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Abstract

KIF1A is a molecular motor for membrane-bound cargo important to the development and
survival of sensory neurons. K/F1A dysfunction has been associated with several Mendelian
disorders with a spectrum of overlapping phenotypes, ranging from spastic paraplegia to
intellectual disability. We present a novel pathogenic in-frame deletion in the K/F1A molecular
motor domain inherited by two affected siblings from an unaffected mother with apparent
germline mosaicism. We identified 8 additional cases with heterozygous, pathogenic K/F1A
variants—ascertained from a local data lake. Our data provide evidence for expansion of K/F1A-
associated phenotypes to include hip subluxation and dystonia as well as phenotypes observed in
only a single case: gelastic cataplexy, coxa valga, and double collecting system. We review the
literature and suggest that K/F1A dysfunction is better understood as a single neuromuscular
disorder with variable involvement of other organ systems than a set of discrete disorders
converging at a single locus.
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Kinesin Family Member 1A (KIF1A) is a kinesin-3 molecular motor that is highly expressed
in the brain and spinal cord (Okada, Yamazaki, Sekine-Aizawa, & Hirokawa, 1995), and
plays an important role in the development and survival of sensory neurons. Kinesin-3
motors transport membrane-bound cargo and are highly processive, adapted to long-distance
intracellular and axonal transport along microtubule tracks (Huo et al., 2012; Soppina et al.,
2014). KIF1A cargo includes postsynaptic proteins important for synaptic plasticity and
transmission, learning, and memory. These include GRIP, GIT1, and AMPA receptors, as
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well as tropomyosin receptor kinase A (TRKA, encoded by N7TRKIZ)—a transmembrane
receptor for neurotrophins, a family of signaling proteins essential for neuronal
development, differentiation, synaptic function and plasticity, and survival (Huganir &
Nicoll, 2013; Lee et al., 2003, 2015; Reichardt, 2006; Shin et al., 2003). Furthermore,
kinesin-3 motors are known to dimerize (Okada et al., 1995) upon contact with cargo
(Soppina et al., 2014), greatly increasing motor processivity. However, cooperative
aggregation of monomeric KIF1A has been shown /n vivoto retain the capacity for
processive transport (Oriola, Roth, Dogterom, & Casademunt, 2015; Schimert, Budaitis,
Reinemann, Lang, & Verhey, 2019).

Amino acid residues 1 to 365 of the KIF1A protein constitute the kinesin motor domain. If
the kinesin motor domain is unable to bind properly to microtubules, its movement along
neurites is impaired, leading to reduced peripheral localization of KIF1A cargo vesicles on
neurite distal projections (Hamdan et al., 2011; Lee et al., 2003, 2015). Certain heterozygous
variants that affect the motor domain have been previously shown to disrupt transport along
neurites and cause a variable spectrum of clinical phenotypes (Lee et al., 2015).

Monoallelic dysfunction of K/F1A-caused by both loss-of-function and missense variants—
is associated with multiple Mendelian phenotypes. De novo missense variants in K/F1A
have been reported to cause autosomal dominant mental retardation 9 (MRD9; MIM#
614255), characterized by a variable expression of lower limb spasticity, hyperreflexia,
intellectual disability, hypotonia, ataxia, microcephaly, cerebellar atrophy, nystagmus, and
optic atrophy. De novo missense variants have also been reported as a cause of PEHO
syndrome (MIM# 260565) (Langlois et al., 2016) with overlapping clinical features similar
to those previously reported in MRD9. Furthermore, heterozygous variants in K/F1A have
been reported to cause hereditary spastic paraplegia (HSP), defined by bilateral lower-
extremity spasticity and weakness associated with hyperreflexia and extensor plantar
responses (Pennings et al., 2020; Ylikallio et al., 2015). HSP is a genetically heterogeneous
disease that can be “pure” or “complicated”. In the complicated cases additional
neurological symptoms are found, such as seizures, intellectual disability, and peripheral
neuropathy among others (Hedera, 2000). Regardless of phenotype, most of the reported
monoallelic cases were molecularly diagnosed with de novo missense variants impacting the
KIF1A kinesin motor domain. Among monoallelic missense cases—even those within the
kinesin motor domain—there is considerable phenotypic variability. However, pathogenic,
heterozygous, loss-of-function variants seem to typically appear only in conjunction with
spastic paraplegia without cognitive defects (Pennings et al., 2020), with the notable
exception of one case with reportedly all of the typical features of Rett Syndrome (Wang et
al., 2019). Overall, monoallelic cases are typically missense variants in the kinesin motor
domain and generally present with a more severe and syndromic phenotype than biallelic
cases (Klebe et al., 2012).

