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Abstract

Aldosterone excess is a pathogenic factor in many hypertensive disorders. The discovery of 

numerous somatic and germline mutations in ion channels in primary hyperaldosteronism 

underscores the importance of plasma membrane conductances in determining the activation-state 

of zona glomerulosa (zG) cells. Electrophysiological recordings describe an electrically quiescent 

behavior for dispersed zG cells. Yet, emerging data indicate that in native rosette structures in situ, 

zG cells are electrically excitable, generating slow periodic voltage spikes and coordinated bursts 

of Ca2+ oscillations. We revisit data to understand how a multitude of conductances may underlie 

voltage/Ca2+ oscillations, recognizing that zG layer self-renewal and cell heterogeneity may 

complicate this task. We review recent data to understand rosette architecture and apply maxims 

derived from computational network modeling to understand rosette function. The challenge going 

forward is to uncover how the rosette orchestrates the behavior of a functional network of 

conditional oscillators to control zG layer performance and aldosterone secretion.
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1. INTRODUCTION

Zona glomerulosa (zG) cells that assemble in rosette structures beneath the capsule of the 

adrenal gland produce the steroid hormone aldosterone. Aldosterone is generated from 

cholesterol by a series of hydroxylation and oxidation reactions catalyzed by P450 

cytochromes that are located in two cellular compartments: the mitochondria and the 

endoplasmic reticulum. Metabolic intermediates are actively trafficked between these 

compartments along the cytoskeleton, whereas secretion of aldosterone into the extracellular 

fluid appears to be diffusion limited, without contributions from any known molecular 

mechanisms (1–3).

pqb4b@virginia.edu. 

DISCLOSURE STATEMENT
The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the 
objectivity of this review.

HHS Public Access
Author manuscript
Annu Rev Physiol. Author manuscript; available in PMC 2022 February 10.

Published in final edited form as:
Annu Rev Physiol. 2021 February 10; 83: 451–475. doi:10.1146/annurev-physiol-030220-113038.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Angiotensin II (Ang II) and plasma potassium (K+) are the two major circulating 

secretagogues that stimulate aldosterone synthesis and secretion (1–3); they act both 

independently and synergistically (4). Notably, increases in extracellular K+ as small as 0.1 

mM in vivo are sufficient to stimulate aldosterone production (approximately 1.3 fold), 

demonstrating the uncommon sensitivity of the zG cell to K+ (5). Aldosterone production 

also is enhanced by circulating adrenocorticotrophic hormone (ACTH) and locally produced 

endothelin-1 and inhibited by circulating atrial natriuretic peptide and locally produced 

dopamine (1–3).

Calcium (Ca2+) is the critical intracellular signal driving stimulated synthesis of aldosterone, 

which requires increases in Ca2+ in both the cytosol and mitochondria (6, 7). The 

mitochondrial uniporter facilitates transfer of cytosolic Ca2+ to the mitochondrial matrix 

where it increases the activity of Ca2+-dependent dehydrogenases to produce NADH (2). 

The subsequent action of the mitochondrial NADPH-translocase to convert NADH to 

NADPH generates the cofactor necessary for conversion of cholesterol to pregnenolone 

(mediated by CYP11A1) and deoxycorticosterone to aldosterone (mediated by CYP11B2), 

the early and late rate-limiting reactions in aldosterone synthesis (1–3).

Because Ca2+ is critical for aldosterone production, activities of plasma and mitochondrial 

membrane ion channels are key determinants of the zG activation state. Indeed, there is now 

abundant evidence that genetic variation in Ca2+-regulating ion channels and transporters is 

a driver of human hyperaldosteronism (3, 8–12), suggesting that the syndrome is a 

channelopathy in which autonomous zG aldosterone production is divorced from usual 

homeostatic control mechanisms [notably, the renin-angiotensin system (RAS)]. There are 

many excellent recent reviews that provide an updated inventory of the various channel and 

pump mutations that associate with hyperaldosteronism. Together, they provide a detailed 

examination of the alterations in ion channel properties (permeation, gating, and kinetics) 

and of the ensuing changes in functional output [membrane potential (Vm) and [Ca+]i] in 

electrically quiescent host cells and heterologous expressions systems (3, 8–13). In writing 

this review, our goal is to contribute a basic understanding of how the various ion channels 

that have been identified by molecular expression and/or electrophysiological currents in 

fully differentiated zG cells may function to produce the oscillatory electrical activity 

recently discovered in zG cells within native rosette structures. As such, we discuss old and 

new evidence challenging the long-held view that zG cells are electrically silent in situ and 

provide relevant information about the properties of channel classes implicated in 

controlling membrane voltage oscillations in native zG cells. Finally, given the heterogeneity 

of ion channels reported in zG cells among species, we highlight how different conductance 

combinations can generate similar electrical signals and how functional networks have the 

intrinsic capacity for intercellular communication and self-tuning. It is our hope that the 

synthesis of information provided here highlights both the need and the opportunity for 

electrophysiologists and optical imagers to elucidate how mutations in zG ion channels 

associated with human disease change the functional output of networks of electrically 

oscillating zG cells.
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2. zG CELLS ARE ELECTRICALLY EXCITABLE

The Vm of zG cells is very negative at rest, approaching the K+ equilibrium potential. 

Recorded values consistently range from −73 to −86 mV [with one outlier at −64 mV (14)] 

across species (bovine, rat, mouse, human, feline), zG cell preparations (dissociated cells, 

intact adrenal slices), and recording techniques (sharp electrode recording, patch-clamp 

electrophysiology) (14–19). The Vm also follows closely, if not perfectly, the equilibrium 

potential for K+, depolarizing by 45–58 mV per tenfold increase in extracellular K+ 

concentration (versus 59 mV, predicted by the Nernst equation).

Early sharp microelectrode recordings of peripheral cells in cat adrenal slices provided the 

first demonstration of electrical excitability (14, 20). Spontaneous voltage fluctuations of 

20–25 mV occurred in some cells; short bursts of spiking activity were evoked in others 

(e.g., by Ang II, K+, ACTH). However, subsequent microelectrode (15, 21) and perforated-

patch recordings (22, 23) of dissociated/cultured zG cells were unable to confirm either 

spontaneous or evoked spiking activity. Rather, activators of aldosterone production evoked 

only sustained Vm depolarizations in zG cells. Nevertheless, in dissociated zG cells, hints of 

zG excitability remained. For example, depolarizing current injection or pharmacological 

blockade of outward K+ current evoked regenerative currents (21, 24) and, in perforated-

patch recordings, small transient depolarizing spikes consistently overlaid the evoked analog 

shifts in voltage (22, 23). Together, the discrepancy between the electrical behavior of 

dissociated zG cells versus that in native tissue suggests the interesting possibility that the 

rosette organization of zG cells within the glomerulosa cell layer could promote electrical 

behavior.

In 2012, we reported that mouse zG cells, recorded in adrenal slices, are indeed electrically 

excitable (19). They exhibit recurrent (3–10 min recordings) depolarizing voltage spikes 

from a resting Vm of −82 mV that are large (Δ70 mV) and periodic (~2-s period). In the 

whole-cell, patch-clamp configuration, spiking behavior is spontaneous; Ang II and/or K+ 

increase activity. Recent recordings of zG intracellular Ca2+ in slices, providing a surrogate 

measure of cell activity, confirmed that oscillatory behavior can be evoked by Ang II or K+ 

in zG cells in situ (25–27) (see Section 6).

Pharmacological experiments have provided some insight into the identification of ionic 

conductances that control both the shape and the timing of zG spike potentials. Critical roles 

are assigned to low-voltage-activating, T-type Ca2+ channels and a Ca2+-activated K+ 

conductance that depends on T-type channel activity. Conversely, tetrodotoxin (TTX)-

sensitive and TTX-insensitive Na2+ channels and high-voltage-activating Ca2+ channels 

have been excluded from significant participation in the mouse zG Vm spike potential; 

neither 60 μM TTX nor 10 μM nitrendipine alter Vm spike potentials (19).

