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Abstract

Background and objectives—Risk markers for breast cancer include earlier onset of 

menarche (age at menarche [AAM]) and peak height velocity (PHV). Insulin-like growth factor-1 

(IGF-1) is associated with pubertal milestones, as well as cancer risk. This study examined the 

relationships between pubertal milestones associated with breast cancer risk and hormone changes 

in puberty.

Methods—This is a longitudinal study of pubertal maturation in 183 girls, recruited at ages 6–7, 

followed up between 2004 and 2018. Measures included age at onset of puberty, and adult height 

attained; PHV; AAM; adult height, and serum IGF-1, and estrone-to-androstenedione (E:A) ratio.

Results—PHV was greatest in early, and least in late maturing girls; length of the pubertal 

growth spurt was longest in early, and shortest in late maturing girls. Earlier AAM was related to 

greater PHV. IGF-1 concentrations tracked significantly during puberty; higher IGF-1 was related 

to earlier age of PHV, earlier AAM, greater PHV, and taller adult height. Greater E:A ratio was 

associated with earlier AAM.

Conclusions—Factors driving the association of earlier menarche and pubertal growth with 

breast cancer risk may be explained through a unifying concept relating higher IGF-1 

concentrations, greater lifelong estrogen exposure, and longer pubertal growth period, with an 

expanded pubertal window of susceptibility.
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Researchers have noted that several pubertal milestones are associated with risk of breast 

cancer, and puberty has been suggested to be a window of susceptibility for breast cancer 

[1,2]. Younger age at menarche (AAM) is a well-documented risk marker for breast cancer; 

pooled analyses revealed the risk of pre menopausal and postmenopausal breast cancers 

decreased by 9% and 4%, respectively, for each year that AAM is delayed [3]. The pubertal 

peak height velocity (PHV, the greatest velocity during the pubertal growth spurt) [4], as 

well as the age at which adult height is attained [5]. are also related to the risk of breast 

cancer.

Insulin-like growth factor 1 (IGF-1) is associated with the pubertal growth spurt [6] and is a 

hormone critical for breast development [7]. IGF-1 is also associated with breast density [8–

10], as well as breast cancer risk [11]; in addition, women with acromegaly have an 

increased risk for breast cancer [12]. The ratio of estrone-to-androstenedione (E:A) ratio has 

been recommended as a surrogate measure of aromatase activity and estrogen exposure [13]; 

a previous work has noted the relationship of breast cancer, particularly postmenopausal 

breast cancer, with estrogen exposure [14,15]. Given the associations of pubertal parameters 

to breast cancer risk, estrogen exposure, and IGF-1 concentrations to pubertal milestones 

and breast cancer, we examined the relationship of several pubertal parameters—PHV, age at 

PHV, duration of the pubertal growth spurt, ages of menarche and achievement of adult 

height—with several explanatory variables, including body mass index (BMI), sex hormone 

concentrations (estradiol, estrone, and testosterone), estrone-to-androstenedione ratio (E:A), 

and IGF-1 concentrations in a group of prepubertal girls followed up over the course of 14 

years.

Methods

Participants in this analysis were part of the Cincinnati epidemiology project of the Breast 

Cancer and the Environment Research Program. Study aims and design of this longitudinal 

project have been described in detail [16]. Participants in Cincinnati were recruited at ages 6 

and 7 years through the public and parochial schools in the Cincinnati metropolitan area and 

the Breast Cancer Registry of Greater Cincinnati. The study was approved by the 

Institutional Review Board of Cincinnati Children’s Hospital Medical Center, with written 

informed consent from parents/guardians, assent from participants ages 6–17, and consent 

when ages 18 and over.

Girls were seen every 6 months between 2004 and 2010 and every 12 months until 2018, 

with a visit window of 4 weeks. Two measurements of height were performed by trained 

staff at each visit, with a third measure obtained if the first two were more than .5 cm apart, 

or if height was outside the 5th and 95th percentile values for age. The average of the 2 (or 

closest two of 3) measures was used in data analysis. Breast maturation was assessed using 

the Marshall and Tanner criteria [17], incorporating breast palpation as described previously 

[16]. AAM was determined through parental and participant report of date of menarche or 

Biro et al. Page 2

J Adolesc Health. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



through AAM, as described previously [18]. Parents completed a detailed questionnaire in 

years 1 and 5 regarding family history of breast cancer.

Participants with height differences less than 2 cm over their last three annual visits were 

considered as having reached their final adult height. Participants were selected for these 

analyses if they had sex hormone concentrations measured previously, at least one serum 

specimen available for the IGF-1 measurement within 6 months of breast development, and 

had attained adult height, as defined previously. A subgroup of these participants had 

multiple measurements of IGF-1 from 24 months before to 18 months after breast 

development, and IGF-1 interclass correlation coefficients were calculated to determine 

tracking across the peripubertal period.