Here, we use familial exome sequencing (ES) to describe a family with two affected siblings
apparently inheriting a heterozygous in-frame deletion in the kinesin motor domain of
KIF1A from an unaffected parent with germline mosaicism. Furthermore, we report the
association of novel phenotypes with monoallelic K/F1A dysfunction, ascertained through
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analysis of additional cases diagnosed by a single clinical testing laboratory (Yang et al.,
2013) and through the Baylor Hopkins Center for Mendelian Genomics (Posey et al., 2019).

Two siblings—a 12-year-old boy (PERU1) and a 2-year-old girl (PERU2) of a non-
consanguineous family—initially presented at the Clinical Genetics Department of Instituto
Nacional del Nifio, Lima, Peru (Figure 1). The patients have unaffected parents and two
other unaffected siblings. There is a family history of a 1st-trimester spontaneous abortion of
unknown cause. Both patients had an unremarkable prenatal history. The boy had delayed
psychomotor development. At 18 months old he developed episodes compatible with
gelastic cataplexy. He has been in physical therapy since age 3 and started walking at 8 years
old. Physical examination revealed short stature (>2SD), microcephaly (>2.5SD), mild
camptodactyly, scoliosis, bilateral hip subluxation and pes planus. Initial neurological
examination revealed axial hypotonia, appendicular hyperreflexia and ataxia. Intellectual
disability was noted with an absence of verbal communication and inability to follow verbal
commands. Auditory evoked potentials were normal. Ophthalmological examination
revealed strabismus, nystagmus and congenital polar posterior cataracts with left pale optic
nerve. Brain magnetic resonance imaging (MRI) showed cerebellar and cerebral atrophy
(Figure 1). Renal imaging showed a double collecting system in the left kidney. Upon the
last follow-up at 15 years of age, he remained non-verbal, incontinent, and started to show
mild spasticity of the lower limbs.

The affected sister (PERUZ2) presented with global developmental delay, microcephaly
(>2.5SD), short stature (>2SD), ataxia, axial hypotonia, and lower-limb hyperreflexia with a
positive bilateral Babinski sign. She was unresponsive to verbal commands.
Ophthalmological examination was positive for strabismus, nystagmus and bilateral pale
optic nerves. Brain MRI reported diffuse severe cerebellar atrophy associated with
compensatory basal cistern and 4th ventricle widening, with suggestive signs of cerebral
atrophy (Figure 1). On follow-up at 3 years and 8 months of age the patient was non-
ambulatory and non-verbal, and right hip subluxation was noted. At 5 years and 5 months,
she was unable to walk without assistance, remained non-verbal and incontinent, and a
diagnosis of developmental delay/intellectual disability (DD/ID) was made.