The number of distinct channels expressed within any cell is astonishing. Yet, as previously 

observed for neuronal action potentials (28), a fraction of channels never participates in 

shaping the waveform because the kinetics and gating of other channels in the cell dominate 

and generate a voltage spike that precludes a significant contribution. Nonetheless, disease-

causing mutations in dominant channels may allow contributions from those channels that 
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were previously nonparticipants. Thus, identifying the conductances driving each phase of 

the zG Vm spike potential and determining the counterregulatory capacity of others provide 

a rationale for potential pharmacological targeting of specific ion channels in disease.

Like an action potential, the zG Vm spike potential can be deconstructed into its component 

phases (28): resting (interspike), threshold, depolarizing, peak, and repolarizing (Figure 1). 

Here, we highlight ion channel classes that could underlie the different component phases of 

the zG Vm spike potential for each, summarizing the general properties of the channel type 

and then the specific findings in the adrenal zG.

3. CONDUCTANCES UNDERLYING VREST

Multiple channels (leak K+, inward rectifying K+, and voltage-gated Cl− channels) 

contribute to setting the zG-interspike potential.

3.1. K2P Leak K+ Channels: TASK-1/TASK-3 and TREK-1 Channels (Encoded by Genes 
KCNK3, KCNK9, and KCNK2.1, respectively)

Properties: TASK (TWIK-related acid-sensitive K+) and TREK (TWIK-related K+) 

channels belong to a superfamily of leak/background K+ channels that are active over a 

broad range of membrane potentials, including at negative resting potentials observed in zG 

cells. Topologically, their subunit structure is unique, with each subunit containing four 

transmembrane (TM) domains and two pore-forming (P) loops (4TM, 2P) that give this 

family the K2P moniker (29, 30). Functional channels are dimeric in structure in contrast to 

other types of K+ channels that are tetramers of subunits with one P-loop. Based on their 

sequence homology and functional characteristics, K2P channels are organized into six 

subfamilies (TWIK, THIK, TREK, TASK, TALK, TRESK). Homodimeric or heterodimeric 

K2P channels function as K+-selective channels passing currents with Goldman-Hodgkin-

Katz (GHK)-like open rectification in physiological K+ gradients (29–31).

Gαq receptors uniformly inhibit TASK and TREK-1 channels, but by different mechanisms. 

For TASK-1/TASK-3 channels, direct actions of Gαq subunits, phosphatidylinositol 4,5-

bisphosphate (PIP2) depletion, and/or diacylglycerol (DAG) on the channel protein cause 

channel inhibition, whereas TREK-1 channels are inhibited by PIP2 depletion and/or protein 

kinase C (PKC) activation (32–34).

Conversely, pH and volatile anesthetics alter these channels differentially. Extracellular 

acidification inhibits TASK channels (TASK-1 pK approximately 7.5; TASK-3 pK 

approximately 6.8), whereas intracellular acidification stimulates TREK-1 channels (pK 

approximately 6.0) (35). Volatile anesthetics strongly activate TASK-3 and TREK-1 but 

inhibit TASK-1 channels (34, 36). Protein kinases also regulate channel currents. 

Phosphorylation of TASK channels by protein kinase A (PKA) promotes interaction with 

14–3-3b proteins, releasing channels from the endoplasmic reticulum to increase surface 

expression (37). By contrast, activation of Gαs-coupled receptors mediates the inhibition of 

TREK activity via PKA-induced phosphorylation of the channel protein (34).
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Adrenal zG: The rat, mouse, and guinea pig zG express mRNA for TASK-1 and TASK-3 

(18, 38, 39) in contrast to the bovine zG that expresses mRNA for TREK-1 (40). In the 

whole human adrenal cortex, the expression of KCNK family genes is more diverse 

(TASK-1, TASK-2, TASK-3, TREK-1), with predominant mRNA expression for either 

TREK-1 (41) or TASK-1 (42), depending on the study. Whether this diversity or relative 

level of mRNA expression is attributable to mRNA captured from both the zona fasciculata 

(zF) and zG capsular zones remains unknown; in rodents, cortical zones differentially 

express mRNA for Kcnk family members (18). To date, only two studies have provided 

information about KCNK protein expression in the adrenal cortex. With a restricted focus on 

TASK subunits, they reveal predominant expression of TASK-1 in the human zG and both 

TASK-1 and TASK-3 in the rodent zG (43, 44). In the human adrenal cortical cell line, 

H295R, the reported expression of K2P transcripts (TASK-1, and/or TASK-3, and/or 

TREK-1) from laboratories also varies (42, 45, 46), a likely result of differences in culture 

media used to propagate this nonclonal cell line. In aldosterone-producing adenomas 

(APAs), mRNA expression of most KCNK family members is similar to that of normal 

adrenal tissue (i.e., TASK-1, TASK-3, TREK-1) (42), although TASK-2 mRNA is lower in 

APAs as a result of mutations in the TASK-2 channel promoter (47, 48). KCNK3 noncoding 

variants are associated with hyperaldosteronism and hypertension (49).

Functional K2P currents have been recorded in oocytes injected with rat adrenal capsular 

mRNA and in dispersed preparations of rat, bovine, and mouse zG cells (18, 38, 40, 50, 51). 

Inhibition of KCNK currents by Ang II, KCNK-directed antisense, or KCNK genetic 

deletion consistently depolarizes the plasma membrane of zG cells and increases aldosterone 

production (18, 38, 40, 42, 51). Thus, independent of the expressed subtype(s), KCNK 

channels play an important role in zG cells by acting at membrane voltages where most 

voltage-dependent K+ channels remain closed, thereby providing a major hyperpolarizing 

conductance that restrains aldosterone output. In addition to their expression on the plasma 

membrane, TASK-3 channels also localize to mitochondria where their activity depolarizes 

mitochondrial membrane potential and constrains aldosterone production likely by 

decreasing mitochondrial Ca2+ entry and NADPH generation (46). This mechanism for 

aldosterone regulation may also apply to other mitochondrial K+ channels located on the zG 

inner mitochondrial membrane.

Genetic deletion in mice of TASK channel subunits, individually or together, disrupts 

aldosterone regulation, yielding hyperaldosteronism that varies in magnitude and in the 

degree of autonomy from the RAS (18, 43, 46, 49, 51, 52). Knockout (KO) models also 

highlight a gender-dependent dimorphism in adrenal gland development that determines the 

aldosterone phenotype. In prepubertal mice, global TASK-1 channel deletion mislocalizes 

aldosterone synthase to the zF of the adrenal cortex, a zonation defect that corrects in adult 

males but not females. Global deletion of either TASK-1 or TASK-3 subunits disrupts the 

regulation of aldosterone output in adult mice. In some studies, this manifests as a modestly 

elevated aldosterone output across all salt diets (49, 52), whereas in others elevated levels are 

evident only on selective diets that normally suppress aldosterone (high-Na+, low-K+ 

content) (43, 51). The discrepancies in these reported findings could reflect differences in 

genetic background, and/or the reliance on plasma spot sampling versus 24-h urinary 
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sampling. By contrast, combined global deletion of both TASK-1 and TASK-3 results in 

exaggerated aldosterone output and low-plasma renin (18). Across global TASK KO mouse 

models, blood pressure elevation is the consequence of excess aldosterone output produced 

by variable degrees of hypersensitivity to and/or autonomy from Ang II (43, 49, 52). When 

TASK-1 and TASK-3 deletion is restricted to adrenal zG cells, a mild autonomous 

hyperaldosteronism is observed that drives blood pressure elevation, highlighting the 

importance of zG-TASK channel activity to RAS dysfunction (53). However, comparison 

between mice with zG-specific versus global TASK channel deletion shows that the loss of 

extra-adrenal TASK channels also contributes to RAS dysfunction, magnifying changes in 

both renin (larger decreases) and aldosterone (larger increases).

