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Abstract

Background and purpose: Radiotherapeutic dose escalation to dominant intraprostatic lesions 

(DIL) in prostate cancer could potentially improve tumor control. The purpose of this study was to 

develop a method to accurately register multiparametric magnetic resonance imaging (MRI) with 

CBCT images for improved DIL delineation, treatment planning, and dose monitoring in prostate 

radiotherapy.

Methods and materials: We proposed a novel registration framework which considers 

biomechanical constraint when deforming the MR to CBCT. The registration framework consists 

of two segmentation convolutional neural networks (CNN) for MR and CBCT prostate 

segmentation, and a three-dimensional (3D) point cloud (PC) matching network. Image intensity-

based rigid registration was first performed to initialize the alignment between MR and CBCT 

prostate. The aligned prostates were then meshed into tetrahedron elements to generate volumetric 

PC representation of the prostate shapes. The 3D PC matching network was developed to predict a 

PC motion vector field which can deform the MRI prostate PC to match the CBCT prostate PC. To 

regularize the network’s motion prediction with biomechanical constraints, finite element (FE) 

modeling-generated motion fields were used to train the network. MRI and CBCT images of 50 

patients with intraprostatic fiducial markers were used in this study. Registration results were 

evaluated using three metrics including dice similarity coefficient (DSC), mean surface distance 

(MSD), and target registration error (TRE). In addition to spatial registration accuracy, Jacobian 
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determinant and strain tensors were calculated to assess the physical fidelity of the deformation 

field.

Results: The mean and standard deviation of our method were 0.93 ± 0.01, 1.66 ± 0.10 mm, and 

2.68 ± 1.91 mm for DSC, MSD, and TRE, respectively. The mean TRE of the proposed method 

was reduced by 29.1%, 14.3%, and 11.6% as compared to image intensity-based rigid registration, 

coherent point drifting (CPD) nonrigid surface registration, and modality-independent 

neighborhood descriptor (MIND) registration, respectively.

Conclusion: We developed a new framework to accurately register the prostate on MRI to 

CBCT images for external beam radiotherapy. The proposed method could be used to aid DIL 

delineation on CBCT, treatment planning, dose escalation to DIL, and dose monitoring.
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1. INTRODUCTION

Prostate cancer is the second most common malignant disease, which accounts for 28% of 

newly diagnosed cancers in men each year around the world.1 Radiation therapy such as 

external beam radiotherapy (EBRT), brachytherapy, and a combination of the two is 

commonly used to treat prostate cancer. In radiotherapy, the entire prostate is often 

prescribed to a single dose level since prostate cancer is presumed to be multifocal.2 

However, studies have shown that dominant intraprostatic lesion (DIL) is the site that 

contains the largest and/or the highest grade of lesion. Though the volume of DIL is 

typically <10% of the entire prostate volume, DIL is the most common tumor recurrence site 

after radiation therapy.2,3 Several studies have shown that dose escalation to the DIL during 

radiotherapy is beneficial to tumor control.2,3 However, it is difficult to accurately delineate 

the DIL on CT due to its low soft tissue contrast inside the prostate. In contrast to CT, 

multiparametric MRI (mpMRI) has superior soft tissue contrast inside the prostate. 

Therefore, it has become a standard to detect DIL on mpMRI in prostate radiotherapy.3–6 In 

order to propagate the DIL delineation from mpMRI to CT, accurate mpMRI-CT image 

registration is needed. However, it is very challenging to register mpMRI with CT/CBCT on 

prostate because of (a) distinct appearances with inconsistent image intensities, (b) large 

prostate position shift and shape discrepancies due to varying rectum and bladder filling,7 (c) 

poor CT/CBCT soft tissue contrast, and (d) poor CBCT image quality due to large photon 

scattering noise and artifacts. For these reasons, most studies on MRI-CT/CBCT registration 

are limited to rigid or affine registration,8,9 and very few articles of nonrigid registration 

methods have been published.

Mutual information (MI) is generally used when performing multimodal image registration. 

McLaughlin et al. used MI-based method to register prostate MRI-CT post permanent seed 

implant in brachytherapy.10 They showed that the registration is helpful to improve prostate 

contouring and postimplant dosimetry. Ciardo et al. used a B-spline MI-based method for 

MRI-CT image registration to propagate MRI-defined DIL to CT.4 To enhance the image 

contrast of the organs-at-risk (OARs) that affect prostate position and shape, they increased 

Fu et al. Page 2

Med Phys. Author manuscript; available in PMC 2021 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the intensity values of these organs by a fixed value prior to image registration. 

