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Abstract

RNA binding protein motif 3 (RBM3) is an RNA-binding and cold shock protein that protects 

myoblasts and promotes skeletal muscle hypertrophy by enhancing mRNA stability and 

translation. Muscle size is decreased during aging; however, it is typically delayed in models of 

extended lifespan such as the long-lived Ames Dwarf (df/df) mice and calorie restricted (CR) 

animals compared to age-match controls. In light of the protective and anabolic effects of RBM3 

in muscle, we hypothesized that RBM3 expression is higher in long-lived animal models. Young 

and old df/df mice, and adult and old UM-HET3 CR mice were used to test this hypothesis. 

Gastrocnemius muscles were harvested and protein was isolated for RBM3 protein measurements. 
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CR induced a 1.7 and 1.3-fold elevation in RBM3 protein abundance compared to adult and old 

male mice fed ad libitum (AL) diets, respectively; this effect was shared between males and 

females. Ames dwarfism induced a 4.6 and 2.7-fold elevation in RBM3 protein abundance in 

young and old df/df mice compared to normal control littermates, respectively. In contrast, there 

was an age-associated decrease in cold-inducible RNA-binding protein (CIRP), suggesting these 

effects are specific for RBM3. Lastly, there was an age-associated increase in RNA degradation 

marker decapping enzyme 2 (DCP2) in UM-HET3 mice that was mitigated by CR. These results 

show that muscle RBM3 expression is correlated with extended lifespan in both df/df and CR 

animals. Identifying how RBM3 exerts protective effects in muscle may yield new insights into 

healthy aging of skeletal muscle.
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1. Introduction:

Lower core body temperature is associated with extended lifespan in fruit flies (22), c. 

elegans (36), rhesus monkeys (18), rodents (5, 15) and humans (30). Insight into the 

relationship between colder body temperatures and long life has been gained largely through 

manipulating lifespan in rodents. The long-lived Ames dwarf (df/df) mice, which lack 

thyroid stimulating hormone (TSH) and growth hormone (GH) display a lower core body 

temperature and live up to 1 year longer than normal control littermates (4). Similarly, 

calorie restriction (CR), which extends life span (18) is also associated with a lower body 

temperature in rodents as well as other species (2, 5, 15, 18, 29). However, mechanisms 

underlying the relationship between lower core body temperatures and extended lifespan 

remain to be determined.

Hibernating animals represent the most extreme case of an organism’s ability to lower their 

core body temperature in order lower metabolic demand (3). Indeed, hibernation in 

mammals results in a drastic drop in whole body metabolism along with a corresponding 

drop in core body temperature (3). Despite the strong physiological stresses accompanied 

with the hibernation process, skeletal muscle mass and the integrity of other tissues are 

largely retained over long and/or repeated bouts of hibernation. These facts have led to 

multiple lines of research investigating how hibernating animals are able to maintain muscle 

mass despite long periods of disuse, which consistently leads to a loss of muscle mass in 

humans (1). The remarkable feat of hibernating animals to maintain their muscle size despite 

decreased use is perhaps explained by a coordinated shift in protein metabolic processes 

where proteins necessary for muscle size are protected. Interestingly, it has been shown in 

multiple hibernators that specific RNA species accumulate and are translated preferentially 

(32), suggesting a post-transcriptional regulatory mechanism that bolsters homeostatic 

processes that confer protection against depressed energy supply/use. Indeed, despite 

lowered whole body metabolism, recent whole transcriptome analysis of hibernating grizzly 

bears has demonstrated dramatic changes in gene expression that serve to both lower skeletal 

muscle protein degradation and increase muscle protein synthesis in efforts to preserve 
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muscle mass (16). These findings extend to black bears (12), artic ground squirrels (40), and 

the golden-mantled ground squirrel (39). While hibernating animals represent an extreme 

case of lowered body temperature, it is possible that there is conservation of mechanisms 

protecting RNA species in the lower core body temperature CR and Ames Dwarf animals, 

each of which associate with longevity.

