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Abstract
Motivated by the lack of publicly available datasets of chest radiographs of positive patients with coronavirus disease 2019 
(COVID-19), we build the first-of-its-kind open dataset of synthetic COVID-19 chest X-ray images of high fidelity using 
an unsupervised domain adaptation approach by leveraging class conditioning and adversarial training. Our contributions 
are twofold. First, we show considerable performance improvements on COVID-19 detection using various deep learning 
architectures when employing synthetic images as additional training set. Second, we show how our image synthesis method 
can serve as a data anonymization tool by achieving comparable detection performance when trained only on synthetic data. 
In addition, the proposed data generation framework offers a viable solution to the COVID-19 detection in particular, and 
to medical image classification tasks in general. Our publicly available benchmark dataset (https://​github.​com/​hasib​zunair/​
synth​etic-​covid-​cxr-​datas​et.) consists of 21,295 synthetic COVID-19 chest X-ray images. The insights gleaned from this 
dataset can be used for preventive actions in the fight against the COVID-19 pandemic.

Keywords  Chest X-rays · COVID-19 · Image synthesis · Deep learning · Image classification · Imbalanced data

1  Introduction

The World Health Organization (WHO) has declared 
COVID-19, the infectious respiratory disease caused by 
the novel coronavirus, a global pandemic due to the rapid 
increase in infections worldwide. This virus has spread 
across the globe, sending billions of people into lockdown, 
as many countries rush to implement strict measures in an 
effort to slow COVID-19 spread and flatten the epidemio-
logical curve. Although most people with COVID-19 have 
mild to moderate symptoms, the disease can cause severe 
lung complications such as viral pneumonia, which is fre-
quently diagnosed using chest radiography.

Recent studies have shown that chest radiography images 
such as chest X-rays (CXR) or computed tomography (CT) 
scans performed on patients with COVID-19 when they 
arrive at the emergency room can help doctors determine 
who is at higher risk of severe illness and intubation (Ai 
et al. 2020; Huang et al. 2020). These X-rays and CT scans 

show small patchy translucent white patches (called ground-
glass opacities) in the lungs of COVID-19 patients. A chest 
X-ray provides a two-dimensional (2D) image, while a CT 
scan has the ability to form three-dimensional (3D) images 
of the chest. However, chest CT-based screening is more 
expensive, not always available at small or rural hospitals, 
and often yields a high false-positive rate. Therefore, the 
need to develop computational approaches for detecting 
COVID-19 via chest radiography imaging not only can save 
health care a tremendous amount of time and money, but 
more importantly, it can save more lives (Ng et al. 2020). By 
leveraging deep learning, several approaches for the detec-
tion of COVID-19 cases from chest radiography images have 
been recently proposed, including tailored convolutional 
neural network (CNN) architectures (Karim et al. 2020; 
Wang and Wong 2020) and transfer learning-based meth-
ods (Kassani et al. 2020; Narin et al. 2020; Li et al. 2020; 
Farooq and Hafeez 2020).

While promising, the predictive performance of these 
deep learning-based approaches depends heavily on the 
availability of large amounts of data. However, there is a 
significant shortage of chest radiology imaging data for 
COVID-19 positive patients, due largely to several factors, 
including the rare nature of the radiological finding, legal, 
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privacy, technical, and data-ownership challenges. Moreo-
ver, most of the data are not accessible to the global research 
community.

In recent years, there have been several efforts to build 
large-scale annotated datasets for chest X-rays and make 
them publicly available to the global research commu-
nity (Demner-Fushman et al. 2016; Johnson et al. 2019; 
Irvin et al. 2019; Wang et al. 2017; Bustos et al. 2019). At 
the time of writing, there exists, however, only one anno-
tated COVID-19 X-ray image dataset (Cohen et al. 2020), 
which is a curated collection of X-ray images of patients 
who are positive or suspected of COVID-19 or other viral 
and bacterial pneumonia. This COVID-19 image data col-
lection has been used as a primary source for positive cases 
of COVID-19 (Karim et al. 2020; Wang and Wong 2020; 
Kassani et al. 2020; Narin et al. 2020), where the detec-
tion of COVID-19 is formulated as a classification prob-
lem. While the COVID-19 image data collection contains 
positive examples of COVID-19, the negative examples were 
acquired from publicly available sources (Wang et al. 2017) 
and merged together for data-driven analytics. This fusion of 
multiple datasets results in predominantly negative examples 
with only a small percentage of positive ones, giving rise to 
a class imbalance problem (Demner-Fushman et al. 2016; 
Johnson et al. 2019; Irvin et al. 2019; Wang et al. 2017; Bus-
tos et al. 2019). This in turn becomes a challenge of its own, 
as the merged data become highly imbalanced. In the context 
of a classifier training, the class imbalance problem in the 
training data distribution yields sub-optimal performance 
on the minority class (i.e., positive class for COVID-19).