Commandeur et al. used prostate contours to aid MRI-CT registration.11 A random forest 

classification was first used to detect prostate on CT images to generate probabilistic 

prostate contours. A similarity metric was defined to maximize the probability and 

collinearity between the normal of the MRI and CT contours. The markers position error 

after registration was on average 2.13 mm evaluated on gold seeds implant/calcification 

landmarks. They have outperformed a MI-based registration method by 7% in terms of Dice 

score. Intraprostatic fiducial markers/radiation seeds were also used to aid rigid registration 

between MR and CT images. Kunogi et al. rigidly aligned MRI and CT prostate images 

using prostate implant seed source locations by least square method.12 Parker et al. used 

intraprostatic fiducial markers to rigidly register MRI and CT images.13 They showed the 

feasibility of using intraprostatic fiducial markers, rather than bony structure markers for the 

registration. Aside from the MI-based deformable registration and the fiducial markers/

radiation seeds aided rigid registration, image synthesis techniques have also been employed 

for prostate MR and CT registration. Various image synthesis techniques were used to 

transform multimodal to unimodal image registration. Cao et al. proposed to use multi-target 

regression forest to perform both MRI-to-CT and CT-to-MRI image synthesis to handle the 

large appearance gaps between MRI and CT.14 They have showed superior performance as 

compared to direct multimodal image registration. Fu et al. used a generative adversarial 

network to synthesize MRI from CT, and used the synthetic MRI (sMRI) as a surrogate of 

CT image in pelvic MRI-CT registration.15

Alternatively, organ surface registration could be used to bypass the lack of accurate image 

similarity measures in prostate multimodal image registration. For example, prostate surface 

registration has been used in MRI-TRUS image registration to provide MRI guidance in 

prostate biopsy and brachytherapy.16–19 In contrast, surface registration has been explored 

much less for prostate MRI-CT/CBCT image registration. This maybe because prostate 

boundary is better defined in TRUS than in CT/CBCT. In radiotherapy, prostate is usually 

oversegmented on CT in order to cover the whole prostate. Studies have shown that 

manually delineated prostate volume on CT is on average 35% larger than that on MRI.20 

Recently, deep learning-based methods were proposed to provide superior prostate 

segmentation on CT/CBCT,21 which enables prostate surface-based MRI-CT registration. 

One drawback of surface-based registration method is that it relies on mathematical models 

such as linear, bicubic, cubic and spline functions to interpolate the surface-driven 

deformations to the whole image domain. Due to the absence of control points within the 

prostate, these mathematical interpolation functions may introduce large deformation error 

inside the prostate. Finite element (FE) analysis is a powerful tool for soft tissue deformation 

modeling. FEM has improved the performance of nonrigid image registration in many 

medical simulation applications.22,23 FEM has been investigated in MRI-MRI prostate 

registration,24,25 MRI-TRUS prostate registration to model the prostate deformation induced 

by the endorectal coil and ultrasound probe.16,17,26,27 They have shown promising results of 

using FEM to aid deformable prostate registration. Bladder, rectal filling, and patient setup 

condition could also cause prostate shape to change during the treatment process. FE 

analysis considers tissue stiffness property, boundary conditions, and biomechanical 

constraint to model the prostate deformation. However, FE model that consists of geometry 
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meshing, material property assignment, boundary condition definition, and so on usually 

requires substantial time and labor to build and solve, which prevent FE from being 

routinely used in the clinic.16,17,28,29

As artificial intelligence develops, many deep learning-based methods have been proposed 

for medical image processing such as segmentation,30 registration,31 synthesis,32 and so on. 

Compared to traditional image processing methods, deep learning-based methods are 

generally faster and more robust to hyperparameter selection. The recent success of deep 

learning in medical image processing has inspired us to explore the possibility of using deep 

learning to replace FE modeling in biomechanically constrained image registration. To this 

end, we propose to use volumetric point cloud (PC) to represent the prostate gland and to 

use a PC matching network (PCMN) to learn the prostate deformation in FE modeling. 