We categorized participants into three groups based on race-specific relative timing of breast 

development: early, on time, and late onset, using the 20th percentile and 80th percentile 

ages of breast stage 2 as the cut points. We examined difference in IGF-1 concentrations by 

race-specific age at onset of breast development, using Wilcoxon rank-sum test.

Three or more IGF-1 measures were available on 172 (of 183) participants in the window 

between 24 months before, and 18 months after, breast development. “Pubertal onset” serum 

IGF-1 measures were obtained from samples within the 6 months of the onset of breast 

maturation. IGF-1 concentrations were determined by an IGF-binding protein blocked 

enzyme immunoassay (ALPCO, Salem, NH), which measures total IGF-1 concentrations 

with a sensitivity of .09 ng/mL, intra-assay coefficient of variation of 5.8%, and interassay 

coefficient of variation of 3.9%. Sex hormone analyses were performed using high-

performance liquid chromatography with tandem mass spectroscopy, as described previously 

[19].

Growth parameters were estimated from the Preece-Baines model 1 (PB1) [20], 

incorporating the recently published modification [21]. The PB1 model has been used in 

several longitudinal studies of adolescent growth [22–25]. SAS, version 9.3 Proc NLMixed 

(SAS Institute Inc) was used to fit the data to the PB1 model, and the growth parameters 

were calculated and stratified by race-specific early, on-time, and late-onset maturation. We 

also calculated annualized height velocity, determining change in height between two 

consecutive visits divided by the time interval in years. The maximum value of the 

calculated height velocity determined an individual’s PHV for correlation analyses; age at 

that time was used to define age at PHV. Duration of the pubertal growth spurt was 

calculated from the difference of age at breast stage 2 to age at which adult height was 

achieved.

Scatter plots and LOESS (locally weighted scatterplot smoothing) fit of pubertal and 

hormone variables were first examined to inspect nonlinear relationships. We performed 

stepwise regression analyses with pubertal parameters including age of breast onset, AAM, 

and PHV, as well as estradiol, estrone, and testosterone, measured at time of breast 

development as outcome variables; we incorporated IGF-1 concentrations and BMI, and 

IGF-1, BMI, and race in the stepwise regression. IGF-1 concentrations at onset of puberty, 

as well as IGF-1 concentrations obtained 6 months earlier, were independently examined in 
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the regression analyses, to examine earlier as well as current hormonal milieu. We 

performed a separate regression analysis on the outcome AAM, incorporating E:A ratio, 

BMI, and race as explanatory variables.

Results

The 183 participants in these analyses included 119 non-Hispanic white and 64 black 

participants. Among white participants, early maturers entered puberty under 7.67 years and 

late maturers over 9.94 years. Among black participants, early maturers entered puberty 

under 7.25 years and late maturers over 9.39 years of age. There were 16 participants (8.8% 

overall) who had a family history of breast cancer.

A statistically significant difference in age at PHV was found between the three pubertal 

timing groups (Table 1): early versus on time, t = 2.87; df = 158; p = .0046; on time versus 

late, t = 3.35; df = 142; p < .0001. When examining pubertal variables associated with PHV, 

the strongest negative correlate was AAM (that is, earlier AAM was associated with greater 

PHV) (R =−.427, p < .0001) and PHV with age at which adult height is achieved (R = .396, 

p < .0001). The duration of the pubertal growth spurt was greatest in the earliest-maturing 

girls (Table 1) and least in the late-maturing girls, and both were different compared to 

duration of girls who matured on time (Kruskal-Wallis test, χ2 = 86.2, df = 2, p < .0001). 

Longer duration was associated with lower concentrations of estrone (Pearson R = −.539, p 
< .0001) and testosterone (R = −.424, p = .001), but duration was not associated with PHV 

(R = .123, p =.22).

IGF-1 concentrations tracked significantly within an individual across the peripubertal 

period (interclass correlation coefficient = .67, p < .001). Black participants had greater 

IGF-1 concentrations at onset of breast development, contrasted to white participants (329 

ng/mL vs. 277 ng/mL, p = .0084). IGF-1 concentrations were not related to maternal history 

of breast cancer (p = .33). Greater IGF-1 concentrations obtained 6 months before the onset 

of breast development (mean IGF-1 = 280 ng/mL) were correlated with earlier age of breast 

development (p = .03), earlier AAM (p = .001), longer duration of puberty (p = .0027), and 

earlier age of PHV (p = .005) (Table 2). Greater IGF-1 was also correlated with greater final 

adult height (p = .023) and marginally correlated with higher PHV (p = .065). IGF-1 

concentrations at onset of breast development were correlated with greater concentrations of 

estradiol (p = .014), estrone (p < .0001), and testosterone (p < .0001) obtained at the same 

time (Table 2). E:A ratio was significantly associated with AAM (R = −.166, p = .0005), but 

not age at breast development (R = −.09, p = .31).