3.2. Inward Rectifiers: G Protein–Gated Kir3.4 (Encoded by KCNJ5)

Properties: Kir3.4 channels belong to the superfamily of inward rectifiers; they pass 

greater inward than outward current. Functionally they segregate into four subgroups: 

classical Kir channels (Kir2.x), Gβγ-activating Kir channels (Kir3.x), ATP-inhibited Kir 

channels (Kir6.x), and K+-transport channels (Kir1.x, Kir4.x–5.x, and Kir7.x) (54). Kir 

channels are intrinsically voltage independent, yet they conduct only a small outward current 

because of an asymmetric intracellular block of the open pore by magnesium (Mg2+) and 

polyamines (spermine, spermidine) (55). Depending on the affinity of these cationic 

interactions, the strength of rectification varies from weak (e.g., Kir1.1) to strong (e.g., 

Kir3.4). Topologically, all share a common subunit structure of two TM-spanning domains 

interconnected by one pore-forming loop (2TM, 1P). Functional channels are tetramers, 

formed by the homo- or heteromerization of four subunits, producing channels with different 

biophysical properties and cellular locations. Uniquely, the conductance of Kir channels 

(except Kir7.1) changes with extracellular K+, increasing as the square root of the 

extracellular K+ concentration [K+]o (54, 56). As a consequence of this extracellular K+-

modifier site, [K+]o depolarization facilitated by Kir channels is greater than would be 

predicted from the GHK relationship (K-equilibrium potential). PIP2 is required for the 

maintained activity of most Kir channels (57), and activity is regulated both by PLC-

mediated depletion of PIP2 and variably by protein kinases (54).

Unlike most Kir channels, Kir3.4 homomeric channels are constitutively closed. Opening 

requires a conformational change transduced by Gi/Go-linked G protein–coupled receptor 

(GPCR) activation and binding of Gβγ subunits to the channel protein (1Gβγ:1Kir-subunit) 

(54, 58, 59). RGS (regulators of G protein signaling) proteins deactivate Kir3.x channels by 

accelerating GTP hydrolysis of Gα-GTP, leading to sequestering of Gβγ-subunits. 

Heterotetrameric Kir3.x channels (Kir3.4/Kir3.1) display more constitutive activity than 

Kir3.4 homomers and remain regulated by Gβγ subunits (60). In addition, Kir3.x channels 

are activated by intracellular Na+ (only Kir3.2, 3.4) (61) and inhibited by intracellular 

acidification (54).

Adrenal zG: Electrophysiological recordings of whole-cell and inside-out patches of zG 

cells (rat, bovine) demonstrate K+ channels with rectifying Kir behavior (62). Outward 

current is low, a consequence of intracellular Mg2+ block, and extracellular K+ augments 

inward current conductance. The measured conductance is small, but in zG cells with a high 
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density of channels (rat 82% of patches, bovine 30%), the [K+]o-induced shift enhances the 

capacity of inward rectifiers to control basal Vm as [K+]o fluctuates physiologically. The 

expression of these channels in zG cells and the lack of expression of TTX-sensitive and 

TTX-insensitive (10 μM TTX) Na+ channels likely contribute to the exquisite sensitivity of 

zG cells to [K+]o both in vivo and in vitro. Ang II inhibits inward-rectifier Kir currents in 

both rat and bovine zG on-cell patches (63).

Because Kir3.4 mRNA or protein is virtually absent from mouse zG cells (44, 52), a member 

of the inward rectifier superfamily other than Gβγ-activating Kir3.x channels must carry 

these currents. By contrast, KCNJ5 (Kir3.4) is one of the most abundant K+ channel genes 

expressed in the normal human adrenal cortex (41) and is the locus of mutations in 49% of 

APAs worldwide (64, 65). Mutations occur mainly in regions near or within the selectivity 

filter to produce channels that preferentially carry depolarizing Na+ currents (41). Despite 

their larger size, APAs harboring KCNJ5 mutations have a lower proliferation index and a 

reduced expression of KCNJ5 channels than APAs carrying other mutations (65–67), 

suggesting that downregulation of Kir3.4 subunits and hetero-tetramerization with 

unaffected Kir3.x subunits may be two independent modes of protection against KCNJ5 
mutational cellular toxicity (67).

3.3. ClC Voltage-Gated Cl− Channels: ClC-2 (Encoded by ClCN-2)

Properties: ClC-2 chloride (Cl−) channels are part of a larger ClC family of channels and 

transporters encoded by genes CLCN1–7 and CLCNKA-B. Based on sequence homology, 

they segregate into three subgroups: plasma membrane voltage-gated anion channels 

(ClC-1–2, ClC-Ka–Kb) and two subgroups of 2Cl−/H+ antiporters that are located on 

endosomes and lysosomes (ClC-3–5, ClC-6–7) (68). Among voltage-gated channels, ClC 

channels have a unique topology. Each subunit contains 18 α-helices, most of which are 

membrane inserted, that wrap to form an ion permeation pore. ClC channels are dimeric; 

thus, they are double-barreled structures with two ion-conducting pores (protopores) (68, 

69).

ClC-2: In contrast to ClC-1 channels that open with depolarization, ClC-2s are inwardly 

rectifying channels that slowly activate with hyperpolarization. Channel activity occurs in 

bursts with a fast-gating mechanism regulating the independent opening and closing of each 

protopore within an activity burst, and a slow-gating mechanism that commonly terminates 

burst activity, regulating burst length and interburst duration. The cytoplasmic C terminus 

encodes two nucleotide-binding CBS (cystathionine-β-synthase) domains that impart 

nucleotide regulation. The cytoplasmic N terminus functions as an inactivation domain, as 

deletion removes hyperpolarization activation and generates constitutively open ClC-2 

channels (68, 69). ClC-2 voltage gating depends on intracellular Cl− and extracellular H+. 

Elevation of intracellular Cl− induces a depolarizing shift in the voltage dependence of 

activation, permitting greater fractional opening at resting hyperpolarized voltages. Elevation 

of extracellular H+ induces biphasic regulation, activating (pH 6.5) and then blocking ClC-2 

channels as pH becomes strongly acidic (68, 69).
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Adrenal zG: In the human adrenal cortex, ClC-2 mRNA is the most highly expressed 

plasma membrane Cl− channel (70); immunological detection of protein is robust and 

restricted to the zG layer (71). In the mouse adrenal gland, ClC-2 protein is highly expressed 

and functional (70). Mouse zG whole-cell Cl− currents recorded are hyperpolarization 

activated (negative to −60 mV) and emblematic of ClC-2 currents; they are absent from zG 

cells in ClC-2 KO adrenal slices (70). In human adrenocortical cell lines RNAi knock-down 

of native ClC-2 channels (in H295R cells) decreases CYP11B2 expression commensurate 

with a reduction in basal and stimulated (Ang II or K+) aldosterone production (70), whereas 

stable overexpression of ClC-2 channels (in HAC15 cells) increases CYP11B2 expression 

concomitant with cell membrane depolarization (71). Together, the estimated high 

intracellular Cl− concentration of zG cells (approximately 75 mM) (71), the intracellular Cl
−-induced positive voltage shift in ClC-2 channel activation, and the hyperpolarized resting 

Vm of zG cells, combine to make ClC-2 currents a likely determinant of zG resting Vm, and 

hence, aldosterone production. Indeed, CLCN2 mutations that associate with early-onset 

familial hyperaldosteronism increase ClC-2 currents (25, 27, 70, 71), and mouse knock-in 

models that increase ClC-2 currents (N-terminal deletion: Clcn2op/op, Clcn2R180Q/+) display 

increases in plasma aldosterone and blood pressure (25, 27). Nevertheless, these mouse 

models of primary aldosteronism (PA) differ markedly. The Clcn2R180Q/+ mouse line 

carrying the human missense mutation displays a very mild phenotype (27), modeling mild 

PA. By contrast, the Clcn2op/op mouse line that replicates the increase in ClC-2 currents 

caused by each of three human N-terminal variants displays features typical of overt PA 

(25). Perforated patch-clamp recordings suggest that differences in ClC-2 mutant current 

amplitude may account for the differences in phenotypic severity (25).