In order to overcome the aforementioned issues, we 
present a domain adaptation framework by leveraging the 
inter-class variation of the data distribution for the task of 
conditional image synthesis by learning the inter-class map-
ping and synthesizing underrepresented class samples from 
the overrepresented ones using unpaired image-to-image 
translation (Zhu et al. 2017). The proposed framework com-
bines class conditioning and adversarial training in a bid to 
synthesize realistic looking COVID-19 CXR images. The 
generated synthetic dataset contains 21,295 synthetic images 
of chest X-rays for COVID-19 positive cases.

Understanding and interpreting the predictions made by a 
deep learning model provides valuable insights into the input 
data and the learned features learned so that the results can 
be easily understood by human experts. To visually explain 
the decisions made by the model in the sense that why an 
X-ray image is classified as COVID/Non-COVID, we use 
the gradient-weighted class activation map (Grad-CAM) to 
generate the saliency maps that highlight the most influential 
features affecting the predictions. Since the convolutional 
feature maps retain spatial information and that each pixel of 

the feature map indicates whether the corresponding visual 
pattern exists in its receptive field, the output from the last 
convolutional layer of the deep neural network shows the 
discriminative region in an image. To distinguish between 
the predicted COVID-19 and Non-COVID-19 images, we 
visualize the saliency maps for images that are correctly 
classified as COVID-19 and Non-COVID-19 (normal) by 
the proposed model. As shown in Fig. 1, the class activa-
tion maps for Non-COVID-19 (normal) demonstrate high 
activations for regions around the lungs, suggesting that 
there are no prediction features indicating that the disease is 
present. For most of the images that are correctly classified 
as COVID-19, the highlighted regions are within the lungs. 
Notice that in some cases, the model only highlights a spe-
cific part of the lung (e.g., left or right), which shows that 
COVID-19 features are present only on one side.

In addition to demonstrating improved COVID-19 detec-
tion performance through the use of various deep convolu-
tional neural network architectures on the synthetic data to 
boost training, we show how the proposed data generation 
and evaluation pipeline can serve as a viable data-driven 
solution to medical image analysis problems, and make our 
dataset publicly available, which is currently comprised of 
21,295 synthetic images of chest X-rays for COVID-19 posi-
tive cases. The main contributions of this paper can be sum-
marized as follows:

•	 We present an integrated deep learning-based framework, 
which couples adversarial training and transfer learning 
to jointly address inter-class variation and class imbal-
ance.

•	 We synthesize chest X-ray images of COVID-19 to adjust 
the skew in training sets by over-sampling positive cases 
to mitigate the class imbalance problem, while training 
classifiers.

•	 We demonstrate how the data generation procedure can 
serve as an anonymization tool by achieving comparable 
detection performance when trained only on synthetic 
data versus real data in an effort to alleviate privacy con-
cerns.

The rest of this paper is organized as follows. In Sect. 2, 
we provide a brief overview of generative approaches for 
medical image synthesis. In Sect. 3, we present a generative 
framework, which couples adversarial training and transfer 
learning to jointly address inter-class variation and class 
imbalance. In Sect. 4, we present experimental results to 
demonstrate improved COVID-19 detection performance 
through the use of various deep convolutional neural net-
work architectures on the generated data. Finally, we con-
clude in Sect. 5 and point out future work directions.
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2 � Related work

The advent of generative adversar ial networks 
(GANs) (Goodfellow et al. 2014) has accelerated research 
in generative modeling and distribution learning. With the 
ability to replicate data distributions and synthesize images 
with high fidelity, GANs have bridged the gap between 
supervised learning and image generation. These synthetic 
images can then be used as input to improve the perfor-
mance of various deep learning algorithms for downstream 
tasks, such as image classification and segmentation. 
GANs have not only been used in natural images’ settings, 
but have also been extensively employed in medical image 

analysis (Kazeminia et al. 2018), where labels are usually 
scarce or almost non-existent.