In the stepwise regression models, adding BMI and BMI with race into the regression model 

which contained IGF-1 concentrations, resulted in decreased significance of IGF-1 

concentrations at 6 months before puberty with several pubertal outcomes, such as age of 

breast onset, duration of puberty, and age of PHV (Table 3). The relationship of IGF-1 

concentrations at onset of puberty with estrone, estradiol, and testosterone concentrations 

were nearly identical with the addition of BMI and race into the stepwise regression. Of 

note, in the separate regression analysis of AAM with E:A ratio, BMI, and race, E:A ratio 
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remained in the regression model for AAM after inclusion of BMI and race (β = −.016, p 
= .052).

Discussion

This study sought to understand better the physiological links relating pubertal parameters to 

risk of breast cancer. This study, as others, noted earlier pubertal timing, determined by 

breast development or AAM, is related to greater peak height velocity, and earlier breast 

development is related to a longer duration of the pubertal growth spurt. IGF-1 

concentrations tracked during puberty and were greater in participants with a maternal 

history of breast cancer, with earlier onset of breast development, and earlier AAM. In 

addition, the ratio of estrone to androstenedione (E:A) was associated with earlier AAM.

Age of menarche is a useful epidemiologic tool for the assessment of breast cancer risk; not 

only is AAM associated with breast cancer risk [3], but it also can be recalled by adolescent 

and adult women with a high degree of accuracy [26]. The underlying physiological basis 

relating menarche to risk of breast cancer may be the association of the timing of menarche 

with IGF-1 concentrations; sex steroid concentrations, specifically the E:A ratio; and 

duration of the pubertal growth spurt—an important window of exposure[27]—rather than 

an increased number of lifetime menstrual cycles [28,29]. Although it has been proposed 

that the association of earlier AAM with breast cancer may be mediated through a greater 

number of menstrual cycles [30], earlier studies have reported no association of AAM and 

age at natural menopause (ANM) [31], or earlier AAM with earlier ANM [32,33], as well as 

later AAM with later ANM [34]. In addition, there are two large studies noting genetic 

factors that are associated with both AAM and ANM [35,36].

This study and others have noted that AAM is associated with several pubertal parameters, 

including age of onset of puberty (defined as breast stage 2), earlier onset and greater degree 

of PHV, and duration of puberty [24,37–40]. Earlier AAM leads to a longer duration of 

puberty (as defined by onset of breast development to the end of the pubertal growth spurt) 

[24,41], resulting in an expanded window of susceptibility. Although earlier work had 

proposed the importance of the critical timing of exposure that could impact development of 

breast cancer, the vast majority have emphasized prenatal exposures. In a jointly sponsored 

workshop in 1999, scientists strove to identify “critical windows of exposures,” including 

several additional windows of susceptibility [27]. For example, women exposed to radiation 

from atomic bombs in Nagasaki and Hiroshima were most likely to develop breast cancer if 

exposed between 10 and 19 years of age [42]. Similarly, findings from animal model studies 

have identified puberty as one of the perilous “windows of susceptibility” [2,43].

As noted, estrogen exposure has been related to the risk of breast cancer [14,15], and the 

relationship of obesity and overweight with postmenopausal breast cancer is mediated 

through the peripheral conversion of adrenal androgens into estrogen by the action of 

aromatase. This is consistent with findings reporting greater expression of aromatase in 

normal breast tissue of patients with breast cancer [44] and in mammographically dense 

breast areas [45]. Earlier AAM is associated with greater levels of estrogen in the follicular 

phase in young adults [46,47] and greater lifelong estrogen exposure. These findings would 
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suggest that endocrine and paracrine effects of greater aromatase activity would provide 

greater stimulation of the endometrial lining, leading to earlier menarche; greater stimulation 

of hormonally responsive breast tissue, leading to greater breast density; and ultimately 

greater risk of breast cancer.

