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A compact Hexa-band Bio-inspired antenna is presented in this paper. The structure of the proposed antenna is
realized from a semi-Vine-leaf shape, Defected Ground Structure (DGS) and arc-slots techniques. The total
dimension of the antenna is 0.35\d x 0.14\d; where Ad is the guided wavelength at low frequency (2.37GHz). The
design begins with a semi-Vitis vinifera leaf-shaped radiating patch monopole structure, fed with an asymmetric
microstrip feedline to achieve compactness. Five (5) arc slits are then introduced on the radiating patch of the
initiator with an intention to create band notches and thereby results in multiband and further miniaturization.
The proposed antenna is analyzed, simulated and fabricated. The measurement results of the proposed antenna
show that the antenna operates at 2.37GHz, 3.06GHz, 3.52GHz, 4.28GHz, 4.88GHz, and 6.0GHz with a -10dB
fractional bandwidth of 11.97%, 4.61%, 12.43%, 6.77%, 2.46%, and 11.55% respectively. The peak gain of the
proposed antenna is 3.21 dBi. The radiation patterns of the proposed antenna are Bi-directional at XZ-plane and
XY-plane, but Omnidirectional at YZ-plane. Owing to the compactness of the antenna, suitable radiation pattern,
acceptable gain and high radiation efficiency, the proposed antenna is suitable for several applications such as
Industrial, Scientific and Medical (ISM) Band, Radar, WiMAX, 5G mid-band, Bluetooth, WLAN, WiMAX, LTE, and
Wi-Fi. The contributions of this work are: (i) the use of asymmetric microstrip feedline for miniaturization pur-
pose contrary to the commonly used asymmetric coplanar strip; (ii) simple formulation for the predictions of
notch bands introduced by the slit on the radiating patch; and (iii) presentation of ultra-compact hexa-band
antenna compared to the existing multiband antenna.

1. Introduction

Wireless communication has evolved over the years with several
bands in different nations of the world. This has necessitated the need for
multiband antennas. Antenna, being the backbone of wireless commu-
nication, determines the size of such devices. Nowadays, Antennas with
compact-size, multiband accompany with suitable gain and radiation
pattern are on ever increasing demand in wireless communication
markets.

Over the years, the attention of researchers has been directed in this
direction and the majority of the works in the literature have concen-
trated on multiband antennas for WLAN, WiMAX and ISM band appli-
cations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
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Nonetheless, with the recent deployment of 5G technology, it is neces-
sary to incorporate some of its proposed operating frequency bands with
other existing bands while ensuring compactness.

In achieving multiband antenna, slot etching on the ground plane or
on the radiating patch has been used in the literature to achieve multi-
frequency resonances [1, 2, 4, 5, 10, 19]. Metamaterial has also been
used for multiband antennas realization as reported by authors in [3, 16].
Furthermore, the authors in [12], and [14] have used electromagnetic
Band Gap (EBG) and meandering to realize compact multiband antennas.
Parasitic loading has also been used by authors in [20] for multiband
antenna realization. One of the advantages of patch antennas is the
availability of different feeding techniques such as coaxial, microstrip,
coplanar waveguide (CPW).

Received 12 January 2021; Received in revised form 1 February 2021; Accepted 5 February 2021
2405-8440/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).


mailto:aboladejeremiah@yahoo.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2021.e06247&domain=pdf
www.sciencedirect.com/science/journal/24058440
http://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2021.e06247
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2021.e06247

J.0. Abolade et al.

Figure 1. A typical Vine-leaf.

Coplanar waveguide can be divided into symmetrical and Asym-
metrical coplanar waveguide. Due to the benefits presented by
CPW such as small radiation leakage, less dispersion, the independence
of its characteristic impedance on the thickness of the substrate, uni-
planar and ease of integration with other microwave devices, it has
been popularly employed as the feeding techniques of patch antennas.
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For symmetrical CPW, the strip is situated at the center of the two
ground planes [6, 7, 8, 9, 17, 18, 21]. On the other hand, Asymmetric
CPW usually referred to as asymmetric coplanar strip (ACS) has a
strip shifted from the center of the ground plane and usually has its
ground plane on one side of the strip [15, 22]. ACS, along with the
benefit of CPW, gives a high degree of freedom to achieve compact
structure. In this work, an Asymmetric microstrip fed antenna is
proposed.