With the scarcity of annotated medical image datasets, 
there has been a surge of interest in developing efficient 
approaches for the generation of synthetic medical images. 
While several existing generative methods have addressed 
the translation between multiple imaging modalities CT-
PET, CS-MRI, MR-CT, XCAT-CT  (Ben-Cohen et  al. 
2017; Yang et al. 2017; Wolterink et al. 2017; Russ et al. 
2019) based on distribution matching, other approaches 
have focused on the scarcity of labeled data in the medical 
field due in large part to the acquisition, privacy, and health 
safety issues. Conditional and unconditional image synthesis 

Fig. 1   Saliency maps for the correctly classified COVID-19 (top two 
rows) and Non-COVID-19 (bottom two rows) images by the pro-
posed model. Notice that for images that are classified as COVID-19, 

our model highlights the areas within the lungs, whereas for Non-
COVID-19 images, the most important regions are around the lungs
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procedures, built on top of these generative models, have 
been proposed in retinal images (Costa et al. 2017; Dar et al. 
2019) and MRI scans (Shin et al. 2018; Guibas et al. 2017; 
Korkinof et al. 2018). These models involve the training of 
paired data in both source and target domains to synthesize 
realistic, high-resolution images in order to aid in medical 
image classification and segmentation tasks.

Image synthesis methodologies have also been proposed 
in the context of chest X-rays (Teixeira et al. 2018). Our 
work is significantly different in the sense that we are spe-
cifically interested in synthesizing a particular class, whereas 
in Teixeira et al. (2018) X-rays are generated from surface 
geometry for landmark detection tasks. While some genera-
tive methods only require paired data in the source domain 
with target domain consisting of unlabeled examples, Cohen 
et al. (2018) have demonstrated that the phenomenon of hal-
lucinating features (e.g., adding or removing tumors leading 
to a semantic change) leads to a high bias in these domain 
adaptation techniques. To overcome this issue, we have 
recently proposed a domain adaptation technique based on 
cycle-consistent adversarial networks in order synthesize 
high-fidelity positive examples to improve detection perfor-
mance of melanoma from skin lesion images (Zunair and 
Hamza 2020).

3 � Proposed method

In this section, we present the main building blocks of our 
proposed image synthesis framework using image-to-image 
translation, which is an increasingly popular machine learn-
ing paradigm that has shown great promise in a wide range 
of applications, including computer graphics, style transfer, 
satellite imagery, object transfiguration, character anima-
tion, and photo-enhancement. In an typical image-to-image 
translation problem, the objective is to learn a mapping that 
translates an image in one domain to a corresponding image 
in another domain using approaches that leverage paired or 
unpaired training samples. The latter is the focus of our 
work. While paired image-to-image translation methods 
use pairs of corresponding images in different domains, the 
paired training samples are, however, not always available. 
By contrast, the unpaired image-to-image translation prob-
lem, in which training samples are readily available, is more 
common and practical, but it is highly under-constrained and 
fraught with challenges. In our work, we build upon the idea 
that there exist no paired training samples showing how an 
image from one domain can be translated to a corresponding 
image in another domain. The task is to generate COVID-19 
chest X-rays from chest X-ray images to address COVID-19 
class imbalance problem. More specifically, our goal is to 

learn a mapping function between Non-COVID-19 images 
and COVID-19 in order to generate COVID-19 chest X-rays 
without paired training samples in an unsupervised fashion.

3.1 � Chest X‑ray image synthesis

We formulate the detection of COVID-19 as a binary clas-
sification problem. For the Normal vs. COVID-19 and Pneu-
monia vs. COVID-19 tasks, we train two translation models 
and synthesize COVID-19 images for each task in order to 
adjust the skew in the training data by over-sampling the 
minority class. For the sake of clarity and unless otherwise 
expressly indicated, we refer to the source domain of the two 
tasks as Non-COVID-19 instead of Normal and Pneumonia 
separately.

We adopt our unsupervised domain adaptation technique 
introduced in Zunair and Hamza (2020) to translate Non-
COVID-19 images for each case (i.e., normal or pneumonia) 
to COVID-19. Given two image domains A and B denoting 
Non-COVID-19 and COVID-19, respectively, the goal is to 
learn to translate images of one type to another using two 
generators GA ∶ A → B and GB ∶ B → A , and two discrimi-
nators DB and DA , as illustrated in Fig. 2.

