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Viewpoint n

The Interactions Between
Clinical Informatics
and Bioinformatics:
A Case Study

RUSS B. ALTMAN, MD, PHD

A b s t r a c t For the past decade, Stanford Medical Informatics has combined clinical
informatics and bioinformatics research and training in an explicit way. The interest in applying
informatics techniques to both clinical problems and problems in basic science can be traced to
the Dendral project in the 1960s. Having bioinformatics and clinical informatics in the same
academic unit is still somewhat unusual and can lead to clashes of clinical and basic science
cultures. Nevertheless, the benefits of this organization have recently become clear, as the
landscape of academic medicine in the next decades has begun to emerge. The author provides
examples of technology transfer between clinical informatics and bioinformatics that illustrate
how they complement each other.
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The Stanford Medical Informatics (SMI) laboratory
was created in the mid-1980s as part of a reorganized
Stanford Knowledge Systems Laboratory (KSL). The
KSL was a federation of investigators interested in ap-
plying artificial intelligence methods to real-world
problems in engineering, science, and medicine. The
core competency of the SMI centered on the research
interests of Dr. Edward Shortliffe, who had well-es-
tablished research programs in the medical applica-
tions of expert systems (such as the MYCIN system1)
and the creation of an electronic infrastructure to sup-
port such systems. The initial focus of the laboratory
was clearly on the clinical applications of artificial in-
telligence.

The KSL itself was an outgrowth of the Stanford Heu-
ristic Programming Project, which was formed around
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the DENDRAL program for interpreting mass spec-
troscopy data using a production rule formalism.2 The
excitement about production rule systems led to the
application and refinement of these ideas into rule-
based expert systems and to MYCIN, a system for di-
agnosing infectious diseases and recommending treat-
ment.1 At the same time, other projects arose at the
Heuristic Programming Project that focused more on
the support of basic science. The MOLGEN I project
studied planning techniques for molecular biological
experiments,3,4 the MOLGEN II project modeled the
process of scientific discovery in molecular biology,5,6

and the PROTEAN project looked at interpreting NMR
experimental information about three-dimensional
structures using constraint satisfaction techniques.7

These projects did not reside explicitly in the SMI lab-
oratory at the time of its formation, but they were
staffed by close collaborators and students in the KSL,
so the opportunities in basic science were always
clear. Most important, there was an early recognition
that the basic methodological approaches taken in the
two disciplines could often be transferred to produce
novel contributions.

By the late 1980s, it became clear that there was an
impending explosion of data that would become
available in molecular biology and that the SMI was
in a good position to apply, to basic biology, the re-
search strategies it had been using in clinical medi-
cine. The National Library of Medicine encouraged
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F i g u r e 1 The Stanford Medical Informatics logo
stresses the combination of clinical medicine, basic biol-
ogy, and computer science. Variations are found at
http://smi-web.stanford.edu/logos/index.html.

Stanford (and other institutions at which it funded
training programs) to seriously consider expanding
the training mission to include the application of com-
putational technologies to basic biology. Starting in
1992, therefore, faculty in what eventually came to be
called ‘‘bioinformatics’’ were hired at SMI, and stu-
dents with interests in this area were recruited.

The philosophy behind the addition of bioinformatics
to the SMI research and training mix was not that a
separate track should be introduced but that the ex-
isting training and research experience in the SMI and
KSL could be adapted in an evolutionary manner. In
the case of training, the five elements of the medical
informatics training program (core informatics, do-
main biology, computer science, probability/statis-
tics/decision science, and ethical/legal/social issues)
were very well suited to training in both bioinfor-
matics and clinical informatics, so the training pro-
gram expanded quite naturally.8 Some projects fo-
cused on the medical domain, others on the biological
domain. The problems in the two domains are clearly
different, but the methodologies that are used to ap-
proach them are shared and form the basis of a co-
hesive program.

Thus, the SMI houses both bioinformatics and clinical
informatics efforts at Stanford.1 The new laboratory
logo (Figure 1) combines the traditional medical ca-
duceus with a DNA double helix to stress the inter-
actions between the two fields. There are also active
programs in bioinformatics research in the Depart-
ments of Biochemistry, Structural Biology, Pathology,
Genetics, Mathematics, and Computer Science, and
work in clinical informatics is being done in the De-
partments of Medicine, Computer Science, Anesthe-

siology, and Pathology. The focus on methodology,
and the management of the informatics training pro-
gram (which sends students to many of the other de-
partments to work on projects), are what make the
SMI a focal point for efforts in these areas.

