
Bioimage informatics

Hydra image processor: 5-D GPU image analysis

library with MATLAB and python wrappers

Eric Wait , Mark Winter and Andrew R. Cohen *

Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA

*To whom correspondence should be addressed.

Associate Editor: Robert Murphy

Received on September 10, 2018; revised on June 1, 2019; editorial decision on June 19, 2019; accepted on June 20, 2019

Abstract

Summary: Light microscopes can now capture data in five dimensions at very high frame rates

producing terabytes of data per experiment. Five-dimensional data has three spatial dimensions (x,

y, z), multiple channels (k) and time (t). Current tools are prohibitively time consuming and do not

efficiently utilize available hardware. The hydra image processor (HIP) is a new library providing

hardware-accelerated image processing accessible from interpreted languages including MATLAB

and Python. HIP automatically distributes data/computation across system and video RAM allow-

ing hardware-accelerated processing of arbitrarily large images. HIP also partitions compute tasks

optimally across multiple GPUs. HIP includes a new kernel renormalization reducing boundary

effects associated with widely used padding approaches.

Availability and implementation: HIP is free and open source software released under the BSD 3-

Clause License. Source code and compiled binary files will be maintained on http://www.hydraima

geprocessor.com. A comprehensive description of all MATLAB and Python interfaces and user

documents are provided. HIP includes GPU-accelerated support for most common image process-

ing operations in 2-D and 3-D and is easily extensible. HIP uses the NVIDIA CUDA interface to ac-

cess the GPU. CUDA is well supported on Windows and Linux with macOS support in the future.

Contact: andrew.r.cohen@drexel.edu

Over the past decade novel signal collection methods, combined

with increased sensitivity of sensors, have enabled the observation of

phenomena beyond what was previously thought possible. This is

especially true with light microscopy. Conventional confocal micro-

scopes have been able to create large static volumes by tiling

sub-volumes together. These microscopes can also capture live time-

lapse sequences but they have low-temporal resolution, and can be

harmful to living cells. The introduction of light sheet techniques

has allowed for much longer image sequences. Modern image proc-

essing software are not equipped to process data of this size and

complexity. Current challenges include: extending 2-D operations to

3-D, speeding up existing 3-D operations and efficient memory man-

agement. While there has been some progress in each of these areas

(Eklund et al., 2013), no tool has done this in a comprehensive man-

ner, nor effectively leveraged hardware acceleration for the broad

range of processing requirements. Here we present a new software

toolset for performing GPU accelerated image processing operations

from easy-to-use scriptable programming environments including

MATLAB and Python in a manner that is faster, more accurate and

more scalable for large datasets.

Hydra image processor (HIP) is a library created from the

ground up to be extensible, accelerate image processing operations

and handle processing of large datasets. Many MATLAB image

processing functions have GPU-acceleration support, but with im-

portant limitations. There is also a lack of GPU-accelerated func-

tionality for Python and OpenCV. HIP addresses these limitations as

follows. First, support for operations not available at all in 3-D in-

clude the broadly useful Laplacian of Gaussian and Wiener smooth-

ing filters (full list on website). Second, HIP allows datasets that do

not fit in GPU memory to be automatically partitioned for sequen-

tial processing on a single GPU or distributed among all available

GPUs. HIP is only constrained by available virtual memory;

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 5393

Bioinformatics, 35(24), 2019, 5393–5395

doi: 10.1093/bioinformatics/btz523

Advance Access Publication Date: 26 June 2019

Applications Note

http://orcid.org/0000-0002-1614-9219
http://orcid.org/0000-0002-7707-5970
http://www.hydraimageprocessor.com
http://www.hydraimageprocessor.com
https://academic.oup.com/


MATLAB can only process images that fit in GPU memory. Third,

HIP uses a kernel renormalization at the boundary pixels to

accurately compute kernel response at the edges while MATLAB

offers only zero-padding or mirroring as approximate solutions.

See website for further discussion on kernel renormalization. HIP is

broadly useful, fast, accurate and more efficient with system resour-

ces compared to other available approaches.

This versatile library adjusts at runtime to balance computational

load across all system GPUs, images are partitioned spatially when

larger than available vRAM and across channels and time, where ap-

propriate. HIP can accelerate computations upwards of 100 times

compared to a CPU implementation. In the case that multiple GPUs

are present, there is a near linear speedup based on the number of

GPU devices. This is particularly powerful when HIP is run on GPU

cluster nodes. However, even laptops with CUDA-capable GPUs will

see a considerable speedup over the same operation running on the

CPU. Hardware configurations are natively supported without any

user intervention. The addition or improvement of GPU hardware

will automatically increase processing speed.

Graphic processing units have specialized memory units that en-

able rapid memory access from GPU cores. However, due to limited

space and power available to GPUs, this memory is difficult and

expensive to produce. This means that often there is not enough mem-

ory available on the GPU to process an entire dataset at once. When

necessary, data is automatically partitioned into overlapping sections

(see website for details). The optimal dimension to partition across is

chosen to minimize redundant processing. The overlap is calculated

based on the filter support size, allowing each chunk to be operated

on independently. These overlapping sections provide enough infor-

mation to ensure that there are zero artifacts between chunks during

reconstruction. The chunks are automatically distributed either se-

quentially on a single GPU (if only one exists on the system) or

amongst all of the available GPUs. Additional GPUs provide a near

linear speedup in computation when image chunking is required.