The contributions of this work are as follows: (i) the use of asym-
metric microstrip feedline for miniaturization purpose contrary to the
commonly used asymmetric coplanar strip; (ii) simple formulation for the
predictions of notch bands introduced by the slit on the radiating patch;
and (iii) presentation of ultra-compact hexa-band antenna compared to
the existing multiband antennas.

2. Antenna design and analysis

The Bio-inspired asymmetric microstrip fed antenna (BioAs-MPAs)
proposed in this work is based on a Semi-Vine-leaf radiating patch
structure with an asymmetric microstrip feedline. A typical Vine-leaf is
as shown in Figure 1. The motivation behind the choice of Vine-leaf is
due to the saw-toothlike shape of its edge which increases the perimeter
of the structure. The evolution of the proposed structure is presented in
Figure 2 and the optimized design parameters are presented in Table 1.
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Figure 2. The configuration of (a) design Initiator (b) Proposed antenna (c) The embedded arc-slot.
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Table 1. The optimized design parameters of the proposed structure.

Parameter Wup W, Wy Wy Lo
Value (mm) 12 6 29 0.9 30
Parameter L, Ly L Ly
Value (mm) 9 17 11.9 5.6
Table 2. The coordinates of the Semi-Vine-leaf-shape used as the radiating patch.
Semi-Vine-leaf co-ordinate points
n X Y n X Y n X Y
1 9.6 -1.6 16 3.6 -6.1 31 -3.4 -4.2
2 8.4 -2.2 17 &2 -6.5 32 -5.0 -5.2
3 10.6 -2.9 18 3.2 -7.6 33 -4.6 -4.0
4 9.2 -3.3 19 2.8 -7.4 34 -6.8 -4.6
5 10.0 -3.9 20 1.8 -8.6 35 -5.4 -2.9
6 9.2 -4.0 21 1.0 -8.0 36 -6.6 -3.3
7 9.0 -5.0 22 0.4 -8.6 37 -6.2 -2.5
8 7.8 -4.8 23 0.2 -8.0 38 7.4 -2.7
9 7.6 -6.7 24 -1.0 -8.9 39 -6.8 -1.8
10 6.6 -6.1 25 -1.6 -8.0 40 -7.8 -2.2
11 5.8 -7.4 26 -2.4 -8.6 41 -7.6 -1.4
12 5.4 -7.0 27 -2.8 -8.0 42 -8.4 -1.6
13 5.0 -7.6 28 -3.8 -8.2 43 -8.0 -0.8
14 4.8 -7.2 29 -3.8 -7.4 44 -10.0 0.0
15 3.8 -8.0 30 -6.0 -8.0 45 -8.9 0.4
46 4.8 0.5
The values of parameters in Table 1 are derived from the parametric e b +1 3)
study of the proposed structure. First, we start with an unslotted semi- o 2

Vine-leaf shape having a total perimeter () of 70.5mm on a Duroid
5880 substrate with a thickness of 1.57mm as shown in Figure 2a. The
perimeter of the proposed radiating patch is determined from its co-
ordinates by using Eq. (1). The coordinate of the proposed patch is
given in Table 2. The resonance of the proposed structure can be pre-
dicted by using Eq. (2) [23]. Secondly, arc-slots (S1, S2, S3, S4 and S5)
are introduced as shown in Figure 2b. The arc-slots are carefully
designed by employing quarter wavelength strips. The design of the arc
strip is done using Egs. (4), (5), (6), (7), (8), (9), (10), and (11) and the
optimized arc-slot design parameters with the resonant frequency of the
respective strips are presented in Table 3.where; N = 46 from Table 2
and

N-1
V= [\/(xn+1 - xn)2 + (yn+1 - yn)z (1)
n=1
300
"~ 2
TN @

y is the perimeter of the patch, &, is the effective relative permittivity,
According to the theory of strip line [24], the strip used for slitting in this
work is formulated as follows:

i

li= Z )]
Co

=2 5
Ji ®

Where, [; is the length of the ith strip, /4; is the free space wavelength of ith
strip, and f; is the resonance frequency of the ith strip in air. Considering
the permittivity of the dielectric, the resonance frequency of ith strip
becomes

©

- CO
fi_l_d,-

Where 14 is the wavelength in the dielectric of the ith strip and it is
defined as;

Table 3. The optimized parameter of the Arc-shape strip and the respective resonance frequency.