No sequence variants known to be associated with neurodevelopmental phenotypes
segregated in the index family. However, ES detected a heterozygous in-frame deletion
variant in K/FZA-NC_000002.11:9.241722510_241722512del,
NM_004321.6:c.816_818delCAA(p.Asn272del)-which was shared by both affected siblings
(supported by 26/59 reads in the proband and 26/54 reads in the sister). This variant leads to
a loss of a single amino acid (p.Asn272del) in the kinesin motor domain. This variant was
detected via ES from blood samples obtained from subjects PERU1 and PERU2 and
confirmed with Sanger sequencing, but was not detected via ES or Sanger sequencing in the
unaffected brother (Individual 111.2). The variant was not detected in Sanger sequencing of
parental blood samples, but present in only one read in the ES results of the mother and
father (out of 81 and 56 reads, respectively)—-indicative of a likely technical error due to
barcode hopping. Non-paternity was ruled out through identity-by-descent analysis. This de
novo variant was not seen in internal controls—as previously described (Hansen et al., 2019)—
affects a highly conserved residue (GERP++ = 3.54, as obtained from the UCSC Genome
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Browser) and has a very low MTR score (21bp window)-0.34—indicative of a region
constrained for nonsynonymous variation in control populations (Davydov et al., 2010; Kent
et al., 2002; Traynelis et al., 2017).

Due to the extremely low probability of recurrence of identical de novo variation in two
siblings, and the absence of the variant at any meaningful allele fraction in either parental
sample, we hypothesized the variant to be mosaic in one of the two parental germlines. A
paternal sperm sample was negative for the variant as assayed via Sanger sequencing.
Droplet Digital PCR (ddPCR)-a sensitive assay for detecting low-level mosaicism—was then
performed on the paternal sperm sample and blood samples from the proband, affected
sister, unaffected brother, and both parents (Supp. Figure S1). ddPCR again confirmed the
presence of the variant in the proband and affected sister but failed to detect the variant at
any level in any of the remaining samples: paternal sperm, as well as blood samples for the
father, mother, and unaffected brother. Thus, we suspect the variant to be inherited
maternally and mosaic in the maternal germline at an unknown allele fraction. However, we
cannot rule out the possibility of paternal germline mosaicism and inheritance, as the variant
could be present at a level below the threshold of sensitivity for ddPCR in the paternal sperm
sample tested; furthermore, one sperm sample will not necessarily capture the full extent of
putative mosaicism in a male germline.

Thus, in the index family, we found a novel pathogenic in-frame deletion, causing a unique
p.Asn272del deletion in the kinesin motor domain. There are many reports of pathogenic
variants in this domain associated with variable Mendelian disease traits including MRD9
and SPG30 (MIM# 610357) (Pennings et al., 2020). This observation of an in-frame deletion
is striking as all previously reported pathogenic variants causing MRD9 have been missense
variants in the motor domain. Nonetheless, further functional studies are warranted to fully
characterize the role of this variant on kinesin motor activity or other aspects of KIF1A
function.

Next, we investigated the phenotypes of these two affected siblings compared to previously
published and unpublished cases. We utilized HARLEE (Hansen et al., 2019) to search
across >20,000 ES samples from the Baylor Hopkins Center for Mendelian Genomics and a
clinical diagnostic lab (see supporting information) for cases solved by K/F1A and identified
8 such cases (Table 1, Figure 1). Phenotypes not previously known to associate with
monoallelic K/F1A dysfunction were identified in multiple patients, including dystonia
(4/10, 40%) and hip subluxation (3/10, 30%). Other, potentially novel phenotypes only seen
in a single individual (1/10, 10%) include gelastic cataplexy and double collecting system
(both present only in PERU1), as well as coxa valga (bilateral), and skin abnormalities
(hypertrichosis and cutis marmorata).

We surveyed the literature for all suspected pathogenic heterozygous K/F1A variants
reported at the time of preparing this manuscript (Supp. Table S1). A total of 55 unique
KIF1A heterozygous variants have been reported in 99 individuals. Local subjects BG2 and
BG3 were discovered to have been previously published in a different study (Lee et al.,
2015). Variants affecting 17 amino acid residues have been reported in two or more
unrelated individuals—including 16 identical variants—suggesting the presence of mutational
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hotspots. The most frequently reported variant in the literature is p. Thr99Met, accounting for
9 cases (9.1%). Most distinct variants occurring in our local cases (6 out of 9) have been
previously reported: p.Arg13His, p.Thr99Met, p.Gly102Ser, p.Ser215Arg, p.Arg216Cys and
p.Glu253Lys. Moreover, all 8 of the distinct amino acid residues altered in these 10 patients
have been mutated in previously published cases. Variants p.Asn272del, p.Arg13Leu and
p.Arg316GIn are novel. The most consistent phenotype related to the previously reported
cases is spasticity, observed in 83/99 cases (83.8%). Forty-six out of 55 unique variants
(83.6%) are missense variants, with the remaining 9/55 (16.4%) consisting of frameshift
variants, nonsense variants and gene deletions. Subjects PERU1 and PERU2 thus constitute
the only pathogenic in-frame deletion observed so far.