Several studies have been proposed to use deep learning for PC processing. Qi et al. 

proposed a PointNet to classify and segment 3D PC.33,34 Liu et al. employed a PC-based 

network called FlowNet3D to predict 3D scene flow between stereo and RGB-D images.35 

Aoki et al. proposed to combine PointNet and Lucas & Kanade (LK) algorithm for 3D PC 

rigid registration using deep learning.36 In this study, we extended the usage of PC-based 

deep learning methods to medical image registration. Specifically, we trained a PCMN using 

FE-generated volumetric PC motion. Given two volumetric PC representing two prostates to 

be registered, the trained PCMN was able to predict the motion vector field of one PC to 

match the other. The predicted motion field was then used to deform the MR image in MRI-

CBCT prostate registration. The contributions of this study are

1. An automatic MRI-CT prostate deformable image registration framework was 

developed by combining a CNN-based MRI prostate segmentation network, a 

CNN-based CBCT prostate segmentation network, and a volumetric PC 

matching network.

2. The volumetric PC matching network was trained using FE-generated PC motion 

vector field so that the trained network was able to implicitly apply the learned 

biomechanical constraints to prostate deformation during the registration.

3. A combination of motion vector prediction loss and Chamfer surface distance 

loss was used to train the PCMN.

2. MATERIALS AND METHODS

Flowchart of the proposed method is shown in Fig. 1. First, two convolutional neural 

networks (CNN), CNN_137 and CNN_2,21 were used to segment the prostate from MRI and 

CBCT, respectively. To initialize the alignment, the MRI and CBCT were rigidly registered 

using MI-based registration. The rigidly aligned prostate masks were then meshed into 

surface point clouds (PCs) to represent the prostate shapes. The MRI and CBCT prostate 

surface PCs were then registered to establish PC correspondence between the two, which 

was used as nodal displacement boundary condition to drive prostate deformation in the FE 

model. The FE model was used to predict deformation within the prostate and to build 

volumetric PC correspondences. Taking the MRI and CBCT prostate volumetric PC as 

input, the proposed PC matching network (PCMN) was trained to predict the motion of MRI 
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prostate PC to both match the CBCT prostate shape and comply with the FE-generated 

motion vectors. In testing phase, prostates of a new MRI and CBCT pair were first 

segmented using the two CNNs, then meshed into tetrahedron elements to generate 

volumetric PC. It is not required for the meshing to have equal number of points in the two 

volumetric PCs since the network can automatically sample two subsets of PCs with equal 

number of points from the two volumetric PCs. The MRI and CBCT prostate volumetric PC 

were fed to the trained PCMN to perform PC matching between the two. MRI images was 

subsequently deformed using the predicted PC motion vector field.

2.A. Data acquisition

We retrospectively collected data from 50 patients with prostate cancer treated with proton 

radiotherapy. Each dataset has a series of mpMRI and multiple CBCT scans. The mpMRI 

scans include T1-weighted, T2-weighted, and diffusion-weighted MRIs, which were 

acquired on an Aera (Siemens, Germany) 1.5T scanner. The T1-weighted MRIs were 

scanned using a gradient recalled sequence (TR/TE: 6.9/2.39 ms, flip angle: 10°) with 1.3 × 

1.3 × 1.3 mm3 voxel size. The T2-weighted MRIs were scanned using a spin echo sequence 

(TR/TE: 1600/166 ms, flip angle: 170°) with 1.0 × 1.0 × 1.0 mm3 voxel size. Multiple 

CBCT scans were taken prior to each fraction using Varian ProBeam CBCTsystem with 1.0 

× 1.0 × 2.0 mm3 voxel size. Assuming that the larger time span between the CBCT and 

MRI, the greater possibility that the image content is different due to tumor shrinkage, 

patient weight loss, and physiological changes, we have chosen to register the MRI with the 

last fraction CBCT to demonstrate that the proposed method could be applied to CBCT 

across the entire treatment course. As a preprocessing step, all datasets were resampled to 

1.0 × 1.0 × 1.0 mm3 voxel size. Institutional review board approval was obtained; no 

informed consent was required for this HIPAA-compliant retrospective analysis.

2.B. FE Modeling of prostate deformation

Since we aim to train a PCMN with implicit biomechanical awareness, FE analysis was used 

to generate prostate deformation during the registration which was then used to establish 

prostate volumetric PC correspondence for PCMN training. To build the FE model, we need 

to establish prostate boundary condition, assign prostate tissue property, and solve the nodal 

displacements within the prostate. These steps are described one by one in the following 

sections.