4. CONDUCTANCES UNDERLYING THE DEPOLARIZING UPSTROKE

Low- and high-voltage-activating Ca2+ channels contribute to determining the peak and 

slope of the depolarizing phase of the zG Vm-spike potential.

4.1. Low-Voltage-Activating, T-Type Ca2+ Channels (CaV3.x Encoded by Genes CACNA1G, 
CACNA1H, and CACNA1I)

Properties: Voltage-gated Ca2+ channels (CaV) separate into two main groups: high-

voltage-activating (HVA: CaV1.1–1.4, L-type; CaV2.1, P/Q-type; CaV2.2, N-type; CaV2.3, 

R-type) and low-voltage-activating (LVA: CaV3.1–3.3, T-type) channels (72–74). T-type 

channels are distinguished by their negative thresholds for activation (−70 mV) and 

inactivation (−90 mV) that are at least 40 mV more negative than the corresponding 

thresholds for prototypical L-type channels. As a class, T-type channels also differ by their 

fast rate of inactivation and their slow rate of closing (74). Overall, these properties allow T-

type Ca2+ channels to open and conduct Ca2+ under a greater driving force in response to 

small depolarizing stimuli. T-type current elicited by strong depolarizing stimuli is rapidly 

activating and transient. T-type channel inactivation is strictly voltage-dependent; Ca2+/

calmodulin does not evoke channel inactivation as it does for L-type Ca2+ channels (75). 

Although T-type channels have a smaller single channel conductance than L-type channels 

(7–11 pS versus 20–30 pS) when recorded with Ba2+, their unitary conductances are similar 

in physiological Ca2+ (76, 77). Hence, T describes Transient, not Tiny.
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T-type channels can inactivate without prior opening, displaying closed-state inactivation. 

Thus, the voltage of half-maximal inactivation (Vh1/2 = approximately −70 mV), which 

combines closed- and open-state inactivation, is approximately 20 mV more negative than 

the voltage of half-maximal activation (Va1/2 = approximately −50 mV). However, because 

the steady-state current relationships for activation and inactivation overlap, channel 

inactivation remains incomplete in the voltage range of −70 to −40 mV, allowing a small 

fraction of T-type channels to carry a steady-state window current at modest potentials (74, 

78). Indeed, at −40 mV, small, sustained CaV3.2 currents elicited from recombinant channels 

expressed in HEK293 cells are estimated to be carried by <1% of available channels (Po = 

0.006, I/Imax) (79).

Three genes encode the T-type family: CACNA1G (CaV3.1), CACNA1H (CaV3.2), 

and CACNA1I (CaV3.3). Recombinant channels recorded with physiological Ca2+ (1.25 

mM) show similar voltage dependence but display distinct kinetic behaviors. CaV3.3 

channels are the most dissimilar; these channels open and inactivate more slowly, and they 

deactivate more rapidly at negative potentials than CaV3.1 and CaV3.2 isoforms, thus 

passing less current during the repolarization phase of the spike potential. In contrast, 

CaV3.1 channels recover faster from short-term inactivation, protecting them from 

cumulative inactivation during high-frequency stimulation (80). Mibefradil or TTA-P2 

inhibits the activity of all CaV3.0 paralogs (81).

The predicted topological structure remains invariant among all CaV3.0 family members, 

including the CaV3.0 subgroup. The CaV3.1–3.3 genes encode an α-subunit that comprises 

four repeat domains (I–IV), each of which contains 6 TM segments (S1–S2) and 1 P-loop; 

intracellular linkers tether the domains together to produce a large α-subunit. Like KV 

channels, voltage is sensed by positive charges located on S4 TM segments (IS4, IIS4, IIIS4, 

IVS4) (74, 78).

TM domains among CaV3.0 family members are well conserved (80–90%), whereas most 

intracellular domain linkers are divergent (an exception is the conserved III–IV linker) (78), 

suggesting that structural elements in the domain linkers could dictate differential regulation 

of channel paralogs by well-established modulators; e.g., protein kinases and heterotrimeric 

G proteins. To date, the II–III domain linker has emerged as a critical determinant for both 

differential and shared channel regulation. For example, PKC and PKA increase whole-cell 

current densities of all CaV3.0 paralogs in a temperature-dependent manner (82) without 

changing gating. Replacement of the II–III linker with that of NaV1.4 channels (83) or 

CaV2.1 channels (84) generates chimeric channels that are refractory to regulation. The key 

phosphorylation site(s) mediating these increases remain unidentified.

The II–III linker also mediates differential regulation of channel activity. For example, (a) 

Ca2+/CaM-dependent protein kinase II (CaMKII) preferentially induces a hyperpolarizing 

shift (approximately −11 mV) in the Va1/2 of CaV3.2 channels (79, 85). Swapping the II–III 

linker domain between CaV3.2/CaV3.1 channels transfers CaMKII regulation from CaV3.2 

to CaV3.1 chimeric channels, as does the removal of regulation caused by mutagenesis of 

serine 1198 on the II–III linker (86, 87). Whether additional phosphorylation sites common 

to both channel paralogs are also required for regulation is unknown. (b) Gα12/13 activation 
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of Rho-kinase (ROCK) reduces peak current density of CaV3.1 and CaV3.3 (but not CaV3.2) 

channels without altering the current-voltage relationship, an activity change that requires 

ROCK-induced phosphorylation of a combination of conserved residues (serine/threonine) 

in the II–III linker (88). (c) Heterotrimeric Gβ2γ2-containing dimers selectively decrease 

whole-cell CaV3.2 current, decreasing channel open probability (functionally silencing a 

fraction of channels) without changing channel expression or gating (89, 90). II–III linker 

domain swapping between CaV3.2/CaV3.1 channels transfers regulation from CaV3.2 to 

CaV3.1 chimeric channels, in agreement with the preferential binding of recombinant 

Gβ2γ2-containing dimers to the CaV3.2 II–III intracellular loop (89).

Mass spectrometry of native CaV3.2 channels reveals many sites of phosphorylation (91). 

Ala-nine mutagenesis of three sites (S442, S445, T446) in the I–II linker in a region 

previously identified as a gating brake mimics the gating changes caused by region excision 

(92) and induces a large hyperpolarizing shift in the voltage dependence of activation. 

Whether the II–III linker regulatory mechanisms described above are distinct from, or 

conveyed through, the gating brake as a result of linker interactions awaits structural 

analysis.

Adrenal zG: As determined by quantitative real-time polymerase chain reaction (RT-PCR) 

and in situ hybridization, zG cells across most species (bovine, rat, mouse) predominantly 

express the Cacna1h gene encoding CaV3.2 channels (93–96). By contrast, human adrenal 

cortex expresses mRNA for all three channel paralogs (97), although only CaV3.2 and 

CaV3.3 channel proteins are evident in the zG layer (96–98).

Early electrophysiological recordings of dispersed zG cells (bovine, rat, human) identified a 

component of Ca2+ current that was identified as T-type based on voltage dependence, 

kinetics, and pharmacology (23, 99–101). Although measured voltage relationships varied 

(likely attributable to differences in the recording charge carrier and its concentration), all 

studies predicted a window current to sustain the production of aldosterone (99, 101, 102). 

Indeed, in dissociated cells the amplitude of T-current modulated by K+ or pharmacological 

blockade strongly correlates with aldosterone production (23, 103, 104), enough to suggest 

that T-type Ca2+ channels may have a privileged role in aldosterone synthesis (102). 

However, the importance of T-currents in zG cells extends beyond steady-state window 

currents recorded in dissociated zG cells, as blocking T-type Ca2+ currents with TTA-P2 

terminates electrical excitability in adrenal slices (19, 26). Levels of CaV3.2 mRNA in APAs 

significantly correlate with the levels of serum aldosterone in patients with PA (96).