RNA-binding proteins constitute a potential post-transcriptional regulatory mechanism that 

may protect or regulate RNA degradation in both hibernating and long-lived animals. RNA-

binding proteins have roles throughout RNA metabolism including alternative splicing, 

nuclear export, translation and RNA decay (35). It is possible that in animals with extended 

lifespan RNA-binding proteins contribute to post-transcriptional regulation by stabilizing 

transcripts important for cellular homeostasis. Accordingly, it has been shown that RNA 

degradation increases with age (14) and that removal of the RNA-binding protein pumilio 2 

in aged mouse skeletal muscle improves mitophagy and restores homeostasis, emphasizing 

the importance of RNA-binding proteins as a regulatory node in aging (6). We have 

previously identified RNA binding protein motif 3 (RBM3) to be robustly expressed in the 

skeletal muscle of young and old animals late during atrophy, suggesting a compensatory 

protective role in skeletal muscle (10). Interestingly, RBM3 is also the gene most 

prominently expressed when core body temperature is lowered (26). Activation of RBM3 

and other RNA binding proteins (RBPs) such as cold inducible RNA binding protein, CIRP, 

confer stability to nascent mRNA to prevent degradation and aid in the maintenance of 

protein synthesis (41). RBM3 has been demonstrated to have the additional properties of 

enhancing global protein synthesis rates (9) while also promoting the biogenesis of a large 

percentage of microRNAs (28). Such effects, coupled with the stabilization of target 

mRNAs, may sculpt the proteome to augment homeostatic protective processes. It is 

possible that induction of RBM3 and CIRP is a convergent response to hypothermia in long-

lived animal models and hibernators that serves to protect RNA homeostasis and orchestrate 

adaptive changes in the proteome that confer muscle mass stability (9). However, it is 

currently unknown whether changes in RBM3 and CIRP expression are correlated with 

extended lifespan. Thus, the goal of this study was to investigate the changes in skeletal 

muscle RBM3 and CIRP expression in two established murine models of delayed aging.

2. Materials and Methods:

2.1 Animal models

2.11 Calorie Restricted Mice—Adult and old male and female UM-HET3 mice kept 

on a 12-hour light/dark cycle, were used for CR studies (21) (Figure 1). Procedures and 

conditions for animal care were approved by the University of Michigan Committee on Use 

and Care of Animals and met standards for animal housing as described in the Animal 

Welfare Act, the Guide for Care and Use of Laboratory Animals, and the Guide for the Care 

and Use of Agricultural Animals in Agricultural Research and Teaching. UM-HET3 mice 

used in this study are genetically heterogeneous offspring of CB6F1 female and C3D2F1 

male mice. Briefly, mice were either fed ad libitum a standard chow diet (AL) or restricted 

to 80% of ad libitum food consumption at 6 weeks of age and progressed to 60% at 10 

weeks of age until sacrifice (21). At 12 (Adult) and 22 (Old) months of age, animals were 
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euthanized following overnight fasting and both gastrocnemius muscle and hippocampus 

were immediately dissected and flash frozen in liquid nitrogen before being stored at −80°C. 

n ≥ 5 for all groups.

2.12 Ames Dwarf Mice—All animal protocols were approved by the Laboratory 

Animal Care and Use Committee (LACUC) at the Southern Illinois University, School of 

Medicine. Young (6 months) and old (22 months) male normal controls (N) and Ames 

Dwarf (df/df) female mice were bred and maintained under temperature and light-controlled 

conditions: 22 ± 2°C, 12-hour light/12-hour dark cycle (Figure 1). Mice were euthanized 

following overnight fasting and gastrocnemius muscles were immediately dissected and 

flash frozen in liquid nitrogen before being stored at −80°C. Gastrocnemius muscles were 

collected at 6 (Young) and 22 (Old) months of age. n = 5 for all groups.