Arc-Strip (S) Ry rn #i(°) 8 8&i I fr
(mm) (mm) (mm) (mm) (mm) (GHz)
S1 5.000 5.250 236.57 0.286 11.30 21.70 2.735
Sa 4.275 4.525 247.51 0.306 8.90 19.50 3.033
S3 3.550 3.800 230.66 0.253 8.60 15.30 3.875
S4 2.825 3.075 246.11 0.256 6.10 13.20 4.488
Ss 2.100 2.350 306.68 0.256 2.20 12.60 4.713
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Figure 3. (a) Top view of the prototype, (b)bottom view of the prototype of the
proposed antenna.

A
Jai=— 7
“= e @]
Hence,
Co
fi= U es (8

Where & replaces ¢, to incorporate the fringe effect and it is defined as
given in Eq. (3)

li=2mr;— g (C)]
0 — @;)x2rr;

g =m0 10

r=Ri+w an

where; r; is the external radius of the ith strip, R; is the internal radius of
the ith strip, w is the width of the strip (0.25mm), g; is the slot-length of
the ith strip, € is the angle of a circle (i.e., 360°), and ¢; is the angle
subtended by an ith strip. § is the width of the parallel wires gap as
depicted in Figure 2c.

Therefore, the arc-slots S;, S, S3, S4, and Ss are expected to pro-
duce band notches at 2.73GHz, 3.03GHz, 3.88GHz, 4.49GHz and
4.71GHz respectively. Hence, the realization of the realization of the
multiband antenna. The proposed antenna is fed with a 50Q2 feedline. The
top view and the bottom layer of the fabricated proposed antenna are as
shown in Fig. 3a and b respectively.

3. Result and discussion

In this section, the reflection coefficient, Radiation pattern, surface
current distribution, gain and efficiency are presented.

3.1. Reflection coefficient (S11)

Figure 4a shows the reflection coefficient of the evolution of the
proposed structure. It can be observed from Figure 4a that the initiator
(Figure 2a) has two resonance frequencies at 3.86GHz and 7.32GHz with
a S11 of -35dB and -13dB; a fractional bandwidth of 44.8% and 14.7%
respectively. The introduction of the Arc-slot S; (Ant. 1) results in the
band notch at 2.7GHz, which validates the analytical design and
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eventually results in resonance at 2.46GHz, 4.3GHz, and 6.74GHz with a
S11 of -16.01dB, -24.46dB, and -51.68dB; a fractional bandwidth of
1.2%, 40.9%, and 13.8% respectively.

With the arc-slot S, (Ant. 2), a band notch is observed at 3.06GHz
and results in resonance at 2.74GHz, 4.4GHz and 7.1GHz with a S11 of
-17.1dB, 21.9dB and -18.3dB; a fractional bandwidth of 2.2%, 43.0%,
and 15.7% respectively. Similarly, the arc-slot S3 (Ant. 3) produces a
band notch at 3.9GHz as predicted earlier and results in a dual band
antenna with resonance at 3.15GHz and 5.2GHz with a S11 of
-35.2dB, and -21.3dB; a fractional bandwidth of 6.7% and 57.3%
respectively.

In the same light, the arc-slot S4 (Ant. 4) gives a band notch at
4.48GHz as predicted in Table 3 which results in a dual band antenna
operating at 3.36GHz and 5.6GHz with a S11 of -43.63dB and -23.27dB; a
fractional bandwidth of 11.0% and 41.0% respectively. Finally, arc-slot
Ss (Ant. 5) gives a notch band at 4.7GHz as seen in Figure 4a and it re-
sults in dual band antenna with resonances at 3.47GHz and 5.58GHz with
a S11 of -34.2dB and -26.1dB; a fractional bandwidth of 13.8% and
45.1% respectively. Therefore, each of the proposed arc slots results in
multi-resonance with a good return loss (RL).