Out of these 99 individuals harboring pathogenic heterozygous variants, 29 (29%) developed
a pure HSP phenotype, and 70 (71%) have additional CNS involvement (ID, developmental
delay, brain abnormalities, ADHD, or ASD). Of this group of 70 patients with CNS
involvement, 67 (95.7%) of them harbor variants in the motor domain, 64 of which are
missense. Of the 29 individuals with pure HSP, 19 (65.5%) harbored a variant in the motor
domain.

Mechanisms that explain why some heterozygous variants cause pure HSP and others cause
HSP with CNS involvement are not well understood. After reviewing previous cases, we
discovered that 23 unique variants were responsible for the 29 reported pure HSP cases.
Only 3/23 (13%) of these variants (p.Ser69Leu, p.Argl67Cys, p.Thr258Met) have also been
reported to cause HSP with CNS involvement, and these CNS phenotypes are relatively less
severe: mild ID, ADHD, and/or minor brain anomalies such as thin corpus callosum
(Citterio et al., 2015; Lee et al., 2015; Pennings et al., 2020; Ylikallio et al., 2015). One
exception is variant p.Thr258Met, which has been linked not only to mild ID but also to
moderate ID with optic nerve atrophy (Cheon et al., 2017). The remaining set of variants
have only been reported with CNS involvement; out of these variants causing CNS
involvement, the variant associated with the most severe phenotype is p.Glu253Lys-also
present in subject BG3-associating with severe developmental delay (non-ambulatory, non-
verbal), optic nerve atrophy, seizures, and cerebellar atrophy (Esmaeeli Nieh et al., 2015;
Lee et al., 2015; Muir et al., 2019; Samanta & Gokden, 2019). Thus, there is a striking
distinction between variants that tend to cause pure HSP vs those causing the vast majority
of HSP cases with CNS involvement, indicative of variant-specific phenotypes in
heterozygous K/F1A dysfunction. Future functional studies should investigate molecular
mechanisms underlying variant-specific phenotypes. One hypothesis is that the spectrum of
reported K/F1A pathogenic variants may differentially impact kinesin motor domain
processivity, and that distinct neuronal cell types have differential sensitivity to impaired
processivity.

Furthermore, K/F1A variants have been reported to cause a variety of “distinct’ disorders
exhibiting significant phenotypic overlap, suggesting a variable spectrum of clinical
presentation associating with a common etiology rather than meaningfully distinct clinical
diagnoses. For example, K/F1A heterozygous variants have been reported as causal for both
“pure” and “complicated” AD HSP, MRD9, PEHO syndrome, and optic atrophy (Cheon et
al., 2017; Esmaeeli Nieh et al., 2015; Lee et al., 2015; Pennings et al., 2020; Raffa et al.,
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2017; Samanta & Gokden, 2019). Some clinical features are shared between these entities:
lower-extremity spasticity, hypotonia, intellectual disability, cerebellar and optic atrophy,
hyperreflexia, and convulsion/seizures. Indeed, there are some individuals with K/F1A-
related disorders with a “complicated” HSP where their clinical features are similar to those
seen in both MRD9 and PEHO syndrome (Langlois et al., 2016). Moreover, even among
patients with the same variant there is variable expressivity of phenotype (Langlois et al.,
2016; Lee et al., 2015), including in some cases intrafamilial variability of disease severity
and progression (Citterio et al., 2015).

