted knockout of 
the gene encoding centrosomal and basal body protein Outer 
dense fiber 2 (ODF2), also known as Cenexin 1, results in 
PCD with impaired ciliary waveform due to improper basal 
body polarization [219, 220]. High percentage chimeric 
male mice with a gene-trapped allele were also reported to 
have spermatogenic defects [221]. Loss of the novel Juvenile 
hydrocephalus (Jhy) in mice with an enhancer-trapped allele 
results in severe hydrocephalus with delayed differentiation 
of ependymal cells, microtubule defects and abnormal posi-
tioning of the basal feet in ependymal cilia, and abnormal 
directional flow [222, 223]. A severe hydrocephalus pheno-
type and abnormal ciliary orientation were also observed in 
mice with a traditional targeted allele of the gene encoding 
the cytoskeletal-associated Na + /H + exchanger regulatory 

factor 1 (NHERF1) [224]. Immunofluorescence analysis of 
mutant brain sections showed mislocalization of planar cell 
polarity (PCP) proteins, suggesting that NHERF1 regulation 
of ciliary orientation and biogenesis is dependent on the 
non-canonical Wnt signaling pathway.

One report has implicated microRNAs (miRNAs) in a 
mouse model with perturbed motile ciliogenesis. The mir-
34/449 miRNA family spans three genomic loci, and a triple 
knockout mouse has a PCD phenotype due to loss of mul-
ticiliated cells and mature sperm [225]. Tracheal epithelial 
cells showed a defect in basal body docking and decreased 
cilia-driven flow. Interestingly, mutant tracheae have an 
increase in expression of CEP110 [225], which plays a role 
in suppressing ciliogenesis [226], suggesting that the mir-
34/449 miRNAs promote ciliogenesis by inhibiting CEP110 
expression. Although there is also an extensive body of 
information about ciliogenesis and IFT in primary cilia [23], 
these mouse models have effectively uncovered a number of 
important proteins and their role in motile cilia biogenesis.

Microtubule assembly and modification

The ciliary axoneme is highly dependent on the assembly 
of tubulin into the 9 + 2 microtubule structure. Post-trans-
lational modification of tubulin, including detyrosination, 
glutamylation, and glycylation, is critical for proper micro-
tubule assembly and function in motile cilia (reviewed in 

Table 8  Mouse models of ciliogenesis and IFT genes

HC hydrocephalus, HT heterotaxy (including situs inversus and congenital heart defects), KO knockout, Lung lung abnormalities (including 
bronchitis and bronchiectasis), MI male infertility (including spermatogenesis and sperm motility defects), OM otitis media, N/A not reported, 
Sinus sinus abnormalities (including mucus accumulation and sinusitis), Tg transgene

Gene Allele PCD phenotypes Cilia structure Cilia function References

CBY KO Sinus Fewer cilia, microtubule and 
basal body defects

N/A Love [205], Siller [206], Voronina 
[207]

CEP164 Conditional KO HC Fewer cilia, basal body traffick-
ing defects

N/A Siller [203]

CFAP157 KO MI N/A N/A Weidemann [218]
CYLD KO MI Fewer cilia, shorter cilia, micro-

tubule and basal body defects
N/A Yang [217]

IFT88/Polaris Tg insertion (orpk) HC, HT Fewer cilia, abnormal shape Reduced CBF Taulman [212], Banizs [213]
Conditional KO Lung Fewer cilia Reduced CBF Gilley [214]

JHY Enhancer trapped HC Fewer cilia, microtubule and 
basal foot defects

Decreased flow Appelbe [222], Muniz-Talavera 
[223]

NHERF1 KO HC Fewer cilia, abnormal orienta-
tion

Decreased flow Treat [224]

ODF2 Gene trapped MI N/A N/A Tarnasky [221]
KO HC, OM, sinus Fewer cilia, basal body and 

basal foot defects
Abnormal wave-

form, decreased 
flow

Kunimoto [220]

RPGR KO N/A N/A N/A Hong [208, 209]
Tg over-expression MI N/A N/A Brunner [210]