The generator GA (resp. GB ) translates images from Non-
COVID-19 to COVID-19 (i.e., A → B ), while the discrimi-
nator DB (resp. DA ) verifies how real an image of B (resp. A) 
looks. The overall objective function is defined as

which consists of two adversarial losses and a cycle consist-
ent loss regularized by a hyper-parameter � (Zhu et al. 2017). 
The first adversarial loss is given by

where the generator GA tries to generate images GA(a) that 
look similar to COVID-19 images, while DB aims to dis-
tinguish between generated samples GA(a) and real sam-
ples b. During the training, as GA generates a COVID-19 
image, DB verifies if the translated image is actually a real 
COVID-19 image or a synthetic one. The data distributions 
of Non-COVID-19 and COVID-19 are pdata(a) and pdata(b) , 
respectively.

Similarly, the second adversarial loss is given by

(1)

L(GA,GB,DB,DA) = LGAN(GA,DB,A,B)

+ LGAN(GB,DA,B,A)

+ �Lcyc(GA,GB),

(2)

LGAN(GA,DB,A,B) = �b∼pdata(b)
[logDB(b)]

+ �a∼pdata(a)
[log(1 − DB(Ga(a)))],

(3)

LGAN(GB,DA,B,A) = �a∼pdata(a)
[logDA(a)]

+ �b∼pdata(b)
[log(1 − DA(GB(b)))],
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where GB takes a COVID-19 image b from B as input and 
tries to generate a realistic image GB(b) in A that tricks the 
discriminator DB . Hence, the goal of GB is to generate a Non-
COVID-19 chest X-ray such that it fools the discriminator 
DA to label it as a real Non-COVID-19 image.

The third loss term is to enforce cycle consistency and 
is given by

which computes the difference between the input image and 
the generated one using the �1-norm.

3.2 � Model optimization

The idea of the cycle consistency loss it to add a constraint 
such that GB(GA(a)) ≈ a and GA(GB(b)) ≈ b . In other words, 
the objective is to learn two bijective generator mappings by 
solving the following optimization problem:

For the generators GA and GB , the architecture is based on 
fully convolutional network (FCN). The discriminators DB 
and DA consist of a CNN classifier which verifies whether 
the image is real or synthetic.

3.3 � Training procedure

The training for the generators and discriminators is car-
ried out in the same way as in Zunair and Hamza (2020). 
First, we balance the inter-class data samples by perform-
ing undersampling. Then, we train CycleGAN to learn a 
function of the interclass variation between the two groups, 

(4)
Lcyc(GA,GB) = �a∼pdata(a)

[‖GB(GA(a)) − a‖1]

+ �b∼pdata(b)
[‖GA(Gb(b)) − b‖1],

(5)G∗

A
,G∗

B
= arg min

GA,GB

max
DA,DB

L(GB,GB,DB,DA).

i.e., we learn a transformation between Non-COVID-19 and 
COVID-19 radiographs. We apply CycleGAN to the over-
represented class samples in order to synthesize the target 
class samples (i.e., underrepresented class).

After training, we apply the generators GA and GB on the 
training datasets of Normal vs. COVID-19 and Pneumonia 
vs. COVID-19. We apply GA on the majority class of Normal 
vs. COVID-19, which consists of normal images in order to 
synthesize 16,537 COVID-19 images. We denote this syn-
thesized dataset as GNC , which consists of generated images 
by performing image-to-image translation from normal to 
COVID-19.

Similarly, for Pneumonia vs. COVID-19, we synthesize 
4758 COVID-19 images by applying GB on the majority 
class consisting of pneumonia images and we denote the 
synthesized dataset as GPC , which is comprised of gener-
ated images by performing image-to-image translation from 
pneumonia to COVID-19. It is worth pointing out that for 
the sake of clarity, the discriminator DA is not depicted to 
Fig. 2, as our main is to generate COVID-19 images from 
Non COVID-19 images.

4 � Experiments

In this section, we conduct extensive experiments to evaluate 
the performance of the proposed data generation framework 
on COVID-19 detection.

