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Abstract

Background: Frailty is an important clinical concern for the aging population of people living 

with HIV (PLWH). The objective of this study was to identify the combination of risk features that 

distinguish frail from nonfrail individuals.

Setting: Machine learning analysis of highly dimensional risk features was performed on a 

clinical cohort of PLWH.

Methods: Participants included 105 older (average age = 55.6) PLWH, with at least a 3-month 

history of combination antiretroviral therapy (median CD4 = 546). Predictors included 

demographics, HIV clinical markers, comorbid health conditions, cognition, and neuroimaging (ie, 

volumetrics, resting-state functional connectivity, and cerebral blood flow). Gradient-boosted 

multivariate regressions were implemented to establish linear and interactive classification models. 

Model performance was determined by sensitivity/specificity (F1 score) with 5-fold cross 

validation.

Results: The linear gradient-boosted multivariate regression classifier included lower current 

CD4 count, lower psychomotor performance, and multiple neuroimaging indices (volumes, 

network connectivity, and blood flow) in visual and motor brain systems (F1 score = 71%; 

precision = 84%; and sensitivity = 66%). The interactive model identified novel synergies between 

neuroimaging features, female sex, symptoms of depression, and current CD4 count.
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Conclusions: Data-driven algorithms built from highly dimensional clinical and brain imaging 

features implicate disruption to the visuomotor system in older PLWH designated as frail 

individuals. Interactions between lower CD4 count, female sex, depressive symptoms, and 

neuroimaging features suggest potentiation of risk mechanisms. Longitudinal data-driven studies 

are needed to guide clinical strategies capable of preventing the development of frailty as PLWH 

reach advanced age.
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INTRODUCTION

The life-preserving benefits of combination antiretroviral therapy (cART) have shifted the 

global HIV epidemic toward an older demographic. Although the first reported cases of HIV 

in the United States involved young adult males, the average age of the US population is 

now older than 50 years of age.1 A similar trend is occurring worldwide in conjunction with 

improved access to cART and associated follow-up medical care for people living with HIV 

(PLWH) which have significantly lowered HIV-related mortality.1 Increased life expectancy 

among PLWH introduces new health challenges related to age-related conditions that affect 

PLWH at younger ages and with greater severity when compared with age-similar 

uninfected individuals.2,3

Frailty, a state of significant health vulnerability,4 was identified as a complication of 

untreated HIV during the early years of the HIV epidemic. In the current era of suppressive 

cART, frailty has re-emerged as a relevant clinical concern for individuals who are living 

into advanced ages.5 Recent studies using the Fried phenotype criteria4 (reduced ambulation/

motor speed, physical weakness, unintended weight loss, exhaustion, and/or reduced activity 

level) report a higher prevalence, incidence, and earlier age of frailty onset in PLWH 

compared with demographically similar uninfected comparisons.5,6 Risk factors reported in 

previous studies include more severe HIV disease indices (eg, higher viral load, lower CD4 

count, and elevated plasma markers of immune activation),2,6,7 female sex,5,6 and coexisting 

health complications, such as hepatitis C virus (HCV),2 depression,5–7 chronic obstructive 

pulmonary disease,6 and diabetes.2,6

Neuroimaging and cognitive signatures of frailty in PLWH are less well known. A 

preliminary study8 of individuals defined as “prefrail” described associations between select 

subcortical brain volumes (eg, putamen) and motor components of the frailty phenotype4 

(eg, slow motor speed), but the direction of associations was not consistent across brain 

regions. Furthermore, the overlap between symptoms of frailty and neurobehavioral features 

of HIV is difficult to distinguish using traditional analytic strategies.9

A recent study by our group10 used deep learning to establish classifiers of the frailty 

phenotype and cognitive symptoms of HIV using regional cerebral blood flow (CBF). The 

data-driven algorithm distinguished frail from nonfrail PLWH (accuracy of 75%) using CBF 

values derived from subcortical brain regions (ie, pallidum, amygdala, caudate, 

hippocampus, and thalamus) and CBF in the cerebellum. These findings suggest that frailty 

Paul et al. Page 2

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2021 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in older PLWH receiving cART represents alterations in multiple brain regions. The 

objective of this study was to identify the combination of demographic, HIV clinical, and 

brain/structure features that distinguish frail from nonfrail PLWH in the context of cART.