WDR69 ENU HC, HT No ODAs Dyskinetic cilia Solomon [52]
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detail in Wloga et al. 2017) [227]. Several genes encod-
ing proteins involved in post-translational modification 
and polymerization of microtubules have been studied in 
mouse models, with loss often producing a PCD pheno-
type due to a wide variety of ciliary defects (Table 9). Loss 
of heat shock transcription factor 1 (HSF1) in a traditional 
knockout results in axonemal microtubule defects, as well 
as reduced CBF and perturbed flow [228, 229]. Expression 
of several heat shock proteins is decreased in the mutant 
cilia, and ChIP analysis identified that HSF1 directly 
binds the promoter of HSP90, a chaperone involved in 
tubulin polymerization and pre-assembly of dynein arms 
[228–230], indicating that HSF1 is a regulator of heat 
shock protein-dependent axonemal assembly. TEKTIN-t, 
a member of the cytoskeletal tektin protein family that 
plays a role in stabilizing microtubules and regulating 
ciliary assembly, was studied in a mouse model with a 
gene-trapped allele that results in loss of IDAs in cilia 
and flagella, indicating a role in IDA stabilization [231, 
232]. Similarly, traditional knockout and gene-trapped 
alleles of tubulin tyrosine ligase-like 1 (Ttll1), which is 
responsible for tubulin glutamylation, produce a PCD 
phenotype, including a persistent cough detected in the 
knockout model [233–235]. Knockout cilia are abnor-
mally shaped and exhibit an altered waveform, increased 
CBF, and decreased flow [235]. The kinesin motor pro-
tein Kinesin family member 19A (KIF19A) localizes to 
the ciliary tip and promotes microtubule depolymeriza-
tion, and a traditional knockout has elongated cilia with 
an abnormal waveform [236, 237], indicating an impor-
tant role for polymerization and depolymerization of 
microtubules in proper ciliary assembly. Loss of KIF27, 

another kinesin family member with a microtubule-bind-
ing domain, also produces a PCD phenotype in a mouse 
model with a gene-trapped allele [138]. A gene-trapped 
allele of Calmodulin regulated spectrin associated pro-
tein 3 (Camsap3), a microtubule-binding protein involved 
in microtubule assembly, polarity, and stability in a vari-
ety of cell types, results in longer and abnormally curved 
motile cilia with CPA microtubule defects and reduced 
CBF, indicating an important role in axonemal microtu-
bule assembly [238–240]. Loss of the novel galectin GAL3 
in a traditional targeted knockout results in a reduced num-
ber of ependymal cilia and abnormally oriented tracheal 
epithelial cilia with microtubule defects and abnormal 
directional flow [241, 242]. Immunoelectron microscopy 
demonstrated that GAL3 localizes to the basal foot and 
ciliary rootlet, and EM tomography showed a disrupted 
association between the basal foot and the ciliary root-
let microtubules in knockout mice [241], indicating that 
GAL3 is required for proper microtubule assembly and 
interaction. Finally, mutations in Growth arrest specific 
2 like 2 (GAS2L2), which encodes a ciliary base protein 
involved in actin-microtubule interaction, were found to 
cause PCD in human patients with hyperkinetic cilia, and 
a conditional knockout mouse crossed to the tamoxifen-
inducible Foxj1-CreERT2::GFP line for inducible loss in 
motile ciliated cells showed abnormal ciliary orientation, 
increased CBF, and reduced nasal clearance of radioac-
tive particles in vivo [243, 244]. Mouse models disrupt-
ing microtubule assembly and modification underscore the 
important role for these varied proteins in proper ciliary 
assembly, integrity, and function.

Table 9  Mouse models of microtubule modification genes

FI female infertility, HC hydrocephalus, HT heterotaxy (including situs inversus and congenital heart defects), KO knockout, MI male infertility 
(including spermatogenesis and sperm motility defects), OM otitis media, N/A not reported, Sinus sinus abnormalities (including mucus accumu-
lation and sinusitis)

Gene Allele PCD phenotypes Cilia structure Cilia function References

CAMSAP3 Gene trapped HC, FI, MI, sinus Longer cilia, abnormal 
curvature, CPA micro-
tubule defects

Reduced CBF Robinson [238]

GAL3 KO None Abnormal orientation, 
microtubule and basal 
foot defects

Decreased flow Clare [241]