4.1 � Datasets

We use two publicly available datasets of chest X-rays:
COVID-19 Image Data Collection.   This dataset com-

prises 226 images of pneumonia cases with chest X-ray or 
CT images, specifically COVID-19 cases as well as MERS, 

Fig. 2   Illustration of the 
generative adversarial training 
process for unpaired image-to-
image translation. Chest X-ray 
images are translated from 
Non-COVID-19 (i.e., Normal or 
Pneumonia) to COVID-19 and 
then back to Non-COVID-19 
to ensure cycle consistency in 
the forward pass. The same 
procedure is applied in the 
backward pass from COVID-19 
to Non-COVID-19
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SARS, and ARDS. Data are scraped from publications and 
websites such as Radiopaedia.org, Italian Society of Medical 
and Interventional Radiology1, and Figure1.com2. From this 
dataset, we discard the CT images and retain the 226 images 
positive for COVID-19 and their corresponding labels.

RSNA Pneumonia Detection Challenge.   This dataset 
originated from a Kaggle challenge3 and consists of pub-
licly available data from Wang et al. (2017). It is composed 
of 26,684 images, and each image was annotated by a radi-
ologist for the presence of lung opacity; thereby providing 
a label for two classes. This label is included as both lung 
opacity and pneumonia.

4.2 � Dataset splits and preprocessing

We partition the three classes from COVID-19 Image Data 
Collection and RSNA Pneumonia Detection Challenge into 
two sets, namely “Normal vs. COVID-19” and “Pneumonia 
vs COVID-19.” A patient level split is then applied using 
80% as training set and the remaining 20% as test set to 
assess algorithm performance, and we follow the same eval-
uation protocol laid out in Shin et al. (2018), Zunair and 
Hamza (2020). We define the skew ratio as follows:

where Skew = 1 represents a fully balanced dataset, 
Skew > 1 shows that the negative samples are the majority, 
and Skew < 1 represents positive sample dominance in the 
distribution.

The data distributions of Normal vs. COVID-19 and 
Pneumonia vs. COVID-19 are displayed in Fig. 3, which 
illustrates the class imbalance in the training dataset. For 
Pneumonia vs. COVID-19, the skew ratio is around 22.9, 
while the skew for Normal vs. COVID-19 is almost four 
times larger, indicating high imbalance in the classes.

We also resize all images to 256 × 256 pixels and scale 
the pixel values to [0, 1] for the training of classifiers. It is 
important to mention that when we use the term synthetic 
data, we refer to COVID-19 CXR images only.

4.3 � Baselines

Since our aim is to provide a dataset to be used as a train-
ing set for the minority class, we test the effectiveness 
of several deep CNN architectures, including VGG-16 
(Simonyan and Zisserman 2014), ResNet-50 (He et al. 

(6)Skew =
Negative Examples

Positive Examples
,

2016) and DenseNet-102 (Huang et al. 2017), on the detec-
tion of the minority class. These pretrained networks were 
trained on more than a million images from the ImageNet 
database4. More specifically, we investigate the contribu-
tion of the synthetic datasets GNC and GPC , which consist 
of COVID-19 CXR images, to the overall performance 
of these deep learning models. The last layer of each of 
these models consists of a global average pooling (GAP) 
layer, which computes the average output of each feature 
map in the previous layer and helps minimize overfitting 
by reducing the total number of parameters in the model. 
The GAP layer turns a feature map into a single number 
by taking the average of the numbers in that feature map. 
Similar to max-pooling layers, GAP layers have no train-
able parameters and are used to reduce the spatial dimen-
sions of a 3D tensor. The GAP layer is followed by a single 
fully connected (FC) layer with a softmax function (i.e., a 

Fig. 3   Data distributions of Normal vs. COVID-19 (top) and Pneu-
monia vs. COVID-19 (bottom) with skew ratios of 91.87 and 22.9, 
respectively

1  https://​www.​sirm.​org/​categ​ory/​senza-​categ​oria/​covid-​19/.
2  https://​www.​figur​e1.​com/​covid-​19-​clini​cal-​cases.
3  https://​www.​kaggle.​com/c/​rsna-​pneum​onia-​detec​tion-​chall​enge. 4  http://​www.​image-​net.​org.

https://www.sirm.org/category/senza-categoria/covid-19/
https://www.figure1.com/covid-19-clinical-cases
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
http://www.image-net.org
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dense softmax layer of two units for the binary classifica-
tion case), which yields the predicted classes’ probabilities 
that sum to one.