Multiple mechanisms regulate the activity of T-type Ca2+ channels in zG cells. (a) Serotonin 

elicits a voltage-independent increase in T-type current via a mechanism that depends on 

active-Gαs and cAMP, in agreement with the molecular mechanism described above for the 

regulation of cloned CaV3.0 channels by PKA (105). (b) Dopamine evokes a voltage-

independent inhibition of whole-cell T-current that requires the combined activity of Gβγ 
dimers and PKA (106), mimicking recombinant Gβ2γ2 dimer inhibition of CaV3.2 channels 

that requires phosphorylation of serine 1107 on the II–III linker (107). (c) By contrast, 

effects evoked by Ang II on T-channel gating have been variable. In calf bovine zG cells, 

Ang II induces a hyperpolarizing shift in the V1/2 of activation by two mechanisms that 
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depend on the level of intracellular Ca2+. In low Ca2+, the shift in gating is mediated by 

active-Gαi, as pertussis toxin and anti-Gαi monoclonal antibodies dialyzed into the cell via 

the recording electrode block modulation (108). In high Ca2+, CaMKII catalyzes the 

phosphorylation of CaV3.2 channels (86, 109), molecular events that cause a shift in channel 

gating (85, 110) and replicate the molecular mechanism by which CaMKII modulates 

recombinant CaV3.2 channels reviewed above. By contrast, in adult bovine zG cells Ang II 

inhibits whole-cell T-current, shifting the Va1/2 (approximately +8 mV) by a mechanism that 

depends on active PKC, but not Ca2+. Pharmacological agents that activate PKC replicate, 

and those that inhibit PKC block the Ang II–induced current inhibition (111). Finally, in rat 

zG cells recorded in the perforated patch configuration, Ang II failed to change T-currents 

(23). The discrepancies among these findings remain unresolved, but they could reflect 

differences in paralog expression and/or specific recording conditions that permit one 

mechanism to prevail over the others.

4.2. High-Voltage-Activating, L-Type Ca2+ Channels (CaV1.1–1.4 Encoded by Genes 
CACNA1A, CACNA1B, CACNA1C, and CACNA1F)

Properties: Unlike members of the HVA-CaV2.0 family that are primarily restricted to the 

central nervous system (CNS), endocrine cells express CaV1.0 family members (CaV1.2–

CaV1.3). CaV1.0 family members have a predicted topology similar to that of LVA CaV3.0 

channels (112). Like LVA channels, HVA genes encode a large α-subunit comprising four 

repeat domains, each containing 6 TM segments and 1 P-loop (4 × 6TM/1P) and a voltage 

sensor composed of positive charges located on each S4 segment. Unlike LVA channels, 

HVA channels are functional as multi-subunit structures that include one α-subunit and 

accessory subunits (β-, α2-, δ-subunits; CaV1.1 also contains a γ-subunit) in 1-to-1 

stoichiometry. The β- and α2δ-subunits are extrinsic proteins interacting with the α-subunit 

pore on the intracellular (β) or extracellular (α2δ) membrane leaflets (112). β-Subunits 

reversibly interact with the I–II intracellular linker at the α-interaction domain. By contrast, 

the α2δ-subunit (formed as a single preprotein that is cleaved and maintained as a unit via 

disulfide bridges) is glycosylphosphatidylinositol (GPI)-anchored to the plasma membrane 

(113). In concert, accessory subunits increase the level of channel expression, shift the 

voltage dependence of activation and inactivation to hyperpolarizing voltages, and increase 

the rate of inactivation.

CaV1.2–1.3: Although subunit associations (β1–4, α2δ1–4) and alternative splicing 

modulate the kinetics and voltage dependence of gating for both CaV1.2 and CaV1.3 

channels, they have intrinsically distinct gating properties (114). With physiological 

recording solutions (2 mM Ca2+), prototypical Cav1.2 channels activate (−40 mV) and 

inactivate (−60 mV) at thresholds that are approximately 20–25 mV more depolarized than 

CaV1.3 channels. CaV1.3 channels open and close with faster kinetics than CaV1.2 channels, 

yet they inactivate with voltage (VDI) more slowly and less completely than slowly 

inactivating CaV1.2 channels. By opening earlier under a greater driving force and 

inactivating later and less completely, CaV1.3 channels support greater Ca2+ entry during an 

action potential-like waveform.
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Ca2+ alters the biophysical properties of CaV1.2 and CaV1.3 channels. Ca2+ induces rapid 

Ca2+/CaM-dependent inactivation that terminates Ca2+ entry after channel opening (CaM-

mediated) (75). Ca2+ also induces Ca2+-dependent facilitation that potentiates Ca2+ entry 

during repeated voltage-evoked openings (CaMKII-mediated) (115, 116). In contrast, cAMP 

and NO/cGMP signaling cascades regulate CaV1.2 and CaV1.3 channel activity voltage 

independently. cAMP increases current via effectors that include PKA, A-kinase-anchoring 

proteins, and the proteolytically cleaved distal C terminus of the α-subunit (for mechanistic 

details, see 112, 117, 118). cGMP decreases channel activity via effectors that vary with 

species and include protein kinase G and phosphodiesterases (117, 119, 120).

Adrenal zG: The adrenal zG expresses the mRNA for CaV1.2 and CaV1.3 across species 

(95–98, 121); in the human adrenal cortex, the mRNA for CaV1.3 is the most abundant 

message (98). CaV1.2 and CaV1.3 α-subunit proteins are detected in the zG layer (67, 96, 

98). Based on voltage dependence, kinetics, and pharmacology, the rat, bovine, and human 

zG cells express functional HVA currents that resemble prototypical CaV1.2 L-type Ca2+ 

channels (99–101). They activate at potentials more positive to −30 mV, with little time-

dependent inactivation. However, the high concentrations of divalent cations used in the 

recording solutions would be expected to mask the hyperpolarized activation range of 

CaV1.3 α-subunits and shift them into a range where prototypical CaV1.2 α-subunits would 

activate (122).

In rat zG cells, ACTH increases L-type current voltage independently, an effect that is 

reproduced by 8-bromo cAMP (24). In bovine zG cells, Ang II inhibits L-type current, also 

voltage independently, by a mechanism that relies on active-Gαi/o (123). Thus, cAMP-

induced regulation of cloned L-type channels reviewed above seems to describe modulation 

of L-type currents in zG cells.

In mouse zG cells (C57BL/6J), L-type currents are not detectable (19). However, in rat zG 

cells there is clear evidence that L-type currents participate in shaping evoked spike 

potentials. Increasing L-type current (BAYK8644, cAMP, ACTH) extends the plateau phase 

of the induced-spike potentials (24). Despite this, L-type current amplitude does not 

correlate with aldosterone production in dissociated rat or bovine zG cells. In fact, in these 

preparations, Ca2+ flux carried by L-type channels acts as a negative feedback modulator of 

aldosterone output when zG cells are strongly depolarized (23, 103, 104). In hindsight, the 

electrical quiescence of dissociated zG cells and the further voltage-dependent inactivation 

of CaV3.2 channels produced by L-type cationic flux may explain the reported inhibitory 

actions of L-type currents on aldosterone.

Notably, in less disrupted preparations (human adrenal slices), presumably where zG-Vm 

oscillates recurrently, both channel classes are important. Delivered at concentrations that 

retain their class selectivity, T-type and L-type blockers, alone and in combination, reduce 

basal and stimulated aldosterone production with the magnitude of inhibition disassociated 

from the age of the human donor (97). This precludes the possibility that functional L-type 

channels reside only in aldosterone-producing cell clusters (APCCs), which in human 

adrenals accumulate with age (124). e CYP11B2-expressing APCCs extend into the zF layer 

and harbor somatic CACNA1D gene mutations that cluster in regions of the CaV1.3 α-
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subunit previously associated with voltage gating (98, 125, 126). As such, wild-type CaV1.3 

channels and mutant CaV1.3 channels could have an outsized role in regulating human 

aldosterone production.