Consequently, all the arc-slots are then combined to achieve a robust
multiband antenna as seen in Figure 4a. The addition of all the arc-slits
results in Hexa-band antenna while maintaining the notches as pre-
dicted in section IL. It can be seen in Figure 4b that there is no significant
difference between the measurement and the simulation results. Hence,

IS),] (dB)

50f I Ant 4 Ant.
1 2 3 4 5 6 7 8
Freq (GHz)
(a)
Measurement
= Simulation
0-
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-104
m 15
=2
— 204
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-40 T T T T R RAASS o Miiaaaas 1

2 25 3 35 4 45 5 55 6 65 7 175
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Figure 4. (a) simulated S11 of the proposed antenna evolution. (b) measured
and simulated S11 of the proposed structure.
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Co-Pol
===== X-Pol

Figure 5. The simulated Radiation Pattern at XZ-plane.

the measured S11 results show that the proposed structure resonates at
2.37GHz, 3.06GHz, 3.52GHz, 4.28GHz, 4.88GHz, and 6.0GHz with a
-10dB fractional bandwidth of 11.97%, 4.61%, 12.43%, 6.77%, 2.46%,
and 11.55% respectively.

3.2. Antenna gain, radiation efficiency and radiation pattern

Figures 5, 6, and 7 show the radiation pattern in the XZ, YZ and XY
plane respectively. It can be observed that the proposed antenna has a bi-

-30-
201
-104

directional radiation pattern on the XZ-plane (E-plane) while the radia-
tion pattern in the YZ-plane (H-plane) is Omnidirectional in all its
operating frequencies. In the XY-plane, it can be observed that the ra-
diation pattern is bi-directional with a tilt as compared with the XZ-
plane. The plot of the Co-Pol and X-pol radiation pattern of the pro-
posed antenna presented in Figures 5, 6, and 7 shows that the proposed
structure demonstrates a good X-pol purity in all the plane.

The Gain and Efficiency of the proposed antenna are presented in
Fig. 8a and b respectively. It can be observed in Figure 8a that the gain of

Co-Pol
=== X-Pol

Figure 6. The Simulated Radiation pattern at YZ-plane.
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the proposed antenna is suitable for wireless communication with the
least being 2.3 dBi at 2.4GHz and the highest being 3.21 dBi at 4.8GHz.
The radiation efficiency of the proposed antenna is presented in
Figure 8b. It can be observed that the proposed antenna has a very good
radiation efficiency (71.04-100%) across its operating bands with the
lowest being 71.04% at 3.1GHz.

3.3. The distribution of the surface current density

The radiation characteristics of an antenna can be well understood by
analyzing its surface current distribution. Current distribution de-
termines the electrical length (L.) of the antenna at a specific resonant
frequency using Eq. (12). The surface current distribution of the proposed
antenna is presented in Figure 9.

C

fr= m (12)

In the case of 2.4GHz, it can be observed that the current concentrates
around the edge of the patch and the arc-slot S;. It shows that the arc-slot
S; contributes to the resonance at 2.4GHz as predicted in section II.

More so, at 3.1GHz, Figure 9 shows that, current concentrate on the
strip formed by arc-slots S; and Sy. This shows that the strip formed by
the combination of the two slots S; and S; is the major contributor to the
resonance at 3.1GHz. It is worthy of note that though the band notch
introduced by the arc-slot Sy is maintained, there is a shift in the

r 1 1 1 1
R L, +—— ) | Rs+jwls+—— | [ Ry+jwLls+—— ) | Rs+jwls+———
< 2 Fjw. z+ >< 3+Hjw. 3+ij3>< R[] 4+ij4>< 5+jw. 5+ij5)
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R+cuL+ Ry +joL -&-L Ry+joL. -&-L Rs+joL. -&-L
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<Rl+J(ULﬁL ) <R2 +HjwL, +——— ) <R3+J(UL3+7> <R4+J(1)L4+7>
jot, jo jol,

(20)

resonance frequency of a lone arc-slot S, from 2.74GHz to 3.1GHz in the
combined structure. This is due to the contribution of the arc-slot S; as
shown in Figure 9.