4.4 � Evaluation metrics

Due to high class imbalance in the datasets, the choice of 
evaluation metrics plays a vital role in the comparison of 
classifiers. Threshold metrics such as accuracy and rank 
metrics (e.g., area under the ROC curve) may lead to a false 
sense of superiority and mask poor performance (Jeni et al. 
2013), thereby introducing bias. Since we are interested in 
the detection of the minority class (COVID-19), we follow 
the recommendations provided in Brabec and Machlica 
(2018), Jeni et al. (2013) and perform quantitative evalua-
tions using sensitivity and false negatives in the same vein 
as Kassani et al. (2020). Sensitivity is the percentage of posi-
tive instances correctly classified and is defined as

where TP, FP, TN and FN denote true positives, false posi-
tives, true negatives, and false negatives, respectively. TP is 
the number of correctly predicted malignant lesions, while 
TN is the number of correctly predicted benign lesions. A 
classifier that reduces FN (ruling COVID-19 out in cases 
that do have it) and FP (wrongly diagnosing COVID-19 
where there is none) indicates a better performance. A false-
negative COVID-19 result can be a serious problem due to 
the fact that we lose the benefits of early intervention. A 
false-positive result can also cause significant issues for both 
an individual and the community. Even from an epidemiolo-
gicial perspective, a high number of false positives can lead 
to a wrong understanding of the spread of COVID-19 in the 
community. Sensitivity, also known as recall or true-positive 
rate, indicates how often a classifier misses a positive predic-
tion. It is one of the most common measures to evaluate a 
classifier in medical image classification tasks (Esteva et al. 
2017). A larger value of sensitivity indicates a better perfor-
mance of the classification model.

(7)Sensitivity =
TP

TP + FN
,

4.5 � Implementation details

All experiments are performed on a Linux Workstation 
(CPU: AMD 2nd Gen Ryzen Threadripper 2950X, 16-Core, 
64-Thread, 4.4GHz Max Boost; Memory: 64GB high-per-
formance RAM; GPU: NVIDIA GeForce RTX 2080 Ti). 
We perform training/testing on both COVID-19 Image Data 
Collection and RSNA Pneumonia Detection Challenge. For 
training the models, we use the Adadelta optimization algo-
rithm (Zeiler 2012) to minimize the binary cross-entropy 
loss function with a learning rate of 0.001 and batch size 
of 16. We initialize the weights using ImageNet and train 
all layers until the loss stagnates using an early stopping 
mechanism.

For each dataset, we follow the same evaluation protocol 
laid out in Shin et al. (2018), Zunair and Hamza (2020) for 
testing the contribution of newly added data. In this evalua-
tion protocol, both training and test sets are used. The train-
ing set varies, as new data are added to each configuration. 
The deep CNN classifiers are trained on these data and eval-
uated on the held-out test set. For fair evaluation and com-
parison purposes, the size of the test set remains constant. 
It is important to mention that the test set does not contain 
any synthetic examples. Moreover, the hyper-parameters are 
not tuned and hence do not require a separate validation set.

4.6 � Over‑sampling with synthetic data

We demonstrate the effectiveness of the synthetic sets GNC 
and GPC in Tables 1 and 2 using four deep learning mod-
els, namely VGG-16  (Simonyan and Zisserman 2014), 
ResNet-50 (He et al. 2016), DenseNet-102 (Huang et al. 
2017), and DenseNet-121 with a bagging tree classifier 
(DenseNet121 + BGT) (Kassani et al. 2020). For each task, 
we can observe that when GNC is added, there is a signifi-
cant increase in performance. While the addition of GPC 
also results in an increase in performance, such an increase 
is not quite large compared to adding GNC in some cases. 
We hypothesize that this is due to the number of COVID-
19 examples in GNC (16,537), which enables the models to 
learn better representations for COVID-19, whereas GPC 

Table 1   COVID-19 detection performance results on Normal vs. COVID-19 test set when trained on real data; real + synthetic data; and only 
synthetic data (i.e., only G

NC
 is used for positive class examples in training each model)