2.B.1. Prostate boundary condition establishment—Prostate was first segmented 

using two separately trained CNN models. A 3D fully convolutional network was developed 

using group dilated convolutional layers and trained using deep supervision to segment the 

prostate from MRI T2-weighted images. The network was trained using internal 40 MRI T2-

weighted datasets and tested using a separate public dataset which include 50 T2-weighted 

prostate MRI. The average dice similarity coefficient (DSC) was 0.88 ± 0.05 for prostate 

segmentation. To segment the prostate on CBCT images, we trained another network which 

used both the original CBCT and synthetic MRI generated from the CBCT. The network 

was trained and tested on 100 patients’ datasets and achieved an average DSC of 0.91 ± 0.08 

for prostate segmentation. For details of prostate segmentation on MRI and CBCT, please 

refer to Wang et al.’s work37 and Fu et al.’s work.21 The prostate masks were then meshed 
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into around 5000 tetrahedron elements with around 1200 nodes. Around 5000 tetrahedron 

elements are considered enough for the FE to model the relatively small prostate gland. The 

average element size is around 0.005 ml for an average of 25 ml size prostate. We modeled 

the prostate deformation in FE using nodal displacement boundary conditions (BC). The 

nodal correspondences were obtained by nonrigidly registering the prostate surfaces between 

MRI and CBCT. The reasons of using nodal displacement BC are (a) external force to the 

prostate by its surrounding tissue/organs such as bladder and rectum was unavailable, (b) 

nodal displacement BC obtained by prostate surface registration could ensure that the MRI 

prostate shapes match the CBCT prostate shapes after FE deformation, which is desirable to 

train the PCMN. Image intensity-based rigid prostate registration was first performed to 

roughly align the mpMRI and CBCT images. Nonrigid surface registration was then 

performed to match the prostate surfaces from MRI with that from CBCTusing local rigid 

deformation. The local rigid deformation was performed by rigidly registering the nearby 

nodes Ni on MRI to the nearest local points on CBCT. Let vi be the ith node from the MRI 

prostate surface, a set of nearby nodes Ni around vi were then defined based on spatial and 

directional distances, denoted as GNi
mri. Local points on CBCT, denoted as Gcbct were 

selected as the nearest three points for each point in GNi
mri. The nonrigid surface registration 

was represented as a weighted summation of local rigid deformation around each node.38

m vi = ∑
j ∈ Ni

wji Rj vi + tj vi (1)

where m(vi) denotes the nodal motion vector of vi, wji is a linear distance-based weights, Rj 

represents local rotation, and tj represents local translation. The Rj and tj were calculated by 

registering the local PC using MATLAB built-in function “procrustes.” The nearby Ni 

surface nodes were surface points and selected using MATLAB built-in function 

“knnsearch.” The choice of Ni reflects the local rigidity of the PC matching. In this study, 

we empirically set Ni to 50. The nodal motion vectors were calculated iteratively to obtain 

the final nodal displacements that were used as the BC in the FE model.

2.B.2. Prostate tissue modeling—In FE analysis, we assume the prostate is 

homogeneous. Referring to Khallaghi et al.’s work (Khallaghi et al., 2015a), we set the 

Young’s modulus to be 5kPa and the Poisson’s ratio to be 0.49. Neo-Hookean hyperelastic 

material39 was used to model the behavior of the prostate. The strain energy function of the 

neo-Hookean material is defined as40:

W = C10 I1 − 3 + 1
D1

Jel − 1 2
(2)

where C10 is the material constant that controls the shear behavior, D1 is the material 

constant that controls the bulk compressibility, I1 represents the first strain invariant, and Jel 

is the elastic volume strain. Given the values of Young’s modulus and Poisson’s ratio, we 

can derive the values of C10 and D1 using the following equations.
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C10 = G
2 , D1 = 2

K , G = E
2(1 + ν) , K = E

3(1 − 2ν) (3)

where G is the initial shear modulus and K is the bulk modulus, E denotes the Young’s 

modulus, and ν denotes the Poisson’s ratio.

2.B.3. FE implementation and nodal displacement calculation—FE models 

were constructed using commercial FE software (ANSYS 2019 R2, Oxfordshire, UK). The 

prostate deformation was modeled as a static structural problem with around 1200 nodes and 

5800 tetrahedron elements. Stl file of each MRI prostate shape was imported to ANSYS 

Workbench for subsequent material assignment and meshing. Elastic support was applied on 

the prostate surface to model surrounding soft tissue support to the prostate. The output was 

nodal displacement vector with 10 equal temporal substeps. An ANSYS input file for this 

patient was then generated by ANSYS Workbench. The input file was then modified using 

MATLAB to apply the calculated nodal displacement BC which was described in Section 

2.B.1 by creating a node collection with specified displacement vector for every node. The 

input file was fed into ANSYS APDL to solve the target FE model. After the model was 

solved, we recorded the prostate nodal displacement vectors of the whole FE model for all 

10 substeps. The displacement vectors were used to generate target PC motion vector for the 

PCMN to learn. This process is detailed in Section 2.D. One FE example is shown in Fig. 2.