Furthermore, at 3.52GHz, it can be seen in Figure 9 that the major
contributor is the strip formed by the arc-slots Sy and S3. The current
distribution is seen to be concentrated on the strip between S3 and S, at
4.3GHz as observed in Figure 9. This implies that the major contributor to
the resonance at 4.3GHz is the strip formed by S3 and S4.

In the same light, the current distribution at 4.8GHz is seen to be
concentrated in strip between the arc-slots S4 and Ss. Finally, the reso-
nance at 5.8GHz shown in Figure 9, is due to the edge around the tip of
Ss.

4. Equivalent circuit design and analysis

It is a common knowledge that the antenna works with other devices
in the backend such as filter, transmitter or receiver and so on. Therefore,
for time domain analysis and to give the system designers insight into the
EM operation of the proposed antenna, it is necessary to design its
equivalent circuit. It is also a common knowledge that slotted antenna
can be represented with Series-parallel combination of Resistor (R),
Inductor (L) and Capacitor (C). When the slot is etched on the antenna
structure, the equivalent circuit will be a combination of a series RLC in
parallel to the antenna impedance which is usually denoted by a parallel
RLC. With this in mind, the equivalent circuit of the proposed antenna is
expected to have five (5) branches of series RLC because it has five (5)
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Figure 7. The Simulated Radiation pattern at XY-plane.

slots. The equivalent circuit of the proposed antenna is as shown in

Figure 10. The equivalent impedance (Z;;,) becomes,

1 1 1 1 1 1 1
== + + + + — 13)
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The equivalent circuit is designed, simulated and optimized in mi-
crowave studio. The optimized value of the lump parameters is as given
in Table 4. The reflection coefficient of the circuit model, EM model and
measurement are presented in Figure 11. It can be observed that there is

100
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4 5
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Figure 8. (a) the Gain of the proposed antenna (b) The efficiency of the proposed antenna.
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no significant difference among the S1; of the circuit model, EM model
and measurement.

@

5. Comparative analysis

In this section, a comparative study of the proposed antenna evolu-
tion is first presented. Then, the proposed BioAs-MPA is compared with
the existing works in the literature.

Jsurf
[a/m]

158.8
98. 9
55.1
3304
8.z

12.2

Jsurf
[a/m]

158.8
9, 9
55:1
3304
28, 2

12.2

®

Figure 9. Surface Current Distribution of the proposed Antenna.

5.1. Comparative analysis of the proposed antenna evolution

Heliyon 7 (2021) e06247

The applications of each of the proposed antenna evolution are pre-
sented in this section. Table 5 gives the number of band and applications
of each of the evolutions. It can be observed that all the antenna produced
at each evolution can be used in different applications. Therefore, it can
be concluded that seven different antennas (4 dual-band, 2 Tri-band, and

1 Hexa-band) are herein presented.

Table 4. The optimized value of the circuit model of the proposed antenna.

Parameters R1(Q) R2(Q) R3(Q) R4(Q) R5(Q) R6(Q) R7(Q)
Value 2.5 8 7.1 18.01 32 63.5 58.3
Parameters L1 (nH) L2 (nH) L 3(nH) L4 (nH) L5 (nH) L6 (nH) L7 (nH)
Value 304 831 44.2 54 141 0.439 0.278
Parameters C1 (pF) C2 (pF) C3 (pF) C4 (pF) C5 (pF) C6 (pF) C7 (pF)
Value 0.0139 0.00347 0.0446 0.028 0.00813 2132 1.781
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Figure 10. Equivalent circuit of the proposed antenna.
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Table 5. The comparative analysis of the proposed antenna evolution.