METHODS

Study Participants

Participant characteristics are listed in Table 1. PLWH were recruited from ongoing studies 

at Washington University in Saint Louis (WUSTL) Infectious Disease Clinic and the 

WUSTL AIDS Clinical Trial Unit (ACTU). Inclusion criteria were as follows: ≥40 years of 

age, ≥8 years of education, ability to provide informed written consent, English as the 

primary language, and use of cART for at least 3 months. Individuals were excluded if they 

reported head injury with loss of consciousness >30 minutes, active psychosis, severe 

symptoms of anxiety or depression, opportunistic infection, or problematic alcohol/

substance use. The study was approved by the affiliated institutional review boards. 

Participants received financial compensation for their time.

Frailty Assessment

Individuals were designated as frail or nonfrail according to the Fried phenotype criteria4 if 

they had at least 3 of the following: (1) unintended weight loss, (2) exhaustion, (3) low 

activity levels, (4) gross motor slowness, and/or (5) weakness. Participants who endorsed 

fewer than 3 of these symptoms were defined as nonfrail (n = 54), consistent with previous 

work.5

Predictor Variables

Demographics—Age, sex, years of education, and ethnicity.

HIV Disease—Current and nadir CD4 T-cell count and current plasma viral load recorded 

from medical records within 3 months of the other assessments.

Health Comorbidities—Symptoms of depression [Beck Depression Inventory-II (BDI-II) 

affective subscale],11 HCV coinfection, diabetes, and self-reported substance use.

Cognitive Performance—Participants completed cognitive tests of psychomotor speed, 

learning and memory, executive function, and language.

Psychomotor speed: Trail Making Test A (Trails A)12 required participants to draw a line as 

quickly as possible to connect circles numbered from 1 to 25 scattered on the test page; 

Digit Symbol13 required individuals to associate symbols corresponding to specific numbers 

using a key in written format; Grooved Pegboard14 required individuals to insert pegs into 

holes aligned in different directions; Symbol Search13 required identification of target 

symbols among foils; and Learning and Memory: Verbal learning and memory were 

examined using the Hopkins Verbal Learning Test—Revised (HVLT-R),15 which required 

participants to learn 12 words over 3 learning trials. Free recall was tested after a 20-minute 

delay; visual learning and memory were tested with the Brief Visuospatial Memory Test—
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Revised (BVMT-R),16 which required individuals to learn and remember 6 geometric 

designs presented over 3 learning trials. Free recall was tested after a 20-minute delay. 

Executive function: Color-Word Interference Test (CWIT-3)17 required individuals to name 

words printed in incongruent ink; verb fluency18 required generation of action words as 

quickly as possible for 60 seconds; Trail Making Test B (TrailsB)12 required individuals to 

connect circles alternating in ascending order between numbers and letters; Letter Number 

Sequencing (LNS)13 required participants to recall a string of letters and numbers in 

numeric and alphabetical order. Language: Letter fluency (FAS)19 required individuals to 

provide verbal exemplars of words that begin with F, A, and then S as quickly as possible for 

60 seconds without use of proper nouns; category fluency20 required verbal generation of 

animals. Raw scores were converted to standardized scores (Z-scores) using published 

norms13,21,22; domain scores were averaged to create an overall score.