5. CONDUCTANCES UNDERLYING THE HYPERPOLARIZING 

DOWNSTROKE

Ca2+-activated (SK and BK) and voltage-gated K+ channels contribute to determining the 

peak and the slope of the hyperpolarizing phase of the zG Vm-spike potential.

5.1. SK Channels (KCa2.1, KCa2.2, KCa2.3, Encoded by Genes KCNN1, KCNN2, and 
KCNN3)

Properties: SK channels belong to a diverse superfamily of Ca2+-activated K+ channels. 

These K+-selective channels are distinguished from other subfamilies by their small unitary 

conductance (9.2 pS with symmetrical K+, 2–3 pS with normal Ringer) (127). They share a 

similar topology to voltage-activated K+ channels (6TM, 1P-loop per subunit, 4 subunits per 

channel), yet are voltage independent because of the absence of positively charged residues 

on TM4 (128). SK channels are inwardly rectifying: They pass greater inward than outward 

current (129). Submicro-molar Ca2+ (KD approximately 0.5 μM) rapidly opens the SK 

channel gate, binding the N-lobe of apo-calmodulin (Ca2+-free CaM) that is bound to the C 

terminus of each α-subunit (130). Ca2+-dependent gating is highly cooperative (Hill 

coefficient approximately 3–5) and regulated by the phosphorylation state of CaM, 

determined by the activities of casein kinase 2 and protein phosphatase 2A. In neurons, these 

enzymes form multimeric signaling complexes with SK2 and SK3 channels (128). 

Pharmacological modulators of activity (activators, inhibitors) bind directly to the channel 

protein. Apamin, the prototypical inhibitor of SK currents, potently targets all family 

members (IC50: approximately 0.04–10 nM) with SK2 channels demonstrating the highest 

apamin sensitivity (IC50: approximately 40 pM) (127, 129).

Adrenal zG: H295R cells, a human adrenal cortical cell line, express mRNA for all three 

KCNN subtypes, and electrophysiological recordings have confirmed SK channel activity. 

SK inhibition by apamin or SK activation by 1-ethyl-2-benzimidazoline reciprocally 

changes membrane voltage (depolarizes/hyperpolarizes) and aldosterone production 

(stimulates/reduces), highlighting the importance of SK channel activity in zG cells (131). In 

the human adrenal cortex, KCNN2 mRNA is more abundant than 

KCNN3>KCNN4>KCNN1 (41); in the rat adrenal, Kcnn2 is one of the top 25 transcripts 

differentially expressed between the zG versus zF layers (132). KCNN2 protein is evident in 

both the zG and zF zones of the human adrenal cortex. In agreement with H295R studies 

and the voltage-regulation of aldosterone production, apamin (1 nM) increases basal and 

Ang II-stimulated, but not K+-stimulated, aldosterone output from human adrenal slices 

(131).

5.2. BK (Maxi-K) Channels (KCa 1.1 Encoded by KCNMA1)

Properties: Voltage-gated BK channels belong to the Slo family of K+ channels (Slick, 

Slack, KSper) and are distinguished by a very large unitary conductance (200 pS in 
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symmetrical K+ solutions). A tetramer of α-subunits forms the ion-conducting pore (129). 

However, unlike other voltage-gated K+ channels, these α-subunits have an additional TM 

segment at the N terminus (7TM + 1P-loop per subunit), and the gating charge of their 

voltage sensor is distributed among multiple TM segments (TM2–4), conferring only weak 

voltage dependence in the absence of internal Ca2+ (Va1/2 = approximately 200 mV) (133). 

The direct binding of Ca2+ (EC50 1–10 μM) to RCK (regulator of conductance for K+ ions) 

domains on the C terminus of α-subunits increases the sensitivity of BK channels to voltage, 

left-shifting the voltage dependence of channel activation to promote moderate opening 

within a physiological range of voltages (−50 to 0 mV) (133). As a result, colocalization of 

BK channels with voltage-gated Ca2+ channels, or at sites of intracellular Ca2+ release, 

originally was considered a prerequisite for intracellular activity. However, the association of 

BK channels with accessory β-subunits (β1–4 encoded by Kcnmb1–4 genes; 1β-subunit:1α-

subunit) and leucine-rich repeat-containing proteins (γ-subunits: γ1–4) modifies gating 

kinetics, enhances Ca2+ sensitivity, and left-shifts the voltage dependence of activation 

independently of Ca2+ (134). These changes produce channels with a wide spectrum of 

biophysical properties that are active at modest Ca2+ concentrations. Despite such diversity, 

the scorpion toxins, charybdotoxin (IC50 = 2.9 nM) and iberiotoxin (IC50 = 1.7 nM), 

universally block conduction by occluding the BK pore (127). In most tissues, cAMP-

dependent and cGMP-dependent protein kinases increase BK activity.

Adrenal zG: The zG layer of the mouse adrenal cortex expresses BK α-subunit protein 

(135). Genetically deleting BK α-subunits in mice increases serum aldosterone in the 

absence of a rise in renin or serum K+, responses that indicate cell-autonomous 

hyperaldosteronism and an intrinsic role for BK channels in regulating aldosterone 

production (135, 136). Global deletion of accessory β-subunits in mice (Kcmb1−/− and 

Kcmb2−/−) also increases aldosterone production (137, 138), although the cause of 

hyperaldosteronism differs between the two genotypes. In the Kcmb1−/− mouse, 

hyperkalemia produced by insufficient K+ excretion drives aldosterone excess. By contrast, 

the Kcmb2−/− mouse is normokalemic, and excess aldosterone output is driven by an 

apparent intrinsic increase in Ang II sensitivity and Ang II autonomy, as revealed by high 

aldosterone on a high-Na+ diet. In agreement with an intrinsic regulatory role for BK 

channels in the adrenal zG, excised-patch recordings from bovine and rat zG cells exhibit 

BK channel activity (62). Unitary currents are large in amplitude (228 pS) and show a steep 

voltage-dependence (between −10 mV and +50 mV) that depends on intracellular Ca2+ >0.5 

μM. BK channels are likely expressed in the human zG layer, as mRNA transcripts for both 

KCNMA1 and KCNMB4 are abundant (41). The coexpression of the BK α-subunit with β4-

subunits would be expected to produce a channel that can gate at more hyperpolarized 

voltages (45% of maximal current at −50 mV in high Ca2+ >1 μM) (139).

5.3. Voltage-Gated 6-Transmembrane K+ Channels (KV Encoded by KCNA-D, KCNQ, 
KCNH)

Properties: KV channels constitute the largest gene family of K+ channels; they are 

divided into 12 subfamilies (KV1.x–12.x) based on sequence and structural similarities and 

are encoded by 40 genes (140). The ion conduction pore of KV channels is formed by four 

α-subunits, each of which contains 6 TM segments (S1–S6) and 1 P-loop. Positively 
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charged arginine residues on the S4 helix of each subunit confer voltage sensitivity (141). 

Only eight of the α-subunit subfamilies are functionally active: KV1 (KCNA1–8, Shaker), 

KV2 (KCNB1–2, Shab), KV3 (KCNC1–4, Shaw), KV4 (KCND1–3, Shaw), KV7 (KCNQ1–

5), KV10 (KCNH1, 5), KV11 (KCNH2, 6, 7) and KV12 (KCNH8, 3, 4) (142). The other four 

families are nonconducting: KV5 (KCNF1), KV6 (KCNG1–4), KV8 (KCNV1–2), and KV9 

(KCNS1–3) (142). Although silent, they modify channel properties by associating with KV2 

subunits (140, 143). Subunit association within subfamilies (e.g., KV1, KV7) or with 

intracellular (KV β-subunits 1–3 or K+ channel-interacting proteins KChIP1–4) or TM ion 

channel regulatory proteins (KCNE1–4 or TM dipeptidylaminopeptidase-like protein: DPP4, 

DPP6) produces macromolecular ion channel complexes with a dizzying array of 

biophysical properties (140, 143).