The pursuit of bioinformatics and clinical informatics
together is not without some difficulties. Practitioners
in clinical medicine and basic science do not instantly
understand the distinction between the scientific goals
of their domains and the transferability of methodol-
ogies across the two domains. They sometimes ques-
tion whether informatics investigators are really de-
voted to the solution of scientific problems or are
simply enamored of computational methodologies of
unclear significance. It is therefore imperative that in-
formatics investigators (and their students) be able to
work collaboratively with physicians and scientists in
a manner that makes it clear that the creation of ex-
cellent, well-validated methods for solving problems
in these domains is the paramount goal. Usually, the
particular skills of informatics students and the qual-
ity of their contributions to the research efforts they
join significantly allay these concerns. Students in in-
formatics have a much richer understanding of com-
puter science, statistics, and information technology
than do students in collaborating disciplines, and they
think more like engineers in creating solutions.

Technology Transfer Between Subdisciplines

One of the most compelling reasons for housing clin-
ical informatics and bioinformatics under the same
roof is the opportunities this provides for rapid tech-
nology transfer between the two subdisciplines. Be-
cause there are still barriers between the two fields
(bioinformatics professionals may not even know the
clinical informaticians at their institutions), there are
also opportunities for accelerating progress in both
fields by knowing the problems and literature in each.
Even in the days of the Heuristic Programming
Project, ideas from the DENDRAL project on mass spec-
troscopy were applied to the MYCIN project on di-
agnosing disease. Success with MYCIN inspired some
to pursue planning and discovery efforts in the MOL-
GEN framework. Two particularly illustrative areas of
technology transfer that have had significant impact
are the development of Bayesian methods for reason-
ing and the development of frameworks for knowl-
edge representation and acquisition.

Probabilistic Methods in Clinical Informatics
Applied to Biological Structure

In the mid 1980s, the SMI experienced a ‘‘probabilistic
revolution,’’ during which many projects in medical
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diagnosis began to focus on the use of probability the-
ory as an alternative to other uncertainty calculi that
had been proposed. (As an aside, the interest in these
methods stemmed, in large part, from student expo-
sure to courses in probabilistic decision making,
which created a cadre of converts to this mode of
thinking.) In particular, a great interest developed in
the use of Bayesian belief networks as an organizing
paradigm for understanding diagnosis (compute the
most likely diagnosis), treatment (compute the highest
utility), knowledge acquisition (acquire the best num-
bers), and other elements of medical reasoning. The
work that resulted made an impact on medical infor-
matics and launched a number of successful careers
in the application of these technologies in medicine
and beyond.9–12

The furor over probabilistic methods in clinical infor-
matics spilled over in many ways to the work that
was going on in bioinformatics. First, the protean
project (which focused on computing three-dimen-
sional molecular structures from sparse and noisy
data) moved to adopt a probabilistic representation of
structure in which an ill-defined ‘‘prior’’ structure was
updated with uncertain data to compute the most
likely a posteriori structural estimate. The impetus for
this change in representation (from an initial formu-
lation as a discrete constraint satisfaction or combi-
natorial optimization problem13) can be traced directly
to the success of probabilistic, Bayesian methods in
the clinical side of the laboratory.14,15

Second, in a more direct application of the clinical in-
formatics experience, Bayesian methods were applied
to problems in sequence analysis. In particular, de-
pendencies between positions in biological sequences
were modeled as dependencies in a Bayesian net, and
good performance was demonstrated in the ability of
such models to characterize and recognize patterns in
biological sequence.16 Again, abandoning the tradi-
tional assumption of the independence of columns in
a multiple alignment could be traced directly to the
work in clinical diagnosis. Essentially, this work was
diagnosing an alpha helix based on probabilistic evi-
dence.

Knowledge Representation and Structured
Knowledge Acquisition

A second area in which methodologies from clinical
informatics have inspired efforts and contributions in
bioinformatics is that of knowledge representation.
The experiments in supporting structured represen-
tations of clinical medicine—in particular, the repre-
sentation of clinical treatment protocols (in the On-
cocin project17)—led the clinical informatics researchers

at the SMI to focus attention on the creation of gen-
eral-purpose frame representation systems that al-
lowed strict ontological modeling of domains, and
used the resulting ontologies to automatically create
templates for the structured acquisition of knowledge.
The PROTÉGÉ project18 continues to be a source of soft-
ware for structured data modeling and knowledge ac-
quisition. PROTÉGÉ has recently been adopted by the
World Wide Web Consortium (http://www.w3.org/
RDF/) as a recommended platform for authoring RDF
documents, and meetings of PROTÉGÉ user groups (in-
cluding health care organizations) interested in robust
methods for data modeling are held annually.