Multimodal Neuroimaging—Neuroimaging was acquired using high resolution 3T MRI 

(Siemens Tim Trio; Siemens AG, Erlangen, Germany). The protocol included structural T1-

weighted (T1w) and T2-weighted (T2w), resting-state blood oxygen level–dependent 

functional MRI (rs-fcMRI), and pseudocontinuous arterial spin labeling (pCASL) 

sequences. For all scanning parameters, a 12-channel head coil was applied. The T1w 

structural scans used a 3-dimensional, sagittal, magnetization-prepared rapid gradient-echo 

(MP-RAGE) sequence with repetition time (TR) = 2400 ms, echo time (TE) = 3.16 ms, flip 

angle = 8°, inversion time = 1000 ms, voxel size = 1 × 1 × 1 mm3 voxels, 256 × 256 × 176 

acquisition matrix, and 162 slices.

A three-dimensional T2w fast spin-echo scan (TE = 450 ms, TR = 3,200 ms, 256 × 256 × 

176 acquisition matrix, and 1 × 1 × 1 mm3 voxels) was acquired for image registration. 

Resting-state fMRI scans were collected using a gradient spin-echo sequence (TE = 27 ms, 

TR = 2.2 seconds, 64 × 64 acquisition matrix, and flip angle = 90°). Two resting-state 

functional connectivity scans were acquired. Participants remained in the supine position 

and were instructed to fixate on a cross-hair presented visually. CBF was derived from 

pCASL arterial spin labeling using the following sequence:1.5-second labeling time, 1.2-

second postlabeling delay, TR of 3,500 ms, TE of 9.0 ms, 64 × 64 acquisition matrix, 90° 

flip angle, 22 axial slices with a 1-mm gap, and voxel size of3.4 × 3.4 × 5.0. Two pCASL 

scans were acquired, each containing 60 volumes (30 pairs of control and label volumes and 

a duration of 3.5 minutes).

Brain segmentation and parcellation of the structural images were obtained using the 

FreeSurfer software suite (v5.3) (Martinos Center, Harvard University, Boston, MA). Each 

participant map was visually inspected by a trained research technician and corrected if 

necessary. The echoplanar (EPI) pCASL images were registered to a common template 

through a combined affine transformation (EPI ⟶ T2w ⟶ T1w ⟶ atlas).23 CBF values 

were computed for each control–label pair using a single compartment model, as previously 

described.10 Spatial smoothing was conducted using a Gaussian kernel (FWHM = 10 mm). 

The temporal derivative of variance (DVARS) was used to calculate weights for each 

control–label pair. Subsequently, weighted-CBF volumes were averaged to calculate mean 

weighted-CBF.23 Parcellated structural images were used to obtain CBF measures from 82 

cortical and subcortical gray matter brain regions, as defined by the Desikan–Killiany atlas.
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Analyses of resting-state functional connectivity (rs-fcMRI) were performed as previously 

described.24 Echoplanar imaging (EPI) distortion due to magnetization inhomogeneity was 

corrected using a mean field map method.25 The rs-fcMRI scans were registered to a 

common template through combined transformation (EPI ⟶ T2w ⟶ T1w ⟶ atlas). 

Motion correction eliminated frames according to DVARS and frame displacement.26 

Signals originating from nongray matter tissue were treated as nuisance regressors derived 

from white matter, ventricles, and the extra-axial space that were all segmented using 

FreeSurfer. Additional regressors included parameters derived from rigid body head motion 

correction, average global signal, and global signal temporal derivative. Regional averages 

were extracted for each volume.27 Preprocessed BOLD time series were extracted from 298 

regions of interest and partitioned into 13 standard networks: sensorimotor (SM), lateral 

sensorimotor, cingulate operculum, auditory (AUD), default mode (DMN), parietal memory 

(MEM), visual (VIS), frontal parietal (FP), salience (SAL), subcortical (SUB), cerebellum 

(CEREB), ventral attention (VAN), and dorsal attention (DAN). Average connectivity was 

computed for within and between networks, resulting in a 13 × 13 network matrix. Each cell 

of the matrix located in the upper triangle was included in the model as the correlation 

between the given networks.