Based on current kinetics, KV channels segregate into two functional groups: transient-

outward rectifiers that activate and inactivate rapidly (Ito, A-current) and delayed-outward 

rectifiers that activate after a sigmoidal lag phase following a change in voltage (IKslow, M-

current). Within each group there is extensive molecular diversity. For example, transient A-

type current is carried by multimeric complexes that include KV4.x channels (4.1–4.3/

KCHIP2–3/DPP6, 10), KV3.x channels (3.3–3.4/KCNE3), or Kv1.4 channels (KV1.4/KV1.2 

heterodimers/KVβx). The molecular diversity among delayed rectifiers is even more 

extensive and generates currents that differ considerably in their kinetics of inactivation. 

Thus, while channel activation among delayed rectifiers is characteristically slow (except 

KV1.5, KV3.1, KV3.3), delayed rectifiers are either noninactivating (KV2.1–KV2.2; KV7.2–

KV7.5; KV10.1–KV10.2; neuronal KV12.1, KV12.3 heterodimers) or inactivate on different 

time scales from slow to very slow, depending on their subunit associations (KV1.1–1.7; 

KV3.1–3.3; KV7.1/KCNE1 or KCNE3) (142).

Accessory subunit association modifies KV trafficking, gating, and kinetics. The association 

of KVβ1–3 subunits with KV1.x channels and KChIP1–4 with KV4.x channels increases 

surface expression. In addition, KVβ1–3 subunits uniformly accelerate the rate of KV1.x 

channel inactivation, and KChIP subunits consistently enhance the recovery of KV4.x 

channels from closed-state inactivation (143). By contrast, KChIP-induced changes in KV4.x 

voltage gating, and inactivation kinetics varies enormously among multimeric complexes 

that contain different individual KV4.x, KChIPx, and DPPx family members (143). Unlike 

KVβ and KChIP subunits that associate with members of only one subfamily and are 

extrinsic, KCNE proteins (except KCNE4) are membrane spanning and promiscuous, 

modulating the channel activity of many subfamilies (KV1, KV2, KV3, KV4, KV7, KV11) 

(142, 143).

Adrenal zG: Electrophysiological recordings of dispersed zG cells reveal transient-outward 

and/or delayed-outward rectifier currents, the expression of which varies across species and 

rodent breed. In bovine zG cells an A-current is predominant (144). With intracellular Ca2+ 

buffered by EGTA, depolarization elicits whole-cell currents that rapidly decay (30–50 ms) 

and single channel openings (27 pS) in cell-attached recordings that cluster early in the 

records. By contrast, in rat zG cells, delayed-outward rectifier current is the dominant KV 

current expressed, showing demonstrable differences between strains. Sprague-Dawley rat 

zG cells express K+-selective delayed-outward rectifier currents that activate slowly at a Vm 

Barrett et al. Page 15

Annu Rev Physiol. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



threshold of approximately −50 mV and show some inactivation at 2 s (62, 144); currents in 

Long-Evans rat zG cells activate very slowly at a Vm threshold of approximately 0 mV and 

remain noninactivating at 2–5 s (145). Long-Evans zG cells also express a transient-outward 

A-type current that is incompletely K+-selective in some cells (20%). The molecular bases 

for these currents remain unidentified, and the described large KV channel family diversity 

precludes easy assignment. Nevertheless, their electrophysiological signature varies 

sufficiently to conclude that the molecular components of these macromolecular complexes 

differ.

There are few electrophysiological recordings of KV currents in human zG cells. Of those 

reported, KV currents are mostly transient in normal human zG cells. However, in zG cells 

obtained from a patient with Cushing’s syndrome, KV currents are noninactivating (144). 

Whether this difference is representative remains to be determined. A comprehensive 

analysis of K+ channel gene expression in the human adrenal cortex provides insight into KV 

channels likely expressed (see 41, supplementary table 4). With a mean expression of all K+ 

channel mRNA transcripts determined to be 7.196 (base 2 log scale), KCNQ1 (KV7.1; 

10.45) expression was the most abundant, with KCNA4 (KV1.4; 8.71) and KCNC4 (KV3.4; 

7.85) also ranking within the top 13% (41). Given the caveat that these expression levels 

were determined from the entire adrenal cortex (zG + zF), the data suggest that both delayed 

rectifier currents and rapidly activating transient currents are expressed, either together or 

differentially in single human zG cells.

Genetic studies in mice support a role for Kcne1 in the control of aldosterone production 

(146). Global Kcne1 deletion increases aldosterone production without a change in renin 

that also is concurrent with hypokalemia. Thus, it is likely that the attendant increase in 

aldosterone production on a normal Na+ diet is not extrinsic to the zG, but rather is cell 

autonomous, arising from a primary defect in zG cells. In agreement, the mouse adrenal 

gland expresses Kcne1 and Kcnq genes, with the former mRNA localized to the zG by in 

situ hybridization (146). Thus, KCNE1-/KCNQ-mediated K+ currents may be one of the 

conductances limiting aldosterone output, although because of the promiscuity of KCNE1, 

this conclusion awaits further testing.

6. FORM AND FUNCTION

6.1. Glomerular Rosette Structure

In the adult, the zG is morphologically composed of interconnected glomeruli wrapped in a 

laminin β1-rich basement membrane that closely apposes the vascular endothelium. Within 

each glomerulus, 10–15 zG cells organize into multicellular rosette clusters. Cells are tightly 

packed and connected at a single contact point (147), fulfilling the structural criterion of a 

rosette center (148). At these centers, Ca2+-dependent cell–cell adhesion proteins (N- and K-

cadherin), β-catenin and F-actin aggregate to form adherens junctions. Adherens junctions 

are also interspersed on lateral rosette surfaces but are absent from basal surfaces (147). 

Within a rosette, zG cells are nonpolarized and heterogeneous (147). They contain both 

Cyp11b2+ and Cyp11b2− cells, and cells likely at different stages of maturation; the three-

dimensional shape of the rosette changes postnatally (147), and zG cells transit from the zG 
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into the zF layer, transdifferentiating into bona fide fasciculata cells (149). Thus, channels 

expressed among zG cells within a rosette may vary significantly.

Rosettes are malleable minimum-energy structures. They use adhesive forces to increase 

intercellular contacts and to attain an equilibrium state of minimum intercellular surface 

tension (150). Thus, in a tissue layer that is devoid of gap junctions (151), and in which there 

is little described purinergic signaling (152), the zG-rosette structure itself may support 

cellular communication and provide the framework for rosette-organized activity. To date, 

mechanisms for information exchange within the adrenal rosette remain poorly described. 

However, the interaction of local electrical fields (153) (ephaptic coupling), the exchange of 

ions between cells within their confined shared extracellular spaces (ionic coupling/K+?) 

(154), or the transmission of membrane tension between coupled cells (mechanosensitive 

coupling) (155) are all well-established means of communication that could allow zG cells 

within the rosette to function as a syncytium (Figure 2).

6.2. Rosette Activity

In adrenal rosettes, active zG cells reliably generate periodic Ca2+ oscillations. These 

oscillations derive from plasma membrane electrical signals as endoplasmic reticulum 

blockers fail to halt or modify activity (26). Thus, cellular Ca2+ oscillatory activity is a good 

indicator of the electrical activation state of the zG layer. Within rosettes, Ang II or K+ 

evokes recurrent Ca2+ oscillations in zG cells that occur in stereotypic bursts of fixed event 

frequency and duration (26, 27). Hence, unlike many oscillators, oscillation frequency does 

not increase as a function of stimulus strength (28). Instead, Ang II increases only the 

number of evoked bursts per cell. By increasing burst number without prolonging length, 

Ang II controls the onset, but not the offset, of bursting activity. Notably, cellular patterns of 

activity are coordinated to produce an activity-based network of oscillating cells within a 

rosette. Indeed, based on both phase analysis, which measures fixed-activity relationships, 

and functional clustering analysis, which measures synchrony in relationships, functional 

clusters are rosette based (26). Whether activity coordination within a rosette is the 

consequence of a few electrical drivers that entrain followers or is the result of mutual 

activity modifications among members to reach a common oscillatory behavior remains 

unresolved. Nevertheless, the well-defined coordination of activity suggests that the rosette, 

and not the cell, is a unit of functional activity of the zG layer.