S/N Evolution Frequencies (GHz) Bandwidth (%) Number of bands (Applications)

1 Initiator 3.86/7.32 44.8/14.7 Dual-Band (WiMAX, Military)

2 Ant. 1 2.46/4.3/6.74 1.2/40.9/13.8 Tri-Band (ISM, Radar, 5G)

3 Ant. 2 2.74/4.4/7.1 2.2/43.0/15.7 Tri-band (Radar, Altimeter, 5G)

4 Ant. 3 3.15/5.2 6.7/57.3 Dual-band (Radar, WLAN)

5 Ant. 4 3.36/5.6 11.0/41.0 Dual-band (5G, WLAN)

6 Ant. 5 3.47/5.58 13.8/45.1 Dual-band (WLAN, WiMAX)

7 Proposed Ant. 2.4/3.1/3.52/4.3/4.8/5.8 11.97/4.61/12.43/6.77/2.46/11.55 Hexa-band (ISM, LTE, radar, WiMAX, 5G, WLAN, Wi-Fi)

5.2. Comparative analysis of the proposed antennas with recent works in

the literature

In order to validate the results herein presented, a comparative study
with the existing works in the literature is presented in Table 6. The

guided wavelength in the substrate at the lowest resonant frequency (44)
has been used to parameterize the size.

It can be observed in Table 6 that our work is the most compact an-
tenna and also the highest number of bands. As far as we know, this is the
only work that has presented a compact antenna with the highest number

Table 6. Comparative analysis of the BioAs-MPA antenna with recent works in the literature.

REF SIZE FREQ (GHz) Bandwidth (MHz) GAIN EFF (%)
(43)

[25] 0.46 x 0.23 2.1/3.5/4.9 180/450/4000 “5.4 dBi “86%

[26] 0.54 x 0.46 1.9/5.2/9.0 910/1280/2050 NR NR

[271 0.29 x 0.29 2/2.9/6 200/400/3400 NR NR

[28] 0.44 x 0.49 1.22/1.57/2.45/3.42 26/90/932/172 1.75/3/6/3 (dBi) 73/63/86/57

[29] 0.31 x 0.14 2.5/3.35/5.7 280/110/550 1.7/1.5/2.05 81.1/79.6/81.5

[30] 0.35 x 0.35 3.3/5.01/7.46/9.48 NR 0.4/0.28/4.19/2.05 46.6/50.8/72.2/50.9

(51 0.64 x 0.73 1.7/2.4 40/50 23.8 (dBm) NR

[31] 0.49 x 0.35 2.4/3.5/5.2 120/340/1450 0.6/1.8/3.7 (dBi) NR

171 0.35 x 0.76 2.4/3.5/5.5 620/1700/920 2.15/2/1.08 (dB) NR

[10] 0.44 x 0.57 3.2/3.6/4.8 90/80/470 4.63/3.45/7.15 (dB) NR

[15] 0.38 x 0.42 2.48/3.49 340/390 2.4/3.5 (dB) NR

[16] 0.50 x 0.52 2.4/3.5 200/390 2.25/0.88 (dBi) 76/85

[18] 0.49 x 0.38 2.49/4.2/7.4 300/1000/800 2.92/4.13/5.85 (dB) 76.96/67.92/85.61

[21] 0.58 x 0.32 2.47/3.2/4.92 650/1450,/2450 -2.25/0.56/3.25 (dBi) NR

[20] 0.66 x 0.34 2.45/3.5/5.5 390/1080/1230 2.71/3.15/3.06 (dBi) 70/65/77

[32] 0.86 x 0.86 2.45/3.42/5.13 200/600,/2330 3.29/3.37/4.16 (dB) NR

This work 0.35 x 0.14 2.37/3.1/3.52/4.3/4.8/5.8 280/140/440/290/120/710 2.3/2.61/2.44/2.46/3.21/3.14/3.15 (dBi) 85.4/71/95.9/87.1/83.7/99.6

NR-not reported.

" peak value.
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Figure 11. Reflection coefficient of the circuit model, EM model and
measurement.

of narrow multiband in the open literature which is one of the contri-
butions of this work to the existing body of knowledge.

6. Conclusion

In this paper, a bio-inspired radiating patch fed with an asymmetric
microstrip line and slitting techniques have been exploited to achieve a
compact Hexa-band antenna. The slits are arc-shaped which are
embedded on the radiating patch. One advantage of our proposed
asymmetric microstrip feeding technique is its suitability for robust an-
tenna configuration while ensuring compactness as demonstrated in this
work. The proposed antenna is suitable for Industrial, Scientific and
Medical (ISM) Band, Radar, WiMAX, 5G mid-band, Bluetooth, WLAN,
WiMAX, LTE, and Wi-Fi.
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