HIP was created to simplify both the developer experience when

writing new algorithms and the end user experience when using the li-

brary from scripting languages. HIP function calls within MATLAB are

simple and consistent with MATLAB standards. Functions have similar

parameters to those of the native MATLAB processing calls and follow

a standard parameter layout. Users need not worry about the capability

of their GPU when writing new processing pipelines. When CUDA-

capable hardware is available, the user can expect a speedup regardless

of the specific hardware class (e.g. GTX, GTXm, Tesla, Quadro). If a

CUDA-capable device is not present, HIP will fall back to a software im-

plementation based on approximate solutions. Compute clusters with

MATLAB installed will experience considerable speedup (nearly linear

over single GPU based on the number of devices per node, see stars in

Fig. 1). Integration with MATLAB provides a powerful use case for this

library. Not only do many institutions have MATLAB licenses, many

other software tools (e.g. ImageJ, Imaris, ICY) have interfaces that can

directly interact with MATLAB. Python wrappers are also included.

The HIP library also includes support utilities written to assist in

the tasks that invariably accompany biological image processing. The

first task when processing images is to read microscope data, soon fol-

lowed by a need to write out results. HIP is released with a set of stand-

ard input/output utilities that support common microscope and data

processing formats. Reader and writer helper functions are provided

that support data import using the Bioformats library (Linkert et al.,

2010), as well as input and output from HDF5 and KLB files (Amat

et al., 2015). Effective visualization is critical in working with multi-

channel 2-D and 3-D images (Royer et al., 2015). Here, visualization

support is provided using a 5-D texture renderer originally developed

for the LEVER program (Winter et al., 2016) to support 2-D phase

contrast movies (Winter et al., 2015) and 3-D multichannel movies

(Wait et al., 2014). This viewer interactively displays data from 2-D to

5-D images and can embed polygonal mesh data such as segmentation

and tracking results. The viewer additionally supports loading multiple

versions for fast comparison of high-dimensional processing results.

HIP is designed for usability and extensibility. Cþþ templated

classes simplify syntax for creating new operations making it as easy

as copying a template, and changing a handful of lines unique to the

new operation (see website for template). This template is designed

to remove the burden of partitioning data onto devices and memory

management concerns on both the CPU and GPU. Helper routines

also reduce the code complexity of common image processing tasks

like memory access and iterating over a neighborhood. In addition,

a simple self-documenting Mex template is provided as an example

of providing the MATLAB interface to utilize a HIP operation. HIP

is weakly typed, preserving the input image class across all opera-

tions in order to best conserve system resources.

Microscope technology will continue to improve, acquiring

denser and ever larger datasets. It is already becoming intractable to

run current processing pipelines on these large datasets. HIP is a

hardware-accelerated processing library that provides new function-

ality and significantly improves image processing speeds. The simpli-

city of writing new operations for HIP and the ease of inclusion in

other software tools will allow for quick adoption. HIP is released

free and open source under the permissive BSD 3-clause license to

encourage widespread use. HIP is continually being updated by the

authors and significant changes will be announced on the website.

The image processing community is encouraged to request changes

through the website forum and contribute code. Current compiled

versions and source code are available.

Funding

Portions of this research were supported by the NIH NIA (R01AG041861).

Conflict of Interest: none declared.

(A) 512×512×25
(B) 1024×1024×75
(C) 2048×2048×100
(D) 2048×2048×800

* two volumes of indicated size

Fig. 1. Comparison between MATLAB, SciPy and HIP runtime. Total number

of voxels for each test images is shown on a log scale on the X axis and run-

time on the Y. MATLAB Gaussian filter can be run on the GPU but runs out of

vRAM after the second image. MATLAB does not have a 3-D median filter on

the GPU. HIP distributes across multiple GPUs when images are bigger than

available vRAM or more than three dimensions*. Adding additional GPUs

would further reduce execution times. Computer used had dual Xeon E5-

2697 CPUs (32 cores each and 512 GB of RAM total) and dual P6000 GPUs

(3840 cores and 24 GB of vRAM each)

5394 E.Wait et al.



References

Amat,F. et al. (2015) Efficient processing and analysis of large-scale light-sheet

microscopy data. Nat. Protoc., 11, 1679–1696.

Eklund,A. et al. (2013) Medical image processing on the GPU—past, present

and future. Med. Image Anal., 17, 1073–1094.

Linkert,M. et al. (2010) Metadata matters: access to image data in the real

world. J. Cell Biol., 5, 777–782.

Royer,L. et al. (2015) ClearVolume: open-source live 3D visualization for

light-sheet microscopy. Nat. Methods, 6, 480–481.

Wait,E. et al. (2014) Visualization and correction of automated segmentation,

tracking and lineaging from 5-D stem cell image sequences. BMC

Bioinform., 15, 328.

Winter,E. et al. (2016) LEVER: software tools for segmentation, tracking and

lineaging of proliferating cells. Bioinformatics, 32, 3530–3531.

Winter,M.R. et al. (2015) Computational image analysis reveals intrinsic

multigenerational differences between anterior and posterior cerebral cortex

neural progenitor cells. Stem Cell Reports, 5, 609–20.

Hydra image processor: 5-D GPU image analysis library 5395