GAS2L2 Conditional KO HT, sinus Abnormal orientation Increased CBF, decreased flow Bustamante-Marin [243]
HSF1 KO HC, sinus Microtubule defects Reduced CBF, decreased flow Takaki [228, 229]
KIF19A KO HC, FI Longer cilia Abnormal waveform Niwa [237]
KIF27 Gene trapped HC, OM, sinus N/A N/A Vogel [138]
TEKTIN-t Gene trapped MI No IDA N/A Tanaka [232]
TTLL1 KO MI, sinus Abnormal curvature Increased CBF, abnormal wave-

form, decreased flow
Ikegami [235]

Gene trapped MI, sinus N/A N/A Vogel [233]
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Genes with miscellaneous or unknown functions

A variety of mouse models have revealed previously 
unknown ciliary roles for proteins or implicated unchar-
acterized, novel genes in mammalian motile cilia. 
Although information about these genes is often limited, 
reported mouse models with a PCD phenotype and ciliary 
defects have uncovered their importance for motile cilia 
(Table 10). Protein disulfide isomerase Anterior gradient 
3 (AGR3) localizes to the endoplasmic reticulum of motile 
ciliated cells, and a traditional targeted allele was reported 
to result in reduced CBF and abnormal cilia-driven flow 
despite an absence of PCD phenotypes or ciliary struc-
tural defects detected by TEM [245]. Two mouse models 
with mutations in the gene encoding adenylate kinase 7 
(AK7), one gene-trapped allele and one with a transgene 
insertion disrupting the Ak7 locus that results in cilia with 
microtubule abnormalities, have demonstrated a role for 
AK7 in motile cilia [138, 246, 247]. Consistent with these 
phenotypes, AK7 mutations have been identified in human 
PCD patients and MMAF patients [247, 248]. Mice with 
a targeted allele of the gene encoding centrosomal protein 
ADP ribosylation factor like GTPase 2 binding protein 
(ARL2BP) were found to exhibit phenotypes associated 
with both primary and motile cilia, with tracheal epithelial 
cilia showing impaired motility, and ARL2BP mutations 
have been identified in patients with motile and primary 
ciliopathy phenotypes [249–251]. A gene-trapped allele 
of the microtubule-binding nucleoside diphosphate kinase 
gene Nme7 results in a PCD phenotype [138, 252], and 
an NME7 mutation was identified in a human family with 

heritable situs inversus but no detected defects in nasal 
epithelial cilia [253].

The spontaneous mutant mouse line quakingviable uncov-
ered a ciliary role for the Parkin co-regulated gene (Pacrg), 
which is regulated with the Parkinson’s disease gene par-
kin through a bi-directional promoter and encodes a pro-
tein in C. reinhardtii that localizes to the inner junction of 
the outer doublet microtubules [254–258]. Deletion of the 
Pacrg gene in this model results in reduced ciliary motility 
[257]. A targeted allele of EF-hand calcium binding domain 
1 (Efcab1), also known as Calaxin, results in altered cili-
ary motility, waveform, and flow [259]. Situs inversus was 
reported in a human patient and a traditional targeted mouse 
model lacking axonemal calcium channel interacting protein 
Enkurin (ENKUR) [260]. Mutations in the gene encoding 
novel axonemal protein CFAP43 were identified in human 
MMAF patients and a family with normal-pressure hydro-
cephalus [261–264], and traditional and CRISPR/Cas9 
gene-edited knockout mouse models were reported to have 
PCD phenotypes with increased CBF, decreased fluid flow, 
and CPA and radial spoke defects [263, 264]. A PCD phe-
notype with absent IDAs was reported for a mouse model 
with a traditional targeted allele of the gene encoding DNA 
polymerase λ (POLL) [265], although a subsequent report 
identified that the novel gene Deleted in primary ciliary 
dyskinesia (Dpcd) is transcribed in the opposite direction 
and is also likely disrupted by the mutation [266]. A mouse 
model with a gene-trapped allele disrupting both genes was 
also reported to have PCD [138, 252]. Unlike Poll, Dpcd 
expression is increased during differentiation of cultured 
ciliated human bronchial epithelial cells, and mice with a 

