Skip to main content
. 2021 Feb 24;99(2):skab022. doi: 10.1093/jas/skab022

Table 3.

Summary of ML methods and corresponding references used in the literature for BW estimation in four livestock species

Reference ML method 2D/3D Images Breed Num. of animals R R 2 ARE MAE RMSE
Tasdemir et al., 2011a,b Fuzzy rule-based model 2D Cattle (Holstein) 115 0.9922
Tasdemir et al., 2019 ANN/MLP 2D Cattle (Holstein) 115 0.9916
de Moraes Weber et al., 2020 LR
SVM regression
Regression by discretization with RF
2D Cattle (Girolando) 34 0.7100 38.4600 46.6900
Gjergji et al., 2020 CNN
RNN/CNN
RAM
RAM with CNN
2D Cattle (Nellore, Angus) 20 23.1900
Miller et al., 2019 ANN 3D Cattle (Aberdeen Angus, Limousin, Simmental, Charolais) 1,484 0.7000 42.0000
Cominotte et al., 2020 MLR
LASSO
PLS
ANN
3D Beef cattle 48 [0.79, 0.92] [7.78, 18.14]
Fernandes et al., 2020b MLR
PLS
ENR
MLP
DL image encoder model
3D Pig 557 [0.03, 0.87] [0.81, 5.20] [1.05, 6.44]
Rudenko et al., 2020 Mask RCNN network and MLP 3D Cattle (Ayrshire, Holstein, Jersey, Red Steppe) 500 [0.84, 0.92] [0.1, 0.17] [0.9, 2.5]