Machine Learning Approach

Gradient-boosted multivariate regression (GBM)9 was used to build the classification 

models. GBM is a form of ensemble machine learning that uses a “wisdom of crowds” 

approach to optimize accuracy and minimize error.9 Recent studies from our team and by 

others have successfully deployed ensemble machine learning to establish novel explanatory 

models of complex clinical phenotypes, including neurodevelopment in children with 

perinatal HIV infection,28 posttraumatic stress disorder,29 and probable Alzheimer disease.30

Feature Selection and Model Performance

Consistent with our previous work,28 feature selection was conducted using an in-house 

program based on SciKit31 and PDPBox.32 Class labels (frail vs. nonfrail) were determined 

using a probability score based on the sigmoid function 1/ 1 + e −x , with a 0.5 decision 

boundary and application of gradient descent to minimize error. The final set of features 

included >1100 data elements. Model performance was defined using the F1 score, which 

represents the harmonic balance between precision (ie, positive predictive value) and 

sensitivity (ie, proportion of true positives identified correctly). The F1 score is appropriate 

for unbalanced designs that are prone to inflate model performance when examined using 

accuracy derived from receiver operator curves (ie, accuracy paradox).33 Separate GBMs 

were implemented to establish classification algorithms built from linear vs. interactive 

features.

Model Stability and Validation

Several steps were implemented to support internal and external validity. First, as noted 

above, the algorithms were built using a machine learning method that minimizes error and 

overfitting by leveraging results from multiple individual models.9 Second, we trained and 

tested the algorithms on 10 features with the strongest classification values (ie, mutual 
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information criterion). Setting the feature list to a maximum of 10 predictors reduces 

overfitting while enhancing model interpretation.9 Finally, we used 5-fold cross validation 

(25 total validation trials) to calculate the average F1 score as the final measure of model 

performance.

Additional Analyses

Results from the GBM analyses were compared with outcomes obtained through logistic 

regression. Logistic regression uses iterative learning to build linear models from predictors 

that have been determined in advance and included as independent variables in the model. 

To facilitate the comparison with GBMs, we built logistic regression algorithms using a 2-

step procedure; the first step ranked the relative importance of features according to 

posterior probabilities, and the second step examined the average F1 score using the 10 input 

features with the highest coefficient strengths identified in the first step.

RESULTS

Demographic and Clinical Comparisons

Participants included 105 individuals with chronic HIV. Demographics and HIV clinical 

characteristics are provided in Table 1. In brief, the sample predominately comprised 

African American (60%) men (85%), with a mean age of 55.6 (SD = 7.4) and a median CD4 

T-cell count of 546 cells/mm3; 70% were virally suppressed, defined as viremia <20 

copies/mL. Comparisons between frail and nonfrail PLWH revealed no significant 

differences in age, race, or education (Ps > 0.05). The proportion of women in the frail group 

was higher than that in the nonfrail group (P < 0.05). The duration of HIV infection and viral 

detectability were similar between the 2 groups (P > 0.05). By contrast, the nadir CD4 count 

and the current CD4 count were higher in frail individuals (P < 0.05), although current CD4 

was relatively high in both groups (>500 cells/mm3). Frail individuals reported more 

depressive symptoms than individuals in the nonfrail group (P < 0.05). HCV was nearly 

twice as common in frail individuals, but the difference was not statistically significant (P > 

0.05). Similarly, average domain-specific and overall neurocognitive performances did not 

differ between groups (Ps >0.05).