Table 10  Mouse models of genes with miscellaneous or unknown function

HC hydrocephalus, HT heterotaxy (including situs inversus and congenital heart defects), Lung lung abnormalities (including bronchitis and 
bronchiectasis), KO knockout, MI male infertility (including spermatogenesis and sperm motility defects), N/A not reported, Sinus sinus abnor-
malities (including mucus accumulation and sinusitis), Sp spontaneous, Tg transgene

Gene Allele PCD phenotypes Cilia structure Cilia function References

AGR3 KO None Defects not detected Reduced CBF, decreased flow Bonser [245]
AK7 Tg insertion HC, MI, sinus, lung Microtubule defects Reduced CBF Fernandez-Gonzalez 

[246], Lores [247]
Gene trapped HC, MI, sinus N/A N/A Vogel [138]

ARL2BP KO HC, HT, MI N/A Reduced CBF Moye [249, 250]
CFAP43 CRISPR HC, MI Microtubule defects N/A Morimoto [264]

KO HC, MI, sinus Defects not detected Increased CBF, decreased flow Rachev [263]
DPCD/POLL KO HC, HT, MI, sinus No IDA N/A Kobayashi [265]

Gene trapped HC, HT, MI, sinus N/A N/A Vogel [252]
EFCAB1/Calaxin KO HC, HT Defects not detected Reduced CBF, abnormal wave-

form, decreased flow
Sasaki [259]

ENKUR KO HT N/A Normal CBF Sigg [260]
NME7 Gene trapped HC, HT, sinus N/A N/A Vogel [252], Vogel [138]
PACRG Sp (quaking viable) HC, MI Defects not detected Reduced CBF Wilson [257], Li [258]
PK2 KO None Membrane bulges Decreased flow Tao [268]
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homozygous deletion of the Poll catalytic domain are viable 
and fertile, suggesting that disruption of Dpcd is responsi-
ble for the PCD phenotype [266, 267]. Finally, while the 
loss of Prickle planar cell polarity protein 2 (PK2) was ini-
tially shown to result in a seizure phenotype in a traditional 
targeted knockout and human patients [268], motile cilia 
from mutant mice have abnormal bulges protruding from 
the membrane and tip that perturb ciliary clearance [269, 
270], although the connection between these defects and 
the seizure phenotype remains unclear. While the roles and 
phenotypes of these models are highly variable, they further 
underscore the complexity of mammalian motile cilia and 
the value of mouse models in understanding the effects of 
ciliary dysfunction on disease pathogenesis.

Novel genetic tools

In addition to the spectrum of mouse models with genetic 
mutations resulting in ciliary dysfunction and PCD, sev-
eral mouse lines have been generated to serve as power-
ful tools for labeling, identifying, or manipulating ciliated 
cells. Recombination of a conditional allele in motile cili-
ated cells has been enabled by a Foxj1-Cre mouse line and 
a tamoxifen-inducible Foxj1-CreERT2 line, each express-
ing a transgenic Cre recombinase under the Foxj1 promoter 
[271, 272]. Alternatively, a knock-in line with a tamoxifen-
inducible CreERT2::GFP in the Foxj1 locus enables induc-
ible Cre expression under the endogenous Foxj1 promoter 
and GFP labeling in the same cells [273]. A mouse line 
expressing a GFP transgene under the Foxj1 promoter allows 
GFP labeling of all motile ciliated cells [274]. In addition to 
enabling the study of conditional genetic knockouts, these 
mouse lines have been used effectively for lineage tracing 
experiments that monitor ciliated cell differentiation and 
turn-over in the airways and developing nervous system 
[272, 273, 275, 276]. In addition, the CiliaGFP transgenic 
line expressing the ciliary protein somatostatin receptor 3 
(SSTR3) fused to GFP and a Cre-inducible line with ciliary 
protein ARL13B fused to RFP and knocked into the HPRT 
locus both enable labeling of motile and primary ciliated cell 
types [277, 278]. These novel genetic tools serve as a highly 
valuable resource that can be bred to PCD models to assess 
disease pathogenesis or used for downstream cell biological 
and biochemical analysis of ciliated cells.