2.2 Western Blotting

Protein abundance was assessed by Western blotting, which was performed as described 

previously (24) with slight modifications. Briefly, samples were removed from −80°C 

storage, homogenized in radio-immunoprecipitation assay (RIPA) buffer supplemented with 

10 μl ml−1 protease inhibitor cocktail (Roche, Indianapolis, IN, USA), 5 mM benzamidine, 5 

mM, N-ethylmaleimide, 50 mM NaF, 25 mM B-glycerophosphate, 1 mM EDTA, and 1 mM 

phenylmethane sulfonyl fluoride (Boston Bioproducts, Ashland, MA, USA) and centrifuged 

at 5000 g to remove cell debris. Protein concentrations were determined using the Pierce 

BCA Protein Assay Kit (Thermo Scientific, Waltham, MA, USA). For quantification of 

protein abundance, 30 μg total protein was loaded and separated on 4–15% acrylamide 

gradient gels (Bio-Rad, Hercules, CA, USA), followed by transfer of proteins to 

polyvinylidene difluoride membranes with 0.22 μm pore size (Millipore, Burlington, MA, 

USA). Membranes were incubated in Odyssey Blocking Buffer (Li-Cor, Lincoln, NE, USA) 

followed by incubation with the appropriate primary antibody overnight at 4°C. The 

following primary antibodies were used: RNA-binding protein motif 3 (RBM3(27, 31)) 

(1:1,000), cold-inducible RNA-binding protein (CIRP) (Abcam, Cambridge, UK; 1:1,000), 

mRNA-decapping protein 2 (DCP2) (Abcam; 1:1,000) and vinculin (ProSci; 1:200). After 

primary antibody incubation, membranes were washed and further incubated with highly 

cross-absorbed infrared-labelled secondary antibodies for 1 h at room temperature (goat 

anti-rabbit; 1:15,000, Licor, Lincoln, NE, USA or goat anti-mouse; 1:15,000, Invitrogen, 

Omaha, NE, USA)). Membranes were scanned using an Odyssey infrared imaging system 

(Licor) to detect specific antibody binding and to perform quantification. Ponceau S staining 

of the membranes was used to ensure equal loading for muscle. Vinculin was used to ensure 

equal loading for hippocampus samples. The anti-RBM3 antibody has been extensively 

validated previously (27). Densitometric analyses were performed by assessors blinded to 

control and treatment groups.

2.3 Statistical Analysis

Two-way analysis of variance (ANOVA) was used for comparisons in both df/df and CR 

mice for treatment and age using GraphPad Prism (GraphPad Software, San Diego, CA, 

USA). A Grubb’s test was used to determine outliers where values were removed if they fell 
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two standard deviations above/below the mean. All values reported are means ± standard 

error of the mean (SEM) and statistical significance was assumed at P < 0.05.

3. Results:

3.1 RBM3 is elevated in the skeletal muscle of Ames Dwarf and calorie restricted mice.

Skeletal muscle RBM3 protein abundance was 1.7 and 1.3 times higher in adult and old 

male UM-HET3 calorie restricted (CR) mice, respectively, compared to those fed ad libitum 

(AL) (p<0.0001) (Figure 2A). Similarly, female UM-HET3 mice showed 1.6 and 1.4 times 

higher skeletal muscle RBM3 protein abundance in adult and old CR mice, respectively, 

compared to age matched AL fed mice (p<0.004) (Figure 2B). There were no main effects 

for age in male nor female UM-HET3 mice. RBM3 protein abundance was 4.6 and 2.7 times 

higher in young and old df/df mice, respectively, compared to N littermate controls 

(p<0.0001) (Figure 3). There was no age effect on RBM3 levels in df/df mice. These data 

indicate that changes in skeletal muscle RBM3 protein abundance are associated with both 

CR and dwarfism, which are established mouse models of extended lifespan.