Around 1995, an SMI bioinformatics effort to create
three-dimensional structural models from combina-
tions of experimental data (as reported in the litera-
ture) was focusing on the structure of the bacterial
ribosome, a critical cellular molecular ensemble.19,20

The algorithms used to create the three-dimensional
models worked well, but it was a struggle to collect
all the relevant data from the literature.

Aware of the work on ontological modeling on the
clinical side, we proposed the creation of an ontology
of biological objects as well as the experiments that
supply the data used in modeling. As a test bed, we
proposed to gather the published literature about the
ribosome (having identified approximately 200 papers
that contain reports of primary data) and create a set
of structured representations for the data. The frame-
based system that was chosen for RiboWEB and the
organization of the system were closely related to
those of the PROTÉGÉ system. In addition, a long his-
tory of creation and maintenance of controlled ter-
minologies in clinical medicine helped inform the cre-
ation of a controlled vocabulary for describing
structural biological experiments.19

The RiboWEB system now serves as a test bed for the
use of structured representations of biological data.
RiboWEB makes it possible to compare a new piece
of data with all the relevant data reported previ-
ously,21 it allows inconsistencies in the literature to be
identified,22 and it allows three-dimensional models to
be built on the basis of a selection and interpretation
of a subset of the available information.20 Once again,
there was a technology transfer of informatics tech-
niques from the clinical to the biological domain.

Blurring the Boundary Between Clinical
Informatics and Bioinformatics

The success of the RiboWEB project was responsible,
in part, for the newest efforts in the SMI to create a
pharmacogenetics knowledge base (PharmGKB, avail-
able at http://pharmgkb.stanford.edu/) that com-
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bines a diverse array of data, from genomic data to
cellular/molecular phenotype and clinical phenotype.
The data modeling and knowledge base infrastructure
developed at SMI form the basis for this project,
which aims to provide scientists nationwide with in-
tegrated access to data over the Web. Data will be
acquired in structured form and will be distributed
using the same kinds of structured representations
that were developed for RiboWEB.

The PharmGKB project is the first project at SMI that
blurs the distinction between bioinformatics and clin-
ical informatics. The knowledge base will hold ge-
nomic sequences, multiple alignments, and structural
information, which is the stuff of bioinformatics. At
the same time, it will store clinical patient records of
diseases, medications, side effects, and laboratory re-
sults, which are the traditional material of clinical in-
formatics. Similarly, the analytic capabilities will be
based on algorithms introduced in both fields. Clearly,
for projects such as this, there may not be a useful
distinction between clinical informatics and bioinfor-
matics, and in many ways the strategy of combining
the training and research environments for these two
subjects is vindicated.

As the biological world enters the post-genome age,
the interplay between basic biological data (se-
quences, structures, pathways, and genetic networks)
and clinical information systems is, clearly, critical.
Genes and structures are useful only in the context of
the functions and phenotypes that they produce, and
so we look toward continuing interaction and, per-
haps, unification of the two fields.

One of the ultimate goals of both bioinformatics and
clinical informatics is to have robust computational
models of physiology that will enable us to model,
store, retrieve, and analyze the effects, on patients, of
disease, medications, and the environment. Bioinfor-
matics approaches these models from the bottom up,
while clinical informatics approaches them from the
top down. The other critical technologies of clinical
informatics, including knowledge representation, data
mining, automated diagnosis, and information re-
trieval, can be viewed as technologies supporting this
goal.

The training program curriculum at SMI has recently
been updated and generalized to be appropriate for
both clinical informatics and bioinformatics. This pro-
cess was surprisingly simple. We now require 1) in-
stead of medical physiology, any biology or physiol-
ogy of interest to the student; 2) as before, significant
coursework in probability, statistics, or decision anal-
ysis, or a combination of these; 3) a substantial
amount of core computer science; and 4) nontechnical

courses in the ethical, social, legal, or business aspects
of the field. We have also generalized our introduc-
tory core informatics courses to introduce the princi-
ples of data representation and algorithms in biomed-
icine that make it a challenging field.

The resulting generalized curriculum has been tested
for both bioinformatics and clinical informatics stu-
dents and appears to strike an appropriate balance
between domain knowledge and methodologic
knowledge. Recognizing the success of this general-
ized curriculum, we have changed the name of the
training program from Medical Information Sciences
(the name of the degree program as it was defined in
1982) to Biomedical Informatics.