SEN is short for sensitivity. Boldface numbers indicate the best performance

Model Real Real + G
NC

Real + G
NC

 + G
PC

Only Synthetic

SEN (%) ↑ FN ↓ Skew↓ SEN (%) ↑ FN ↓ Skew↓ SEN (%) ↑ FN ↓ Skew↓ SEN (%) ↑ FN ↓

VGG-16 19.56 37 91.87 54.34 21 0.98 63.04 17 0.79 50.00 23
ResNet-50 32.61 31 91.87 41.30 27 0.98 43.47 26 0.79 10.86 41
DenseNet-102 26.08 34 91.87 28.27 33 0.98 34.73 30 0.79 8.69 42
DenseNet-121 + BGT 36.95 29 91.87 45.65 25 0.98 52.17 22 0.79 21.73 36
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is comprised of only 4,758 COVID-19 examples. Further, 
an increase in performance using both metrics is observed 
when the skew in the training dataset decreases. The rela-
tive improvement seems to drop as the model complexity 
increases, which is in line with the findings in Raghu et al. 
(2019) due to the problem of over-parametrization. When 
synthetic data are used as additional training set, the detec-
tion performance significantly increases. However, the rela-
tive improvement drops when the architectural complexity 
of the model increases. Note that despite its simplicity, the 
VGG-16 network outperforms all the other baseline meth-
ods, while the “DenseNet121 + BGT” model yields the 
second best performance. For less complex models, we can 
see that using only synthetic dataset performs better than 
the original data. Moreover, Table 2 shows that with the 
exception of VGG-16, all models achieve sub-optimal per-
formance when using synthetic data only.

4.7 � Training on anonymized synthetic data

We also evaluate the performance when the classifiers are 
trained on only synthetic COVID-19 images, as shown in 
Tables 1 and 2 for each dataset. Sub-optimal performance is 
achieved for both tasks for different CNNs, except for VGG-
16 which shows performance improvement compared to 

when using the original COVID-19 examples. Since a new 
data sample is not attributed to an individual patient, but it is 
rather an instance which is conditioned on the training data, 
it does not entirely reflect the original data. This suggests 
that synthetic data alone cannot be used to achieve opti-
mal performance. In other words, the synthetic data can be 
used as a form of pre-training, which often requires a small 
amount of real data to achieve comparable performance. In 
addition, the relatively large margin between the evaluation 
scores suggests that the observed difference between the 
models is actually real, and not due to a statistical chance.

4.8 � Detecting target class with high confidence

The output of the softmax function describes the probability 
(or confidence) of the learning model that a particular sample 
belongs to a certain class. The softmax layer takes the raw val-
ues (logits) of the last FC layer and maps them into probability 
scores by taking the exponents of each output and then nor-
malize each number by the sum of those exponents so that all 
probabilities sum to one. Figure 4 shows the probability scores 
for the VGG-16 model on unseen test set of COVID-19 for the 
two binary classification tasks of Normal vs. COVID-19 and 
Pneumonia vs. COVID-19 using original data only. The red 
dashed line depicts the 0.5 probability threshold. Notice that 

Table 2   COVID-19 detection performance results on Pneumonia vs. COVID-19 test set when trained on real data; real + synthetic data; and 
only synthetic data (i.e., only G

PC
 is used for positive class examples in training each model)

Boldface numbers indicate the best performance

Model Real Real + G
PC

Real + G
PC

 + G
NC

Only Synthetic

SEN (%) ↑ FN ↓ Skew↓ SEN (%) ↑ FN ↓ Skew↓ SEN(%) ↑ FN ↓ Skew↓ SEN (%) ↑ FN ↓

VGG-16 8.69 42 22.9 29.50 24 0.95 52.17 22 0.19 39.13 28
ResNet-50 21.73 36 22.9 36.95 29 0.95 41.30 27 0.19 13.04 40
DenseNet-102 4.34 44 22.9 21.74 36 0.95 32.43 32 0.19 6.52 43
DenseNet-121 + BGT 32.60 31 22.9 41.30 27 0.95 47.82 24 0.19 32.60 31

Fig. 4   Confidence scores for the VGG-16 model on unseen test set of COVID-19 for the two binary classification tasks of Normal vs. COVID-
19 (left) and Pneumonia vs. COVID-19 (right) using original data only
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Fig. 4(left) shows low confidence scores, while Fig. 4(right) 
shows sub-optimal performance for COVID-19 detection 
when using original training data only.

Figure 5 shows that synthetic data can be used without the 
original examples. When using synthetic data as additional 
training set, we observe that not only the number of cor-
rectly detected instances of COVID-19 increases, but also 
the predictions tend to improve, as demonstrated by the high 
probability scores.

Figures 6 and 7 show improved detection performance 
when the synthetic data are used as additional training 
set. A similar trend was observed with the ResNet-50 and 
DenseNet-102 models.