Surprisingly, in the unstimulated-state, wild-type zG cells display little Ca2+ oscillatory 

activity (25–27), in contrast to the spontaneous electrical activity of zG cells observed when 

recording electrical activity using the whole-cell patch-clamp technique (19). This 

discrepancy in behavior may relate to patch-clamp-induced depolarization (the result of 

applied suction and/or intracellular ion dialysis), as zG cells in slices expressing 

constitutively open ClC-2 channels are depolarized and spontaneously oscillate (25). Hence, 

in rosettes it would appear that the zG cell may not be an intrinsic oscillator (19), but rather 

a conditional oscillator requiring provocation to initiate electrical activity.
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6.3. Diversity Within Cellular Networks and Intercellular Communication

Given multiple conductances, their isoforms and paralogs, their expressed densities, and 

their accessory subunit compositions, the diversity among network oscillators is daunting 

(28). Yet, neuronal computational modeling indicates that despite this great diversity in the 

intrinsic properties of network components, the output of well-balanced networks can be 

remarkably similar (156). This plasticity of network construction ensures stability and 

obviates a need to fine-tune intrinsic component properties to achieve a preferred 

performance output (156). These maxims when applied to the adrenal rosette provide the 

rationale for moving beyond the cell-centric view of aldosterone regulation to uncover 

fundamental rules that govern the activity of the zG rosette, a functional network of 

oscillating cells optimized for homeostatic control of a tissue layer that is continually self-

renewing.

Lesson one: The exact molecular identity of a channel may not matter to the output of the 

system. For example, adrenal zG cells express TASK-1 mRNA in humans and TASK-1 and 

TASK-3 mRNA in rodents. Yet, homo- and heterodimeric TASK channels share similar 

open-rectification properties and, with adjusted densities, can carry similar current 

amplitudes. Moreover, TASK-1 and TASK-3 heterodimers recapitulate the pH sensitivity of 

TASK-1 homodimers. Thus, under many circumstances, which TASK subunit carries current 

in zG cells may matter little to the level of aldosterone output.

Lesson two: Within a cell, different sets of conductances can generate a similar Vm spike 

potential (156). Thus, mutational alteration of one conductance may be counterbalanced by 

the activity of others to suppress a mutational phenotype. In zG cells, multiple conductances 

mediate each phase of the zG spike potential. For example, inward rectifier K+ channels 

(Kir), leak K+ channels (TASK/TREK), and Cl− channels (ClC) contribute to setting the 

resting Vm of zG cells. Larger leak and/or smaller ClC currents could offset mutant-

depolarizing inward rectifier currents, and larger SK or BK currents could compensate for 

larger mutant-depolarizing ClC currents resulting in little change in the zG spike potential. 

These compensatory changes in activity could arise from alterations in intrinsic channel 

properties or channel expression levels. Notably, electrically excitable cells, by permitting 

larger voltage excursions than electrically quiescent cells, allow the participation of more 

conductances and thus have a greater intrinsic capacity for self-tuning. Conversely, human 

mutations and KO mouse models that produce a strong aldosterone phenotype may provide 

the opportunity to reveal which ionic conductances cannot be offset if studied in activity-

based networks of electrically excitable zG cells. Indeed, adrenal slices prepared from a 

mouse model of familial hyperaldosteronism type II that harbors a gain-of-function mutation 

(R180Q) in ClC-2 channels did show an increase in the Ca2+ oscillatory activity elicited by 

20 nM Ang II. Notably, this increase was observed preferentially at 3 mM but not at 5 mM 

K+, suggesting that the ClC-2 mutant assumes a privileged role only at hyperpolarized 

resting voltages (27).

Lesson three: The performance of a network depends less on the intrinsic properties of 

the individual component cells and more on their correlated values (156). Given the high 

turnover of the zG layer and the requisite conversion of zG to zF cells, it is likely that zG 
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cells are heterogeneous. Indeed, electrical recordings of zG cells in slices reveal two 

populations of zG cells that differ in their resting Vm and frequency (19). Yet, within one 

rosette, cellular activity is surprisingly uniform, manifesting as bursts of spike potentials of 

invariant length and frequency (26, 27) that correlate among rosette members (26). Activity-

correlated networks are valuable; they are better low-pass filters, screening spurious 

incoming noise (signal-to-noise filter), and they have an enhanced capacity for network self-

tuning and a greater dynamic range. Although the mechanism(s) underlying correlated 

activity within the rosette remains unknown, the rosette architecture is likely the basis for 

coordination, obeying the architectural and industrial design axiom that form follows 

function.

The rosette itself is an avascular structure. Yet, the high vascular content of the zG layer and 

the close apposition of vascular endothelial cells to the rosette basement membrane creates a 

morphological geometry that allows each zG cell access to stimuli diffusing from the 

vasculature. Thus, although each rosette exerts local homeostatic control, putatively making 

each rosette an activity silo, the performance response of the zG layer to stimuli may still be 

achievable.

Combined, these lessons advocate for a rosette-centric view of aldosterone regulation. They 

position the rosette as the unit of activity of the zG layer and the locus of the primary control 

of aldosterone output. If correct, there remains a critical need for the development of 

experimental model systems (e.g., adrenal rosette organoids) to understand how to program 

and sustain a desired level of rosette performance.
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FUTURE ISSUES

1. What conductance(s) underlies the Vrest to Vthreshold transition?

2. What is the degree of cell heterogeneity within a rosette?

3. When the signal is encoded as an oscillatory burst, is the transmission of Ca2+ 

to Zg mitochondria more efficient?

4. What mechanism(s) facilitates cellular communication within a rosette?

5. In the zG layer, is there communication between rosettes, or are they activity 

silos?

6. How does the regulation of steroidogenesis change between a structured 

rosette and an aldosterone-producing cell cluster (APCC)-like unstructured 

cluster of zG cells?
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Figure 1. 
zG Vm-spike potential. (a) Current-clamp recording of spontaneous voltage oscillations from 

a mouse zG cell in an adrenal slice. (b) Vm phase-plane plot (dV/dt) of an averaged zG Vm-

spike potential; Vresting, Vthreshold, Vmax, and depolarizing/repolarizing phases of Vm-spike 

potential are highlighted with arrows. (c) Ionic conductances underlying a zG Vm-spike 

potential waveform. Underlying molecular correlates or subfamilies are indicated on the Vm 

plot when known: Vm interspike (resting) = ClC (ClC-2), K2P (K2P3, K2P9: TASK; K2P2: 

TREK), Kir (Kir3.4); Vm upstroke (depolarizing) = LVA Ca2+ (Cav3.2), HVA Ca2+ (Cav1.3, 

Cav1.2); Vm downstroke (repolarizing) = Ktransient outward [K(I)to], SK (KCa 2.2), BK (KCa 

1.1), Kdelayed rectifier [Kv slow (Kv7.1], Kvnoninactivating]. Abbreviations: HVA, high-voltage-

activating; LVA, low-voltage-activating.
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Figure 2. 
Rosette activity coordination and potential modes for intercellular communication. (Center) 
Two-dimensional schematic of rosette structure showing cell–cell cadherin junctions (red 
squares) clustered at the rosette apex and dispersed on lateral membranes. (a) Schematic of 

coordinated bursts of activity and Ca2+ oscillations among zG cells within a rosette. (b–d). 

Three potential modes of activity coupling are illustrated: (b) ephaptic, (c) mechanical, and 

(d) ionic.
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