Machine Learning Classification of Frailty Without Interactions

The linear GBM classified PLWH as frail or nonfrail individuals with an F1 score of 71% 

(precision = 84% and sensitivity = 66%, averaged across the 25 validation trials). Ranked by 

relative importance (Fig. 1), the model comprised the following: feature 1) reduced CBF in 

the right pallidum, feature 2) reduced CBF in the left occipital cortex, feature 3) lower 

psychomotor performance, feature 4) reduced volume of the right pericalcarine region, 

feature 5) lower rs-fcMRI between the FP and VAN, feature 6) lower rs-fcMRI between the 

VIS and DAN, feature 7) lower recent CD4, feature 8) lower rs-fcMRI between the MEM 

and CEREB, feature 9) lower intranetwork rs-fcMRI in the DAN, and feature 10) lower 

volume of the right pars triangularis. Collectively, the predictors selected by the data-driven 

algorithm represent components of visuomotor brain systems (see Fig. 2).34
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Machine Learning Classification of Frailty With 2-Way Interactions

The GBM allowing 2-way interactions yielded a similar classification performance (F1 score 

of 71% [precision = 89% and sensitivity = 64%, averaged across the 25 validation trials]) 

(Figs. 3 and 4). The algorithm included 9 interactive features (denoted as feature pairs) and 1 

linear feature (symptoms of depression). Feature pair 1) higher symptoms of depression 

with lower rs-fcMRI between the SAL and SUB, feature pair 2) higher symptoms of 

depression, feature pair 3) lower rs-fcMRI between the FP and SAL with lower rs-fcMRI 

between the SAL and SUB, feature pair 4) lower volume of the right isthmus of the 

cingulate and lower volume of the left thalamus, feature pair 5) lower rs-fcMRI between 

the DMN and DAN and lower volume in the right superior-parietal region, feature pair 6) 
lower recent CD4 and lower brainstem volume, feature pair 7) lower rs-fcMRI between the 

DMN and CEREB with lower rs-fcMRI between the VIS and SAL, feature pair 8) lower 

volume of the left postcentral gyrus and female sex, feature pair 9) lower volume in the 

right pericalcarine region and lower volume of the right precentral gyrus, and feature pair 
10) lower rs-fcMRI between the SM and FP and lower intra-rs-fcMRI in the SUB.

Logistic Regression

Logistic regression yielded an average F1 score of 57% (precision = 69% and sensitivity = 

53%, averaged across validation trials). The predictive features in the logistic regression 

algorithm are provided in Supplemental Digital Content 1, http://links.lww.com/QAI/B458. 

As expected, classification performance obtained through logistic regression was markedly 

lower than that obtained through the GBM models.

DISCUSSION

The study findings provide the first data-driven model of frailty in older PLWH. Features 

derived from multimodal neuroimaging, neurocognitive testing (psychomotor speed), and 

CD4 T-cell count collectively differentiated frail individuals from nonfrail individuals with 

chronic HIV. Each neuroimaging modality (volumes, rs-fcMRI, ASL) contributed to the 

classification performance; however, alterations in both internetwork and intranetwork 

connectivity defined by rs-fcMRI were more heavily represented in the final algorithm. 

Furthermore, neuroimaging and neurocognitive testing results suggest that frailty in older 

PLWH reflects disruption to visuomotor network integrity. Finally, interdependencies 

between brain measures, ongoing immune suppression, female sex, and symptoms of 

depression indicate putative synergies across risk mechanisms. Taken together, results from 

our ensemble machine learning model advance the conceptual framework of frailty among 

older PLWH receiving cART and point toward possible clinical strategies to improve long-

term health in this population.

Reduced CBF in the pallidum was the strongest classification feature of frailty in the linear 

GBM model. This finding is consistent with results from our recent analysis of the cohort 

using deep learning10 and a large body of evidence, implicating the pallidum as a key 

determinant of motor problems associated with PLWH.35 Brain volumetric data highlighted 

the right pars triangularis, which is particularly interesting considering the role of the left 

pars triangularis in language tasks. By contrast, task-based functional MRI reveals activation 
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of the right pars triangularis during imagined movement, which has been attributed to 

inhibitory networks.36 The strong relevance of motor brain regions (cerebellum, subcortical, 

and supplemental motor) identified in the GBM models aligns with the recent suggestion by 

Morgello et al6 that frailty in PLWH corresponds to damage in cerebral mechanisms 

important for motor function.