2.C. Point cloud matching network

The goal of PCMN was to take the MRI and CBCT prostate PC as input and predict a dense 

PC motion vector field which can register the MRI prostate PC to the CBCT prostate PC. 

The network design was inspired by FlowNet3D that was published by Liu et al. Two major 

distinctions between our PCMN and FlowNet3D are (a) we encoded biomechanical 

constraints within the FE-generated target motion vector field, (b) an additional Chamfer 

surface distance loss was incorporated into the network to learn prostate surface PC 

matching. The network design of PCMN is shown in Fig. 3. Different from image with 

regular spatial grid voxels, PC datasets are irregular, spatially unordered, and rotation 

invariant. Therefore, the neural networks that processes PC need to consider these 

properties. Traditional convolutional kernels that were widely used in CNNs cannot be 

directly applied to PC. PC convolutional and up-convolutional operations were used to 

perform convolution and deconvolution on the scattered PC. For PC motion prediction, a PC 

embedding layer was used to learn the relationships between the moving PC and fixed PC. 

Since one-to-one point correspondence is not required and absent, the PC embedding layer 

used multiple weighted fixed points within a radius of a moving point as soft point 

correspondence for motion prediction. To consider the unordered-ness and rotation-invariant 

properties of the PC, a symmetric max pooling operation was used. The max pooling 

operation was applied on PC within a sphere with varying radius to learn features from both 

global and local PC. The network can take the input PC as a matrix of N by M (M ≥ 3). The 

M denotes the x, y, z locations of the PC and any additional properties that are specific to 

this point. In this study, we choose to use a matrix of size N by 7 to represent the PC. The ith 

point in the MRI PC was rearranged as viMR = xi1, yi1, zi1, xi2, yi2, zi2, miMR , where xi1, yi1, zi1 are 
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the ith point location in the MRI PC relative to vcMR, which is the MRI prostate centroid. xi2, 

yi2, zi2 are the ith point location in the MRI PC relative to vcCT , which is the CT prostate 

centroid. The miMR is a binary indicator of whether the point belongs to the MRI prostate 

surface. For CBCT, the ith point in the CBCT PC is expressed as 

viCT = xi3, yi3, zi3, xi4, yi4, zi4, miCT , where xi3, yi3, zi3 are the ith point location in the CBCT PC 

relative to vcMR, xi4, yi4, zi4 are the ith point location in the target PC relative to vcCT , and miCT

is a binary indicator of whether the point belongs to the CBCT prostate surface. The MR and 

CBCT have separate matrices to denote its point configurations, the number of MR points 

and CBCT points need not to be the same in the training dataset preparation step. In the 

network training step, a consistent number of 1024 of points were sampled from the MRI 

and CBCT points.

The predicted PC motion vector was compared to the target FE-generated motion vector to 

generate the volumetric PC motion loss. The volumetric PC motion loss was a supervised 

loss since target PC motion was used for the network to learn. Additionally, an unsupervised 

loss term called the prostate surface distance loss was introduced to encourage the network 

to predict motion vectors that align the prostate surfaces as well. Chamfer distance loss41 

was used since it was continuous and piecewise smooth with respect to the point location. 

The final loss of the PCMN is the sum of the volumetric PC motion loss and the prostate 

surface distance loss,

Loss = Avg V p − V FE
2 + ω ⋅ dCD vm, vf (4)

where Vp denotes the predicted PC motion field, VFE denotes the FE-generated PC motion 

field, and dCD is the Chamfer distance between the moving vm and fixed vf PC.

2.D. Training and testing

The 10 substeps in FE analysis were used to generate a large number of training datasets. 

With the FE results at the 10 substeps, we can create 10 pairs of artificial training datasets 

for each patient, including 10 volumetric PC pairs and 10 motion vector fields. The 10 

volumetric PC pairs were generated by meshing the 10 MRI and CBCT masks pair that was 

derived from the FE results. The 10 motion vector fields for the 10 volumetric PC pairs were 

interpolated from the FE calculated nodal displacements vector. The MRI and CBCT 

prostate masks were meshed independently so that the number of points in the MRI 

volumetric PC does not need to be the same to that in the CBCT. This could simplify the 

meshing for rapid PC generation. For the 50 patients, we have a total of 500 volumetric PC 

pairs with FE-generated motion vector fields as the network training datasets.