Given the inherent similarity between K/F1A-associated clinical entities, as well as the
degree of phenotypic variability of K/F1A dysfunction evident at a gene, domain, and even
variant level, we suggest classifying cases based on genotype—contextualized by phenotype-
rather than the traditional model of classifying cases based on phenotype—contextualized by
genotype. We suggest that K/F1A dysfunction is better understood as a phenotypic spectrum
rather than a set of distinct-albeit overlapping—clinical entities. Thus, emphasis should be
placed on patient variant alleles and specific phenotypes rather than syndromic diagnoses
such as MRD?9, “pure” vs. “complicated” HSP, etc.

Recently reported novel K/F1A-associated phenotypes include behavioral traits such as
autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD)
(Kurihara et al., 2020; Tomaselli et al., 2017). One local case (BG4) harboring the same
variant as reported by Tomaselli et al. (p.Arg13His) also presented with ADHD. Another
patient reported by Kurihara et al. with variant p.Arg13Cys presented with ADHD and ASD,
suggesting that substitutions of amino acid residue 13 are more likely to cause ASD and
ADHD. Our phenotypic analysis of local cases (Table 1) revealed recurrent, previously
unreported phenotypes: hip subluxation, dystonia, and hypertonia. Furthermore, urological
abnormalities other than incontinence are observed across three patients: neurogenic
bladder/bowel, double collecting system, and hydronephrosis of unspecified etiology—which
can be caused by neurogenic bladder or double collecting system. While neurogenic bladder
has been previously reported (Okamoto et al., 2014; Urtiaga Valle, Fournier Gil, Ramiro
Ledn, & Martinez Menéndez, 2019), double collecting system is a novel phenotype.
However, without resolving whether the hydronephrosis of unspecified etiology is caused by
a double collecting system, we cannot rule out double collecting system as an incidental
finding. We also identified previously unreported phenotypes occurring in single patients:
cataplexy, coxa valga (bilateral) and skin abnormalities including hypertrichosis and cutis
marmorata. Taken together, our cases and review of the literature reveal a phenotypic
expansion of K/F1A-related dysfunction.

In summary, we report a novel pathogenic in-frame deletion (p.Asn272del) in the kinesin
motor domain of K/F1A causing a global developmental delay syndrome with skeletal,
ocular and significant neuromuscular involvement, including variable expressivity of
scoliosis, gelastic cataplexy and double collecting system. Furthermore, this variant occurs
in two affected siblings and is likely mosaic in the maternal germline, as blood samples from
both parents, in addition to a paternal sperm sample, did not detect the variant at any
significant allele fraction. We discuss the range of overlapping Mendelian syndromes
reported to associate with K/F1A dysfunction and argue that they are better understood by a
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genocentric diagnostic model-where genotype is contextualized by phenotype (Hansen et
al., 2019). Finally, we present evidence supporting the association of K/F1A dysfunction
with hip subluxation and dystonia—observed in multiple patients—as well as additional
phenotypic findings observed in one patient which may or may not be incidental, including
cataplexy, coxa valga, and double collecting system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 —. Peruvian Index Family and KIF1A Kinesin Motor Domain Non-truncating Variants.
A) Siblings affected with dominant K/F1A-related disorder inherited from a germline

mosaic, unaffected parent. Asterisk indicates possession of pathogenic p.Asn272del variant.
Both the proband (PERU1) and unaffected sister (PERU2) present with strabismus and
nystagmus. B-C) Brain MRIs obtained at 11 years of age for subject PERU1 (B) and 1 year
of age for subject PERU2 (C) revealed severe cerebellar atrophy. D) The p.Asn272del
(N272del) variant observed in subjects PERU1 and PERU?2 is shown in pink. Other
putatively pathogenic missense variants in previously unpublished cases (Table 1) within the
kinesin motor domain from local cases are shown in green. Previously published pathogenic
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