The second strongest classification feature identified in our linear GBM included CBF in the 

occipital lobe. Additional evidence implicating visual brain systems in the expression of 

frailty among PLWH includes the observation that pericalcarine volume and VIS 

connectivity were strong classifiers in the GBM model. Although primary visual impairment 

(eg, blindness) is not typical of HIV-related brain injury, a compelling body of evidence 

from previous neuroimaging studies indicates that the occipital cortex is not spared among 

PLWH, including individuals receiving cART.37,38 For example, Ances et al37 reported 

reduced occipital CBF in a separate cohort of young adults with HIV, suggesting that 

networks innervating the visual cortex are disrupted before individuals reach an advanced 

age. This is consistent with the observation that age-related health comorbidities in the era of 

cART are observed more in PLWH at younger ages than their uninfected counterparts.2,3

The observation that psychomotor speed emerged as the only cognitive classifier is 

interesting because this domain was defined in the current study by individual tests that 

require online integration of visually guided motor behavior (ie, Trails A,12 Digit Symbol,13 

Grooved Pegboard,14 and Symbol Search13). By contrast, the other domains (ie, learning 

and memory, executive function, and language) were at least partially comprised tests that 

do not require visual and/or motor function. Our machine learning approach also revealed 

alterations in brain networks (ie, resting state connectivity) in the VIS, a brain region that 

receives substantial input from brain regions required for successful navigation of the 

physical environment.39 Conceptually, the data-driven results described in this study provide 

empirical support for the recent proposal by Morgello et al6 that frailty in PLWH results 

from damage to white matter pathways critical for cognitive and motor function. Future 

studies are needed to determine the earliest neuroimaging signatures of frailty and whether 

subsequent changes to brain structure and function unfold sequentially—a potentially 

transformative opportunity to intervene before the onset of clinical symptoms.

Most participants included in this study had a CD4 cell count >500 cells/mm3; yet, the 

interactive GBM revealed a synergy between lower CD4 T-cell count and regional brain 

volume as an interactive risk feature for frailty. Caution is warranted about overinterpretation 

of this finding, but it is noteworthy that persistent immune dysregulation is believed to 

underlie chronic disease comorbidity among individuals taking suppressive cART.40 For 

example, recent work from the AIDS Clinical Trials Group41 describes residual HIV DNA 

in the CSF among cognitively impaired PLWH with a peripheral viral load <100 copies/mL. 

Although previous studies describe the lower limit of viremia associated with HIV 

transmission,42,43 our results reinforce the need to empirically define the threshold of 

disease activity and immune suppression that informs subsequent risk of emergent health 

consequences. In addition, because our study focused on CD4 count as the primary immune 

marker, there is a need to explore a larger array of immune markers (eg, neopterin, soluble 

CD163, and CD4/CD8 ratio) as potential predictive classifiers of frailty. Finally, longitudinal 
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studies are needed to define the causal pathways underlying interactions between depressive 

symptoms, female sex, and prevalent health conditions such as HCV on frailty risk in PLWH 

receiving long-term cART. Results from this study provide an important first step toward 

data-informed clinical strategies capable of preventing the development of frailty as PLWH 

reach advanced age.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Feature importance for the linear GBM. Feature importance by rank order. Right pallidal 