Fivefold cross-validation was used for network training and testing. The 50 patients’ datasets 

were divided into five groups, with 10 datasets in each group. In each experiment, 400 

volumetric PC pairs with FE-generated motion vector fields from 40 patients were used to 

train the network, and the 100 volumetric PC pairs from the rest 10 patients were used to test 

the network. We repeated the experiment by five times to test all datasets. The PCMN code 

was implemented using Tensorflow in python. NVIDIA Tesla V100 GPU with 32 GB 
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memory was used. Batch size was set to 8 to avoid GPU memory overflow. Learning rate 

was set to 1e-3 during the training. The network was trained for 400 epochs. Training 

required approximately 1 h. Once trained, the network could predict the PC motion field 

vector in <1 s.

To show that the PCMN learned from the FE-generated PC motion field, we have shown in 

Fig. 4(a) the smoothed training and validation loss convergence curves for the volumetric PC 

motion loss term in Eq. (4). To show the usefulness of the prostate surface distance loss 

term, its convergence curves are shown in Fig. 4(b).

2.E. Evaluations

The registration results were evaluated using multiple metrics including dice similarity 

coefficients (DSC), mean surface distance (MSD), center of mass distance (CMD), and 

target registration error (TRE). Dice similarity coefficients measures the ratio of volume 

overlap between the CBCT prostate and the deformed MRI prostate. DSC is defined as,

DSC = 2 × X ∩ Y
X + Y (5)

where X and Y represent the volumes of CBCT prostate and the deformed MRI prostate, 

respectively.

MSD measures the surface distance between the CBCT prostate and the deformed MRI 

prostate. MSD is defined as,

MSD = 1
X + Y ∑

x ∈ X
d(x, Y ) + ∑

y ∈ Y
d(y, X) (6)

where d(x, Y)=miny∈Yx − y2. MSD was calculated by averaging the distances for all surface 

voxels of the prostate. Internal registration accuracy was evaluated using target registration 

error (TRE). In this study, patients have three prostate fiducial markers implanted within the 

prostate. The makers show up bright on CBCT and dark on MRI T1. The center locations of 

the markers were manually identified for TRE calculation. To assess the physical fidelity of 

the prostate deformation during registration, errors of the normal strains and Jacobian 

determinants (JDs) were calculated assuming the FE-generated deformation field is ground 

truth. The Jacobian determinant is calculated by:

D = det(ε + I) (7)

where ϵ denotes the strain tensor of the deformation field, I represents the identity matrix, 

and det(·) calculates the determinant of the matrix.

3. RESULTS

For comparison purposes, registration was also performed using coherent point drifting42 

(CPD) prostate surface registration and modality-independent neighborhood descriptor 

(MIND) registration.43 For CPD registration, the surface PC motion vector was first 
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generated by coherently registering the points and then interpolated using thin-plate-spline 

(TPS) to deform the MRI images to register with CBCT image. For MIND registration, a 

cross-modality image similarity descriptor was calculated and registered using sum of 

squared differences (SSD) and Gaussian spatial smoothing. Registration results of one case 

are shown in Fig. 5. From left to right, columns of Fig. 5 show the CBCT, CPD-registered 

T1, CPD-registered T2, MIND-registered T1, MIND-registered T2, PCMN-registered T1, 

and PCMN-registered T2, respectively. Center locations of the three fiducial markers were 

identified and shown in Fig. 5 with their coordinates. The cyan contours in Fig. 5 represent 

the fixed CBCT contours while the dashed blue contours represent the deformed MRI 

contours. We can observe that the CPD surface registration has better contour agreement 

than the MIND registration and the proposed PCMN registration. The proposed PCMN 

registration has the best TRE which was 1.28 mm than the CPD registration and the MIND 

registration, which were 1.55 and 1.42 mm, respectively.

Table I shows the quantitative results for DSC, MSD, and TRE. Both the CPD surface 

registration and PCMN registration outperformed the rigid registration in terms of all three 

metrics. The CPD surface registration has slightly better prostate surface alignment between 

CBCT and MRI than PCMN registration. Since the CPD surface registration method 

focused solely on surface points and relied purely on TPS interpolation to deform internal 

prostate, the slightly better surface alignment does not necessarily indicate better 

intraprostatic deformation. On the contrary, the proposed PCMN took both the surface points 

and intraprostatic points as input and was trained with biomechanical constraints awareness 

by using FE-generated intraprostatic motion field. Therefore, the PCMN registration has 

better TRE than the CPD surface registration. Since MIND registration did not use any 

contour information, it has worse DSC/MSD than the CPD registration and the PCMN 

registration. However, the MIND has slightly better TRE than the CPD registration.