Cell biological approaches to studying cilia 
in mouse models

In addition to the substantial amount of genetic informa-
tion provided by mouse models, recent years have seen an 
increase in the application of cutting-edge cell biological 
techniques to mouse models and their tissues and primary 

cells. While cell biological advances in the motile cilia field 
have historically come from lower eukaryotes such as C. 
reinhardtii, recent progress has enabled the use of mouse 
models in innovative ways. This is resulting in a much 
deeper understanding of the molecular and cellular mecha-
nisms regulating mammalian motile cilia and multiciliated 
cell differentiation. Advancements in the areas of genetic, 
pharmacological, and toxicological manipulation of ciliated 
cells; transcriptomic and large-scale gene expression tech-
niques; and in vivo, ex vivo, and ciliary imaging are enabling 
substantial progress in the mammalian motile cilia field.

Genetic manipulation of ciliated cells

The primary culture of ciliated epithelia, particularly 
mTECs, at an air–liquid interface (ALI) has become a criti-
cal system for cell biological analysis of mammalian motile 
cilia [279]. Cells can be cultured from wild type or mutant 
mice and can be manipulated genetically through lentiviral 
transduction, enabling either exogenous over-expression 
or short hairpin RNA (shRNA) and small interfering RNA 
(siRNA) gene knockdown approaches to investigate cellular 
and biochemical processes. Notable examples include over-
expression of transcription factors GEMC1, MCIDAS, and 
TAp73 and ChIP experiments in mTECs to demonstrate the 
molecular cascade required for differentiation into multicili-
ated cells and induction of ciliogenesis [182, 192, 193, 280], 
as well as knockdown experiments that shed light on the 
mechanisms underlying centriole assembly and basal body 
formation [281]. Over-expressing mutant forms of genes 
have been shown to alter mTEC differentiation. Expression 
of a dominant-negative Mcidas blocks differentiation and 
perturbs PCP signaling [280, 282], while a dominant-nega-
tive cyclin-dependent kinase Cdk2 was shown to block cilia 
formation and identified a relationship between motile cili-
ogenesis and the cell cycle [283]. Expression of exogenous 
proteins also enables protein–protein interaction studies in 
ciliated mTECs, such as co-IP experiments demonstrating 
interactions between GST-tagged ZMYND10 and cytoplas-
mic dynein assembly factors [99].

Cultured mouse ependymal cells have also gained in 
prominence and have been used for similar applications, 
including several notable siRNA and shRNA gene knock-
down studies. Knockdown of radial spoke gene Rsph9, 
which was implicated in human PCD, confirmed radial 
spoke and CPA defects and rotational ciliary beating [284]. 
Knocking down transcription factor genes Gemc1 or Mci-
das in cultured radial glial cells prevented differentiation 
into ependyma and Foxj1 expression [186], validating their 
role in driving multiciliated cell differentiation. Systematic 
knockdown of several members of the diverse tubulin tyros-
ine ligase-like (TTLL) family identified which members 
were required for multiciliated cell differentiation and ciliary 
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motility [285]. Finally, knockdown of several novel genes, 
including Cfap70, Wdr78, and Spef1 has resulted in pertur-
bations of ciliary assembly, beat frequency, or waveform, 
thereby uncovering key roles for these genes in ependymal 
cilia [286–288].

In addition to culturing and differentiating progenitor epi-
thelial cells from the trachea or the brain, cultured embry-
onic stem cells have also been differentiated into motile 
ciliated cells expressing Foxj1 and other ciliated cell mark-
ers through the inhibition of BMP signaling [289]. Mouse 
induced pluripotent stem (iPS) cells have also been success-
fully driven toward an epithelial cell fate under serum-free 
and ALI conditions, exhibiting formation of motile cilia 
and expression of Foxj1 but not markers of other airway 
epithelial cell types [290]. These cell types expand the plat-
forms available for cell biological analysis using wild type 
or genetically modified mouse models.