3.2 Age-dependent elevation of DCP2 is mitigated by CR in UM-HET3 mice.

There was a main effect for age in DCP2 protein abundance, a marker for mRNA 

degradation (33), in the skeletal muscle of aged compared with adult male UM-HET3 mice 

(p<0.001). Further, an interaction effect of DCP2 abundance in aged mice revealed that mice 

fed an AL diet was mitigated by CR (p<0.05) (Figure 4A). There was no effect of CR on 

DCP2 protein abundance in young UM-HET3 mice. Since males and females exhibited 

similar responses for RBM3 abundance, DCP2 was measured only in males. There was no 

difference in DCP2 protein abundance in young nor old df/df mice (Figure 4B).

3.3 Elevated cold shock protein in CR mice is specific for RBM3.

Both CIRP and RBM3 are upregulated by mild hypothermia (7, 25), in a temperature range 

seen in the longevity models studied here, and therefore we measured CIRP levels in 

muscle. CIRP protein abundance in skeletal muscle was lower with age in UM-HET3 AL 

mice compared to adult (p<0.05), but there was no difference with CR (Figure 5). RBM3 

protein abundance in brain (hippocampus) of CR UM-HET3 mice was not different from AL 

mice, although there was a trend towards higher levels in CR animals (Supplementary Figure 

1).

4. Discussion:

The main finding of the present study is that skeletal muscle RBM3 expression is elevated in 

df/df mice, and mice under CR conditions, two well-established murine models of extended 

lifespan. As both df/df and CR mice display long life, the results from this study suggest that 

RBM3 and one or more of its RNA processing functions may be associated with skeletal 

muscle health during extended lifespan. Moreover, as skeletal muscle health is a strong 

predictor of mortality in humans (20, 23), interventions that seek to maintain muscle health 

in old age may do so through RBM3 and its direct and/or indirect effect on muscle size 

regulation.
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RNA-binding proteins are post-transcriptional regulators of RNA with significant influence 

on RNA metabolism. Indeed, it has been recently reported that ~8% of protein coding genes 

transcribe RNA-binding proteins involved in either the transport or processing of RNA (13). 

In skeletal muscle, we have previously reported that RBM3 induced muscle hypertrophy and 

prevented atrophy in vitro and in vivo (34). Since RBM3 is a cold shock protein which is 

highly elevated during hibernation – a state in which core body temperature is reduced and 

muscle mass is spared from the effects of metabolic stress – it became of interest to 

investigate its levels in muscles of animals with extended lifespan, since they also have 

lower body core temperatures (8). RNA-binding proteins are understudied in muscle, but a 

few studies point towards roles in mitochondrial biogenesis. For example, decreases in 

RNA-stabilizing human antigen R (HuR) and increases in destabilizing (AUF1) affect the 

turnover of mRNA transcripts necessary for mitochondrial biogenesis (17). Moreover, it was 

recently reported that RNA-binding proteins influence muscle aging via mitophagy; genetic 

knockdown of RNA-binding protein pumilo2 (PUM2) in c. elegans, nematodes and the 

muscle of elderly mice resulted in improved mitochondrial capacity and extended lifespan 

(6). By contrast, our results show a positive association of RNA-binding protein RBM3 in 

the skeletal muscle of extended lifespan, both in the df/df mice and following a CR diet, 

while there was an age-dependent decrease in CIRP expression in the skeletal muscle of CR 

animals. These results demonstrate the apparently divergent and yet specific roles that RNA-

binding proteins play in RNA metabolism in aging muscle. Future studies are needed to 

define the mechanisms by which individual RBPs exert their actions and whether 

manipulation of RBPs in skeletal muscle such as RBM3 has an effect on life span.