Additionally, the JDs and strain tensors were calculated to evaluate the physical fidelity of 

the deformation field within the prostate. Figure 6 shows the JD map for the FE analysis, 

CPD surface registration, MIND registration, and the PCMN registration. JD value of 

greater than 1 means volumetric expansion while JD value lesser than 1 means volumetric 

shrinkage. We can observe that the CPD and MIND registration have very smooth JD since 

only smoothness constraints were used during the registration. The PCMN JD map agrees 

well with that of the FE analysis. No negative JDs were found for all methods. Assuming the 

FE-generated deformation vector field is ground truth, JD error and normal strain errors 

were calculated and shown in Table II. The proposed PCMN registration has smaller JD and 

normal strain errors than the CPD surface registration and MIND registration, which 

indicates that the proposed PCMN has a more physically realistic deformation.

To visualize the prostate shape alignment and fiducial marker distances after registration, the 

deformed MRI prostate volumes were overlaid on the fixed CBCT prostate volumes with 

internal fiducial markers in Fig. 7. Three cases with the lowest, median, and highest TREs 

for rigid registration were chosen to show the registration performances under good, 

medium, and poor initialization. For case 2 in Fig. 7, the prostate misalignment was largely 

caused by prostate shift/rotation since the prostate shapes were nearly consistent between 

CBCT and MRI and fiducial markers were uniformly shifted/rotated. In this case, the CPD 
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and PCMN registrations have close TREs since the prostate was mainly shifted/rotated 

rather than deformed. However, when there were significant prostate deformation and shape 

discrepancies such as case 1 and case 3 in Fig. 7, the CPD registration has worse TRE than 

the proposed PCMN registration. This phenomenon is attributed to the biomechanical 

awareness of the PCMN when deforming the prostate.

4. DISCUSSION

In this study, we focused on MRI-CBCT prostate image registration for potential dose 

escalation to DIL in photon EBRT and proton therapy. For photon EBRT, studies have 

shown that the dose to the DIL could be escalated to approximately 125% of the whole 

prostate prescribed dose and cover 95% of DIL volume before violating OAR dose 

constraints.44–46 For proton therapy, Wang et al. have shown that proton pencil beam 

scanning with simultaneous integrated boost plans has comparable or superior DIL boost 

dose distribution.2 Therefore, it is very important to develop an accurate MRI-CT prostate 

image registration method to improve DIL definition accuracy on CBCT images. Such a 

registration method could potentially facilitate online adaptive treatment planning and dose 

accumulation calculation to DIL over the course of treatment. Though tested on MRI-CBCT 

registration in this study, the proposed method can also be applied to MRI-CT registration to 

aid treatment planning since CBCT has inferior image quality to CT and thus should be 

more challenging than CT in the registration.

In this study, we designed the network to perform both prostate surface PC matching and 

intraprostatic motion prediction. The network could also be used to perform only 

intraprostatic motions prediction by replacing the 4th to 6th column of network input with 

known nodal displacement BC. Our preliminary results showed that the inclusion of nodal 

displacement BC into network input could help improve the PCMN performance. However, 

the nodal displacement BC needs to be precalculated using prostate surface registration. The 

method was designed to work on patients without fiducial markers. This is why fiducial 

markers were used only in the evaluation of our method. In the future, we plan to detect 

these fiducial markers on CBCT and T1-weighted MRI for initial prostate alignment to 

improve the registration accuracy.

Given the fact that the original CBCT image resolution was 1.0 × 1.0 × 2.0 mm3, one-pixel 

error in each direction would result in a TRE of 2.45 mm. Therefore, the mean TRE of 2.68 

mm is quite good. However, the standard deviation of 1.91 mm is a little large. Our TRE 

results indicate that 15.8% of cases would have TRE <4.5 mm. We have investigated the 

cases with large TRE values. The main reason for the large TRE was the inaccurate contour 

of the CBCT prostate due to poor image quality, which is one limitation of the study since 

the PCMN relies on accurate contour to perform registration. We did not perform any 

manual contour correction in this study. However, manual contours corrections may be 

necessary depending on the image quality of the CBCT. The last fraction CBCT may have 

the largest possibility of fiducial marker migration, which could cause TRE inaccuracies. 