4.9 � Generating anonymized synthetic images 
with variation

Data visualization based on dimension reduction plays 
an important role in data analysis and interpretation. The 

objective of dimension reduction is to map high-dimen-
sional data into a low-dimensional space (usually 2D or 
3D), while preserving the overall structure of the data as 
much as possible. A commonly used dimension reduc-
tion method is the Uniform Manifold Approximation and 
Projection (UMAP) algorithm, which is nonlinear tech-
nique based on manifold learning and topological data 
analysis. UMAP is capable of preserving both local and 
most of the global structure of the data when an appro-
priate initialization of the embedding is used. The two-
dimensional UMAP embeddings of the features are shown 
in Fig. 8 to visualize the difference between the original 
and synthetic data. Notice that the synthetic samples are 
in a different distribution in the feature space, enabling 
a decision boundary between the classes. The original 
examples in Fig. 8a exhibit low inter-class variation and 
consist of outliers. In Fig. 8b, we can see that the synthetic 
examples of the GNC dataset are in a different distribu-
tion in the feature space. While the UMAP embeddings 

Fig. 5   Confidence scores for the VGG-16 model on unseen test set 
of COVID-19 for the two binary classification tasks of Normal vs. 
COVID-19 (left) and Pneumonia vs. COVID-19 (right) using syn-

thetic data without the original examples. Notice that synthetic data 
increase the confidence scores

Fig. 6   Confidence scores for the VGG-16 model on unseen test set 
of COVID-19 for the two binary classification tasks of Normal vs. 
COVID-19 (left) and Pneumonia vs. COVID-19 (right) with synthetic 

data as additional training set. Left: adding 16,537 COVID-19 exam-
ples of G

NC
 to the original COVID-19 dataset. Right: adding 4758 

COVID-19 examples of G
PC

 to the original COVID-19 dataset
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may not be interpreted as a justification that the synthetic 
examples actually consist of COVID-19 symptoms from a 
clinical perspective, it is, however, important to note that 
the distribution of the synthetic images is significantly 
different than that of normal images, thereby enabling a 
proper decision boundary. A similar trend can be observed 
in Fig. 8d, e, f. The overlapping features for Pneumonia 
vs. COVID-19 can be explained by the fact that the find-
ings of X-ray imaging in COVID-19 are not specific, and 
tend to overlap with other infections such as Pneumonia 
in this case.

4.10 � Discussion

Since the generative and classification models are trained to 
learn representations in the training data distribution, it is 
likely that a bias might occur toward that data. In light of the 
class imbalance problem, the generator is trained by under-
sampling the majority class. This under-sampling process 
often leaves a relatively small number of data points (180 
samples for each domain) to learn from. While a boost in 
performance is achieved when using the synthetic datasets, 
it is not conclusive enough to confirm whether our approach 
can be generalized across other COVID-19 datasets due 
largely to the lack of such benchmarks. While the improve-
ments we have achieved using our proposed framework are 
encouraging, it is important to mention that a key objective 
of this work is not to claim state-of-the-art results, but rather 

to release an open source dataset to the research community 
in an effort to further improve COVID-19 detection.

5 � Conclusion

In this paper, we presented an unsupervised domain adapta-
tion approach by leveraging class conditioning and adversar-
ial training to build an open database of synthetic COVID-19 
chest X-ray images of high fidelity. This publicly available 
database comprises 21,295 synthetic images of chest X-rays 
for COVID-19 positive cases. The insights generated from 
applying recent deep learning approaches on this data-
base can be used for preventive actions against the global 
COVID-19 pandemic, in the hope of containing the virus. 
We also demonstrated how the data generation procedure 
can serve as an anonymization tool by achieving compara-
ble detection performance when trained only on synthetic 
data versus real data in an effort to alleviate data privacy 
concerns. Our experiments reveal that synthetic data can 
significantly improve the COVID-19 detection performance 
results, that as the amount of synthetic data is increased, 
sensitivity improves considerably and the number of false 
negatives decreases. We believe that the performance can 
be further improved by applying more application-specific 
preprocessing and exhaustive hyper-parameter tuning, as 
well as by leveraging ensemble methods, which we leave 
for future work.

Fig. 7   Confidence scores for the VGG-16 model on unseen test set 
of COVID-19 for the two binary classification tasks of Normal vs. 
COVID-19 (left) and Pneumonia vs. COVID-19 (right) with synthetic 

data as additional training set. Both G
NC

 and G
PC

 are added to the 
original COVID-19 dataset
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