The Need for Informatics to Co-exist with
Other Areas of Biocomputation

As we look to the future of informatics, it becomes
clear that informatics is one aspect of a larger area of
endeavor, which can be loosely called ‘‘biomedical
computation.’’ At a recent Stanford faculty retreat, we
found that most biomedical computation efforts fall
into one of six affinity groups. (The summary abstract
book is available in the archives, at http://
bits.stanford.edu/.) These groups are divided roughly
into those whose investigators think mostly (but not
exclusively) about computing directly with and about
physical systems and those whose investigators think
mostly about information acquisition, storage, re-
trieval, and management. Both use significant com-
putation skills and require a strong understanding of
computer science.

The affinity groups are:

n Image acquisition and analysis (physical systems)

n Structural biology and genetics bioinformatics
(physical systems)

n Biomechanical modeling for macroscopic systems
(physical systems)

n Computer-assisted interventions and robotics
(physical systems)

n Data modeling, statistics, and informatics (infor-
matics)

n Networked and computer-enabled education (in-
formatics)

There was a broad consensus at this retreat that an
umbrella organization for these affinity groups makes
sense, to support joint teaching, research, and shared
infrastructure and to provide a focus for the applica-
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tion of advanced computational techniques to prob-
lems in biomedicine. The creation of such an organi-
zation is a work in progress that promises to solidify
and extend Stanford’s commitment to these areas.

References n

1. Buchanan B, Shortliffe E (eds). Rule-Based Expert Systems:
The MYCIN Experiments of the Stanford Heuristic Pro-
gramming. Menlo Park, Calif: Addison-Wesley, 1984.

2. Lindsay R, Buchanan B, Feigenbaum E, Lederberg J. Appli-
cations of Artificial Intelligence for Organic Chemistry. New
York: McGraw-Hill, 1980.

3. Stefik M. Planning and meta-planning (MOLGEN: Part 2).
Artif Intell. 1981;16(2):141–69.

4. Stefik M. Planning with constraints (MOLGEN: Part 1). Ar-
tif Intell. 1981;16(2):111–40.

5. Karp P. Design methods for scientific hypothesis formation
and their application to molecular biology. Machine Learn-
ing. 1993;12:89–116.

6. Friedland P. Knowledge-based Experiment Design in Mo-
lecular Genetics. Palo Alto, Calif: Stanford University, 1979.
Report CSD-79-771.

7. Duncan B, Buchanan B, Hayes-Roth B, et al. PROTEAN: A
new method for deriving solution structures of proteins.
Bull Magn Res. 1987;8(3/4):111–9.

8. Altman R. A curriculum for bioinformatics: the time is ripe.
Bioinformatics. 1998;14(8):549–50.

9. Shwe MA, Middleton B, Heckerman DE, et al. Probabilistic
diagnosis using a reformulation of the INTERNIST-1/QMR

knowledge base, part I: the probabilistic model and infer-
ence algorithms. Methods Inf Med. 1991;30(4):241–55.

10. Middleton B, Shwe MA, Heckerman DE, et al. Probabilistic
diagnosis using a reformulation of the INTERNIST-1/QMR,
part II: evaluation of diagnostic performance. Methods Inf
Med. 1991;30(4):256–67.

11. Herskovits EH, Cooper GF. Algorithms for Bayesian belief-
network precomputation. Methods Inf Med. 1991;30(2):81–
9.

12. Heckerman DE, Horvitz EJ, Nathwani BN. Toward nor-
mative expert systems, part I: the Pathfinder project. Meth-
ods Inf Med. 1992;31(2):90–105.

13. Brinkley JF, Altman RB, Duncan BS, Buchanan BG, Jar-
detzky O. Heuristic refinement method for the derivation
of protein solution. J Chem Inf Comput Sci. 1988;28(4):194–
210.

14. Altman RB. Probabilistic structure calculations: a three-di-
mensional tRNA structure. Ismb. 1993;1:12–20.

15. Altman R, Jardetzky O. New strategies for the determina-
tion of macromolecular structure in solution. J Biochem.
1986;100(6):1403–23.

16. Klingler TM, Brutlag DL. Discovering structural correla-
tions in alpha-helices. Protein Sci. 1994;3(10):1847–57.

17. Hickam DH, Shortliffe EH, Bischoff MB, Scott AC, Jacobs
CD. The treatment advice of a computer-based cancer che-
motherapy protocol. Ann Intern Med. 1985;103(6,pt 1):928–
36.

18. Tu S, Eriksson H, Gennari J, Shahar Y, Musen M. Ontology-
based configuration of problem-solving methods and gen-
eration of knowledge-acquisition tools: application of
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