Pharmacological manipulation of ciliated cells

In addition to genetic manipulation, mouse tissues and 
cultured cells have been used in recent years for pharma-
cological modulation of signaling pathways and cellular 
processes underlying ciliogenesis and cilia function. Nota-
ble examples include the treatment of cultured embryonic 
mouse lungs with a Notch inhibitor to drive differentiation 
of ciliated cells and reduce the number of non-ciliated Club 
cells [291], establishing the critical importance of Notch 
signaling in airway epithelial cell fate. Treatment of mouse 
tracheal rings or brain slices with adenosine A2B receptor 
agonists stimulates CBF and protein kinase A (PKA) activ-
ity [292, 293], demonstrating regulation of ciliary motility 
in a cAMP-dependent manner. Treatment of mouse tracheal 
rings with an inhibitor of heat shock protein HSP90 impaired 
ciliary assembly and motility [229], and treatment of dis-
sected mouse fallopian tube with a progesterone agonist 
decreases CBF, while a progesterone antagonist has the 
opposite effect [294].

Similar to mouse tissues, cultured cells have also enabled 
pharmacological studies. For example, basal body alignment 
was disrupted in mTECs treated with the microtubule depo-
lymerizing agent nocodazole, resembling defects observed 
in mTECs from Odf2 knockout mice [295]. Cultured mTECs 
exposed to the endotoxin lipopolysaccharide (LPS) show 
an increase in intracellular calcium concentration that is 
blocked by treatment with an inhibitor of cation channel 
TRPV4 [296], uncovering an important role for TRPV4 
channels in providing an extracellular calcium source to 
ciliated cells. Cultured cells have also been used effectively 
for small molecule screens. Cultured ependymal cells were 
used for a screen of small molecules that promote proper 
ependymal differentiation and Foxj1 expression [297], 
and treatment of mTECs with small molecule inhibitors 

of cyclin-dependent kinases showed centriolar defects and 
impaired ciliogenesis, confirming the relationship to the 
cell cycle identified through over-expression of a dominant-
negative Cdk2 mutant [283]. Not only does pharmacologi-
cal modulation of cultured ciliated cells enable elucidation 
of fundamental cellular and molecular processes, but cells 
cultured from the wide spectrum of PCD models or manipu-
lated by the genetic approaches described above could also 
serve as a highly useful system for testing the effect of phar-
macological PCD therapies on mammalian cilia function.

Toxicological manipulation of ciliated cells

Ciliated mouse cells have also served as a system for study-
ing the effects of several environmental factors on ciliary 
function. Cultured mTECs have been used to study the 
effects of alcohol on ciliary motility and its regulatory path-
ways [298–300], as well as the effect of hypoxic conditions 
on gene transcription during multiciliated cell differentia-
tion [301]. Protective response to bacteria was assessed in 
mTECs incubated with E. coli prior to culturing under ALI 
conditions [296], and effect of mechanical pressure on cili-
ary stimulation was assessed by treating ALI mTECs with 
an air puff at the apical surface [302]. These studies have 
utilized cells from wild type and genetically modified mouse 
models, which enables identifying the effect of genetic muta-
tions on response to environmental stimuli and identifies the 
molecular mechanisms underlying those responses.

Transcriptomic and gene expression techniques

Cutting-edge gene expression and transcriptome analysis 
techniques applied to ciliated cells and tissues have uncov-
ered key mechanisms underlying multiciliated cell differenti-
ation. Microarray and RNA-seq have been used effectively to 
identify differentially expressed genes in cells from geneti-
cally modified mouse models or at different stages of cili-
ogenesis. Notable experiments include the use of microarray 
analysis of flow-sorted mTECs from the Foxj1-GFP mouse 
described above to identify novel genes expressed at differ-
ent stages of cell differentiation and ciliogenesis [274, 303, 
304]. A microarray approach has also been used to identify 
ciliary genes differentially expressed in mTECs from mice 
lacking matrix metalloproteinase 7 (MMP7) [305], identify 
differentially expressed genes in hydrocephalic brains from 
mice lacking CPA protein CFAP221 on distinct genetic 
backgrounds [39], and evaluate gene expression changes in 
cultured radial glial cells following a screen for small mol-
ecules that promote ependymal differentiation [297]. Appli-
cations of the next-generation sequencing-based approach 
RNA-seq have included identification of differentially 
expressed ciliary genes in TAp73 knockout mTECs or in sub-
ventricular zone (SVZ) cells from the brains of mice lacking 
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transcription factor PRDM16 [192, 193, 306]. Single-cell 
RNA-seq was applied to labeled SVZ ependymal cells and 
neural stem cells to identify ciliary genes expressed only in 
the ependymal population [307]. ChIP-seq, an approach that 
combines traditional ChiP with next-generation sequenc-
ing to identify interactions between proteins and promoter 
sequences, has identified ciliary genes directly regulated by 
key transcription factors, including TAp73 and RFX2 [173, 
193]. These studies highlight the ability of large-scale tran-
scriptomic techniques to uncover a wealth of gene expres-
sion data underlying key molecular mechanisms.