However, Kupelian et al.47 investigated 56 prostate patients with 168 markers and concluded 

that none of the 168 markers showed evidence of consistent migration throughout the course 
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of treatment, and that the marker position variation from day to day was caused by prostate 

deformation rather than marker migration.

Out of the 50 patients, 35 patients have undergone androgen deprivation therapy (ADT) 

from 4 months to 2 yr at different time point throughout their treatments. The prostate 

volume could change during the treatment. In this study, the MRI was taken on the same day 

as the CT simulation. The time span between the MRI scanning and the CBCT scanning 

ranges from 20 to 40 days depending on the patients’ prescription. The prostate volume was 

not expected to change dramatically within this narrow time-frame. The proposed method 

was designed to handle expected prostate volume discrepancies between the MRI and CBCT 

due to auto-segmentation uncertainties. However, patients with irregular deformation or 

prostate volume change could affect the registration accuracy. To adapt the proposed 

framework to these patients, patients of such cases could be included in the training datasets. 

As a common practice, patients should be educated on bowel and bladder preparation to 

reduce the possibility of irregular prostate deformation.

5. CONCLUSIONS

We developed a new framework to accurately register the mpMRI to CBCT images for 

external beam radiotherapy of prostate cancer. The proposed method could be used to aid 

DIL delineation on CBCT, prostate adaptive treatment planning, dose escalation to DIL, and 

dose monitoring.
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Fig. 1. 
Workflow of the training and testing of the proposed point cloud matching network. Blue 

and cyan colors represent the magnetic resonance imaging and computed tomography 

prostates, respectively.
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Fig. 2. 
Finite element analysis results for one case a: Original and deformed prostate shapes in, b: 

Magnitude contour of nodal displacement vector plotted on deformed shape.
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Fig. 3. 
Network design of the point cloud matching network.

Fu et al. Page 17

Med Phys. Author manuscript; available in PMC 2021 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Smoothed training and validation convergence curves. Validation loss is shown in blue color 

while training loss is shown in orange color. A: Volumetric PC motion loss, B: Prostate 

surface distance loss.
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Fig. 5. 
CBCT and deformed magnetic resonance imaging (MRI) T1 and T2 images. CBCT prostate 

is shown in cyan solid contour. MRI prostate is shown in blue-dashed contour. Center 

locations of markers are shown by red crosses their coordinates. From left to right columns 

show CBCT, coherent point drifting (CPD)-registered T1, CPD-registered T2, modality-

independent neighborhood descriptor (MIND)-registered T1, MIND-registered T2, point 

cloud matching network (PCMN)-registered T1, and PCMN-registered T2, respectively. 

Target registration errors are in mm.
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Fig. 6. 
Left to right: Jacobian determinant maps for finite element analysis, coherent point drifting 

surface registration, modality-independent neighborhood descriptor registration, and point 

cloud matching network registration.
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Fig. 7. 
Prostate alignment for three cases using image intensity-based rigid registration, coherent 

point drifting surface registration, modality-independent neighborhood descriptor 

registration, and the proposed point cloud matching network registration. Cases 1, 2, and 3 

represent three cases with small, intermediate, and large target registration error (TREs). 

Fixed CBCT prostate are shown in green with blue “+” fiducial markers. Deformed MRI 

prostate are shown in yellow with red dot fiducial markers. TREs are in mm.
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Table I.

Numerical comparisons among image intensity-based rigid registration (Rigid), coherent point drifting (CPD) 

surface registration (CPD), MIND registration, and the proposed method (PCMN).

Method DSC MSD (mm) TRE (mm)

Rigid 0.86 ± 0.04 2.21 ± 0.36 3.78 ± 2.72

CPD 0.94 ± 0.01 1.58 ± 0.06 3.13 ± 2.06

MIND 0.89 ± 0.03 1.98 ± 0.07 3.03 ± 1.93

PCMN 0.93 ± 0.01 1.66 ± 0.10 2.68 ± 1.91

Values are shown in mean ± std with best mean values shown in bold.
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Table II.

Mean absolute error of JD and normal strain between the FE analysis and prediction for coherent point drifting 

(CPD) surface registration, MIND registration, and PCMN registration.

JD Exx Eyy Ezz

CPD 0.14 ± 0.08 0.09 ± 0.03 0.08 ± 0.02 0.10 ± 0.07

MIND 0.12 ± 0.05 0.08 ± 0.02 0.06 ± 0.02 0.10 ± 0.05

PCMN 0.11 ± 0.05 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02

Values: Mean ± Std. Smallest errors are shown in bold.
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