CBF (Right-Pallidal_CBF), left lateral occipital CBF (ctx-lh-lateraloccipital_CBF), 

psychomotor Z score (Motor_Psychomotor_Z), right pericalcarine volume 

(rh_pericalcarine_Vol), frontoparietal x ventral attention connectivity (FP_x_VAN), visual x 

dorsal attention connectivity (VIS_x_DAN), recent_CD4 T-cell count, 

memory_x_cerebellum connectivity (MEM_x_CEREB), dorsal attention (DAN) 

intranetwork connectivity, and right pars triangularis volume (rh_parstrianularis_VOL).
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FIGURE 2. 
Volumetric, resting-state connectivity, and blood flow signatures of frailty in persons living 

with HIV. Brain regions and networks associated with frailty identified in the linear GBM 

from superior (A), inferior (B), right hemisphere (C), left hemisphere(D), rostral (E), and 

caudal (F) perspectives. Darker shades of color represent a higher rank order (mutual 

information criterion) of the individual feature. Image created using BrainNet Viewer [43].
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FIGURE 3. 
Feature importance for the GBM allowing for 2-way interactions. Feature importance by 

rank order. Beck Depression Inventory-II and salience x subcortical region connectivity 

(Affective_BDI/SAL_x_SUBCort), affective BDI-II (Affective_BDI), FP × salience and 

salience × subcortical connectivity (FP_x_SAL/SAL_x_SUBCort), right isthmus cingulate 

volume and left thalamic volume (rh_isthmuscingulate_VOL/LeftThalamusProper_VOL), 

default mode x dorsal attention connectivity and superior parietal volume (DMN_x_DAN/

rh_superiorparietal_VOL), recent CD4/brainstem volume (recent_cd4 Brainstem_VOL), 

default mode x cerebellum connectivity and visual x salience connectivity 

(DMN_x_CEREB/VIS_x_SAL), left postcentral cortex volume and female sex (ctxlh-

postcentral_Sex), right pericalcarine volume and right precentral volume 

(rh_pericalcarine_VOL/rh_precentral_VOL), and sensorimotor region × FP connectivity and 

subcortical intranetwork connectivity (SM_lat_x_FP/SUBCort_x_SUBCort).
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FIGURE 4. 
Surface plots depicting 2-way interactions. 3-D graphs of the 2-way interactions. Top left: 

higher BDI-II affective score and lower salience (SAL) and SUB; top right: higher FP × 

SAL connectivity and lower SAL × SUB connectivity; bottom left: higher volume of the 

right superior parietal region and lower default mode (DMN) · dorsal attention (DAN) 

connectivity; bottom right: higher recent CD4 and lower brainstem volume.
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TABLE 1.

Demographic and Clinical Characteristics

Variable Frail (n = 20) Nonfrail (n = 85) P

Demographic

 Age (yrs) (SD) 55.2 (8.31) 55.8 (7.26) 0.76

 Sex (% male/female) 70% 88% 0.04

 Race (% African American) 70% 58% 0.11

 Education (yr) (SD) 12.5 (2.53) 13.6 (2.7) 0.11

HIV disease

 Duration of HIV infection (mo) (SD) 214 (85) 209 (107) 0.83

 Undetectable viral load (<50 copies/mL), % 85% 91%

 Current CD4 count (cells/mm3), median (IQR) 688 (348.9) 528 (248.9) 0.02

 Nadir CD4 count (cells/mm3), median (IQR) 230 (200.0) 91 (182.36) 0.05

Health comorbidities

 Affective BDI-II subscale (SD) 4.0 (2.9) 1.7 (2.0) 0.003

 Hepatitis C coinfection, % 25% 12% 0.13

Neurocognitive performances

 Global: mean (SD) −0.44 (0.7) −0.25 (0.6) 0.22

 Executive function: mean (SD) −0.54 (0.7) −0.33 (0.7) 0.21

 Psychomotor/Processing speed: mean (SD) −0.31 (0.8) 0.02 (0.7) 0.07

 Memory: mean (SD) −0.71 (1.1) −0.39 (0.9) 0.19

 Learning: mean (SD) −0.76 (1.0) −0.53 (0.9) 0.33

 Language: mean (SD) 0.12 (1.0) −0.04 (0.8) 0.47

Bold indicates P < 0.05.

IQR, interquartile rating.
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