Studies have contrasted the associations between AAM, PHV, and age at which adult height 

is attained with breast cancer risk. PHV has been noted to be more strongly associated than 

AAM with risk of breast cancer [4]. Age at which adult height is reached has been reported 

as an independent risk factor for breast cancer [5,48] and related to more aggressive breast 

cancers than those associated with AAM [5]. We propose that the mechanism relating these 

pubertal parameters to risk of breast cancer can be explained, in part, by IGF-1 

concentrations and the E:A ratio (Figure 1). We noted longitudinal associations of IGF-1 to 

earlier AAM, greater PHV, and earlier age of PHV; additionally, PHV was strongly related 

to AAM and age at which adult height is achieved. It is possible that some of our 

explanatory variables in the regression models were collinear with IGF-1, decreasing the 

statistical significance of IGF-1. Others have reported that higher IGF-1 concentrations are 

associated with earlier onset of puberty and menarche [49–51]. IGF-1 concentrations are 

consistent when resampled [52–57], and investigators have reported the significant 

association of age at PHV when compared to IGF-1 concentrations measured decades later 

[58]. IGF are mitogens that regulate cell proliferation and differentiation, as well as 

apoptosis [59], and a meta-analysis noted increased risk of elevated IGF concentrations with 

several cancers, including premenopausal breast and prostate cancers [60]. In addition, we 

found black girls had greater IGF-1 concentrations at onset of puberty, similar to adult 

women [61]. Of note, black women also have higher rates of premenopausal breast cancer 

[62].

IGF-1 could also explain the risk of breast cancer with two potentially inconsistent findings: 

both earlier maturation (associated with greater IGF-1 concentrations, and which may result 

in normal or shorter adult height) [24]as well as taller women [4,63] (who are also noted to 

have higher IGF-1 concentrations) [51,64]. IGF-1 is also associated with increased breast 

density in most [8,65], but not all, studies [66]. In a pooled analysis of 17 prospective 

studies, the odds of developing breast cancer were 1.28 when comparing those within the 

first and fifth quintiles of serum IGF-1 concentrations measured in adult women, and even 

greater odds (1.38) for breast cancers that were estrogen receptor positive [64]. In addition, 

the IGF-1 gene was one of the seven genes identified in a meta-analysis of genome-wide 

association studies that examined the relationship between breast density and breast cancer 

[65], although the association of IGF-1 with breast cancer may be restricted to 

premenopausal women [9,67].

There are several potential limitations to this study. We measured total circulating IGF-1 

concentrations; previous studies have noted that there may be important differences between 

circulating (that is, endocrine) contrasted to tissue/cellular (paracrine) concentrations of 

IGF-1 in breast cancer risk and progression [11]. Measurements in tissue are not feasible in 

adolescent girls. In addition, we measured total IGF-1, not IGF-1 isoforms [68]. The 

participants in this study were recruited from the greater Cincinnati area, and not nationally 

representative, with few Hispanic or Asian girls, which limits the ability to generalize our 
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findings. However, enrollment was community based, and it is highly unlikely participants 

were self-selected on pubertal maturation status or IGF-1 concentrations, since status on 

those factors would be unknown when they enrolled at 6 and 7 years of age. Our analyses, 

especially those stratified by race, had limited sample size, thereby limiting our power to 

detect differences. Finally, we do not have proximal (breast density) or clinically relevant 

(breast cancer) outcomes, although other studies have reported on the relationships of IGF-1 

with breast density, and with breast cancer, as noted previously. Future work could address 

these issues, as well as explore the use of phytoestrogens, especially the flavonoids, to delay 

pubertal milestones [69] and in high-risk young women, to act as chemoprevention [70,71].

The current data suggest that the mechanisms underlying the association between earlier 

AAM with greater risk of breast cancer may be driven through higher concentrations of 

IGF-1, greater ratio of E:A, and an expanded window of susceptibility. We have provided a 

rigorous theoretical framework for the interrelationship of events during puberty, supported 

by evidence of the empirical data. Stronger empirical results will require larger sample sizes 

and directed studies in adult women.
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IMPLICATIONS AND CONTRIBUTION

Peak height velocity, IGF-1, and estrone-to-androstendione ratio were greatest in girls 

who matured earliest. The association of earlier maturation with breast cancer risk may 

be explained by higher exposures to IGF-1 and estrogen with an expanded window of 

susceptibility to potential carcinogens.
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Figure 1. 
Pubertal milestones and breast cancer risk. Bolded lines supported by study data. Dashed 

lines confirmed by adult literature; see text.
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Table 1

Selected pubertal parameters, by relative timing of puberty

Pubertal parameter Early onset On-time onset Late onset

Age at onset of breast development Black participants (N = 64) <7.25 7.25–9.39 >9.39

White participants (N = 119) <7.67 7.67–9.94 >9.94

Peak height velocity (PHV), cm/year 7.18 6.96 6.60

Age of PHV, year 10.50 11.09 11.86

Duration pubertal growth, year   6.90   5.45   4.50
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