RNA metabolism is a complex and central process in the regulation of cellular proteastasis 

and function, yet it is surprisingly understudied in skeletal muscle aging. Serving as the 

bridge between DNA and protein, the splicing, stabilization, degradation, transport and 

translation of messenger RNA dictates the protein pool available for numerous cellular 

processes. However, studies in which the proteomes and transcriptomes of cells or tissues 

are analyzed in parallel have highlighted the discrepancy between mRNA levels and protein 

abundance, suggesting highly regulated post-transcriptional mechanisms (38). In the context 

of aging, changes in RNA homeostasis, such as the balance between RNA degradation and 

stabilization, or in changes to alternative splicing (11, 19), may dramatically influence the 

protein pool and cellular processes, not only considering mRNA, but also of ribosomal RNA 

and small non-coding RNA. Moreover, previous reports have shown that skeletal muscle 

RNA oxidation associates with increasing age (15), perhaps contributing to altered RNA 

homeostasis. The present study corroborates previous findings by showing an age-related 

accumulation of DCP2 in mice under CR conditions. Indeed, our data show normalization of 

DCP2 expression in older animals fed a CR diet, suggesting the process of RNA degradation 

may be influenced by CR. The benefits of CR have long been thought to be mediated by 

metabolic changes (31). Interestingly, it has recently been shown that the metabolic changes 

seen under CR conditions are in part regulated at the RNA level, as Redman and colleagues 

show a preservation of transcripts important for metabolic reprogramming (29). In 

corroboration, recent reports have highlighted that other aspects of RNA metabolism play an 

important role in the youthful phenotype of df/df mice. Analysis of microRNA (miRNA) in 

serum of df/df mice identified miRNA profiles specific to advanced age df/df mice in this 
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model (37), including those regulating tumor suppression, anti-inflammatory processes and 

MAPK signaling. These processes were differentially regulated in the old df/df mice 

compared to normal control littermates (37). Taken together, it appears that changes to RNA 

metabolism associates with the longevity advantages seen in both df/df mice and mice under 

CR conditions. Moreover, as RBM3 and other RBPs have been shown to exert their 

influence on RNA homeostasis, future studies would benefit from investigating the impact of 

RBPs in aging muscle.

5. Conclusion

In conclusion, the results from this study show that rodent models of extended lifespan 

demonstrate higher abundance of RBM3 protein in skeletal muscle which is specific for this 

cold shock RBP. The beneficial effects of RBM3 on neurons (neuroprotective (31)) and 

muscles (growth promoting (34)) lead us to speculate that higher levels of RBM3 in muscles 

from long-lived mouse models may play a role in preserved tissue homeostasis and lifespan, 

although exact mechanisms remain to be determined.
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Figure 1. Experimental Design
A) Male and female mice at 12 (adult) 22 (old) months of age fed ad libitum (AL) or CR B) 

Male 6 (young) and 22 (old) months old Ames dwarf (df/df) or normal control (N) mice 

were used.
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Figure 2. RBM3 is elevated in skeletal muscle of calorie restricted mice.
RBM3 protein abundance from muscles from A) male and B) female mice at 12 (adult) and 

22 (old) months of age fed ad libitum (AL) or calorie restricted (CR). Values presented as 

mean ± SEM; n=6 for all groups. *p<0.05 denotes main effect for CR.
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Figure 3. RBM3 is elevated in skeletal muscle of Ames-Dwarf mice.
RBM3 protein abundance from male 6 (young) and 22 (old) months old Ames dwarf (df/df) 

or normal control (N) mice. Values presented as mean ± SEM; n=5 for all groups. *p<0.05 

denotes main effect for genotype.

Hettinger et al. Page 12

Exp Gerontol. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. DCP2 elevation in aged mice fed ad libitum is mitigated by calorie restriction only.
A) DCP2 protein abundance from adult and old mice fed ad libitum (AL) or calorie 

restricted (CR). B) DCP2 protein abundance from young and old Ames dwarf (df/df) or 

normal control (N) mice. Values presented as mean ± SEM; n=4-6 for CR animals. n=4-5 

for df/df mice. #p<0.05 denotes main effect for age. *p<0.05 denotes difference between AL 

and CR.
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Figure 5. Elevated cold shock proteins in CR mice is specific to RBM3.
CIRP protein abundance from male mice at 12 (adult) and 22 (old) months of age fed either 

ad libitum (AL) or 40% calorie restricted (CR). Values presented as mean ± SEM; n=6 for 

all groups. *p<0.05 denotes main effect for age.
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