Table 3.
Summary of ML methods and corresponding references used in the literature for BW estimation in four livestock species
Reference | ML method | 2D/3D Images | Breed | Num. of animals | R | R 2 | ARE | MAE | RMSE |
---|---|---|---|---|---|---|---|---|---|
Tasdemir et al., 2011a,b | Fuzzy rule-based model | 2D | Cattle (Holstein) | 115 | 0.9922 | ||||
Tasdemir et al., 2019 | ANN/MLP | 2D | Cattle (Holstein) | 115 | 0.9916 | ||||
de Moraes Weber et al., 2020 | LR SVM regression Regression by discretization with RF |
2D | Cattle (Girolando) | 34 | 0.7100 | 38.4600 | 46.6900 | ||
Gjergji et al., 2020 | CNN RNN/CNN RAM RAM with CNN |
2D | Cattle (Nellore, Angus) | 20 | 23.1900 | ||||
Miller et al., 2019 | ANN | 3D | Cattle (Aberdeen Angus, Limousin, Simmental, Charolais) | 1,484 | 0.7000 | 42.0000 | |||
Cominotte et al., 2020 | MLR LASSO PLS ANN |
3D | Beef cattle | 48 | [0.79, 0.92] | [7.78, 18.14] | |||
Fernandes et al., 2020b | MLR PLS ENR MLP DL image encoder model |
3D | Pig | 557 | [0.03, 0.87] | [0.81, 5.20] | [1.05, 6.44] | ||
Rudenko et al., 2020 | Mask RCNN network and MLP | 3D | Cattle (Ayrshire, Holstein, Jersey, Red Steppe) | 500 | [0.84, 0.92] | [0.1, 0.17] | [0.9, 2.5] |