In vivo and ex vivo animal imaging

Advances in in vivo and ex vivo applications of imaging 
have enabled a detailed assessment of ciliary physiology and 
fluid clearance. Examples of in vivo imaging applications 
in live mice include gamma scintigraphy to detect radioac-
tive particle clearance in the nasal cavity [243, 308], two-
photon microscopic analysis of fluorescent bead clearance 
in the trachea following oropharyngeal instillation delivery 
[309], synchrotron phase-contrast X-ray imaging to analyze 
the rate of lead dust particle clearance in trachea [310], and 
functional optical coherence tomography (fOCT) with high-
resolution and tissue penetration depth to achieve detailed 
mapping of cilia length and beat frequency in the mouse 
oviduct [311]. In addition to the relatively common applica-
tions of high-speed video microscopy to analyze CBF and 
live imaging of fluorescent bead flow over ciliated cells, 
both of which were discussed above for analysis of genetic 
models, several advanced ex vivo imaging approaches have 
been described. High-resolution live imaging of ventricular 
walls from wild type mouse brains enabled the identifica-
tion of three distinct classes of ependymal cells in the third 
ventricle based on distribution, ciliary angle, and beat fre-
quency [312]. Micro-optical coherence tomography (μOTC) 
was used for high-resolution imaging of ciliary motility in 
tracheal explants from several PCD models [52]. Spectral-
domain optical coherence phase microscopy (SD-OCPM), 
which combines the depth of OCT and resolution of confo-
cal microscopy, was used for a high-resolution, high-speed 
analysis of mouse tracheal morphology and ciliary dynam-
ics [313]. These imaging approaches have distinct capabili-
ties and advantages, but taken together have a substantially 
advanced analysis of mouse models.

Cilia microscopy techniques

Innovative microscopy techniques have also been applied 
to cultured cells and have enabled a more detailed analysis 
of ciliary structure and function. Super-resolution micros-
copy applications have been employed for fine analysis 
of protein localization in mTECs, including mapping the 

region of CBY localization in the centriole [314]. When 
combined with ultra-high-voltage electron tomography, 
super-resolution microscopy has enabled analysis of the 
distribution of apical actin filaments, intermediate fila-
ments, and microtubules in the mTEC basal bodies [295]. 
Super-resolution structural illumination microscopy (SIM) 
has been used for high-resolution analyses of deuterosome 
assembly and centriole amplification in mTECs [315, 316], 
as well as detailed protein localization in undifferentiated 
and differentiated cultured ependymal cells [288]. Three-
dimensional, two-color stochastic optical reconstruction 
microscopy (STORM) has been used for detailed analysis of 
mTEC transition zone protein distribution [317]. Continued 
application of high-resolution imaging to cultured mouse 
cells will enable a much more detailed and high-resolution 
analysis of intraciliary mechanisms and dynamics.

Conclusions

Advancements in genetic manipulation and phenotypic anal-
ysis of mouse models, along with the application of inno-
vative cell biological techniques, have led to considerable 
progress in understanding mammalian motile cilia and PCD 
pathogenesis. The wide spectrum of genetic models has vali-
dated the importance of many ciliary genes and uncovered 
new roles for numerous novel genes involved in cilia func-
tion. In addition, the emergence of cutting-edge cell bio-
logical techniques and their application to mouse models 
has enabled a much deeper investigation of the molecular 
and cellular mechanisms regulating multiciliated cell dif-
ferentiation and mammalian motile cilia function. Because 
our understanding of these mechanisms is still far from 
complete, continued innovation in cell biological strategies 
and their application to the murine system is necessary. As 
advancements progress, mouse models can also serve as a 
powerful pre-clinical platform for identifying, developing, 
and testing the efficacy of potential PCD therapeutics.
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