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Abstract

Summary: The Genomic Data Storage (GDS) format provides efficient storage and retrieval of

genotypes measured by microarrays and sequencing. We developed GENESIS to perform various

single- and aggregate-variant association tests using genotype data stored in GDS format.

GENESIS implements highly flexible mixed models, allowing for different link functions, multiple

variance components and phenotypic heteroskedasticity. GENESIS integrates cohesively with

other R/Bioconductor packages to build a complete genomic analysis workflow entirely within the

R environment.

Availability and implementation: https://bioconductor.org/packages/GENESIS; vignettes included.

Contact: sdmorris@uw.edu or mconomos@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Genomic Data Storage (GDS) format provides efficient storage

and retrieval of genotype and annotation data for bi-allelic and

multi-allelic genomic variants called from microarrays, sequencing

or genotype imputation. A suite of tools for genomic analysis that

utilizes the computational efficiency afforded by GDS format has

been built through a collection of R/Bioconductor packages

(Gogarten et al., 2012; Zheng et al., 2012, 2017). These packages

are used to convert genotype data stored in other formats (e.g.

VCF, PLINK) to GDS; perform sample- and variant-level quality

control; efficiently compute kinship coefficients and ancestry

principal components (PCs) and perform various other genomic

analyses.

Here, we present GENESIS, an R/Bioconductor package that

performs mixed-model based single- and aggregate-variant associ-

ation tests for quantitative, binary and count phenotypes, using

genotype data stored in GDS format. With the inclusion of

GENESIS, a comprehensive GDS-based genomic analysis pipeline,

from data formatting to association testing, can be built entirely

within the R environment.

To meet the memory limit of a given computer and allow for

parallelization, GENESIS uses iterator classes defined in the

R/Bioconductor packages GWASTools and SeqVarTools to read

and manipulate data from ‘blocks’ of consecutive variants on the

GDS file. The user defines an iterator object (GenotypeIterator for

microarray or SeqVarIterator for sequencing) that provides a
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connection to the GDS file, along with the size of the block (number

of variants) and potential filters to apply prior to reading the

genotypes. To allow GENESIS association tests to work with both

iterator types, we designed the software to separate the code that

reads, or iterates, through large datasets from the code that performs

computations and statistical tests on blocks of data. This also facili-

tates easier code maintenance, unit testing and implementation of

new features.

2 Genetic association testing

We focus here on implementation of mixed models, which are the

prevailing method for genetic association testing in typical popula-

tion studies. (Linear and logistic regression, used for unrelated sam-

ples, are special cases of mixed models. These can easily be handled

in GENESIS; see the Supplementary Material for an example and

performance data.) Mixed model genetic association testing with

GENESIS comprises three steps: (i) inferring population structure

and relatedness, (ii) fitting the null model and (iii) testing variants

for association, either individually or in aggregate.

2.1 Population structure and relatedness inference
GENESIS implements the PC-AiR (Conomos et al., 2015) and

PC-Relate (Conomos et al., 2016a) methods, which together provide

accurate population structure inference and kinship estimation.

PC-AiR relies on efficient computation of ancestry PCs provided by

the SNPRelate package.

2.2 Fitting a null model
Fitting mixed models on large samples is computationally expensive,

requiring significant memory and CPU time. As fitting a mixed

model for each variant genome-wide is prohibitively expensive, it

is standard to fit one ‘null model’ under the null hypothesis of no

genetic association, and subsequently use score tests to assess each

variant’s association.

GENESIS fits linear mixed models for quantitative phenotypes

and generalized linear mixed models for binary and count pheno-

types via the penalized quasi-likelihood (Breslow and Clayton,

1993) approach of Chen et al. (2016). Both use the average informa-

tion REML procedure (Gilmour et al., 1995). Sample dependence

due to genetic similarity is accounted for by including a random

effects term with covariance matrix proportional to a genetic rela-

tionship matrix (GRM) or kinship matrix (KM). When using a KM,

ancestry representative vectors such as PCs should also be included

as fixed effects in the null model to adjust for population structure.

Unlike much available software, GENESIS allows multiple vari-

ance components and does not restrict their form. In addition to the

standard GRM/KM term, other variance components can be used to

account for e.g. shared environments (Conomos et al., 2016b), as

well as phenotypic heteroskedasticity by study subgroup (Snijders

and Berkhof, 2008).

2.3 Testing variants for association
GENESIS can test genetic variants for association either individually

or in aggregate. Required output from the null model is stored effi-

ciently to expedite computation of these tests. Score tests and approxi-

mations to Wald tests are provided for single variants. Available

aggregate-variant tests include burden, SKAT (Chen et al., 2013; Wu

et al., 2011), SKAT-O (Lee et al., 2012), fastSKAT (Lumley et al.,

2018) and SMMAT (Chen et al., 2019) methods. Aggregate units can

be defined using a sliding window approach, or can be customized;

e.g. genes or pathways. Variant weights can be specified either as a

function of minor allele frequency via a beta distribution; e.g. Wu

et al. (2011), or customized by the user; e.g. utilizing annotation fea-

tures such as CADD scores (Kircher et al., 2014).

3 Sparse GRM/KM for efficient computation

Even fitting only one null model per analysis, the computational

burden in large samples may still be prohibitive. One reason is

matrix inversion, which has long been known to be a hurdle

(Thompson and Shaw, 1990). For estimating the variance compo-

nents, it is efficient to treat each pedigree as its own cluster; i.e. to

add up over the pedigrees (O’Connell, 2014). GENESIS implements

such an analysis by using a sparse, block-diagonal GRM/KM; the R

package Matrix (Bates and Maechler, 2018) is used for sparse ma-

trix storage and linear algebra methods. With sparsity, the computa-

tional complexities of the null model and score tests are OðK ~N
3Þ

and OðK ~N
2
MÞ, respectively, where K is the number of clusters, ~N is

the maximum cluster size and M is the number of variants tested. In

practice, these are reduced to Oð ~N
3Þ and Oð ~N

2
MÞ when one largest

cluster dominates, or to O(K) and O(KM) when there are many

small clusters (e.g. a study of trios).

A pedigree-based KM is sparse by nature, but pedigrees are often

unavailable or incomplete. In contrast, an empirical GRM/KM esti-

mated from genotype data captures all relatedness, but is dense,

with no entries equal to 0. When computational burden is a concern,

an empirical GRM/KM can be made sparse: we recommend group-

ing samples such that any pair with an estimated relatedness greater

than a specified threshold is in the same cluster. All pairwise esti-

mates within a cluster are kept, even if they are below the threshold.

All pairwise estimates between clusters are set to 0, creating a

sparse, block-diagonal matrix.

To illustrate the computational advantage of using sparse matri-

ces, we analyzed a simulated heritable quantitative trait measured

on 100 000 samples. We compared the computational performance

of fitting the null model using a dense GRM/KM to that of using

the same GRM/KM made sparse with varying cluster sizes

(Supplementary Fig. S1). Compared to the dense GRM/KM, the

analysis using the sparse GRM/KM with clusters of 1000 samples

took 0.6% of the CPU time (24 min versus 67 h) and 2.0% of the

memory (16 GB versus 820 GB).

To investigate the statistical impact of sparsity, we compared

association P values of �24 M variants when using different empir-

ical GRMs, KMs and PCs to account for structure in a heritable

quantitative trait simulated on 2504 samples from 1000 Genomes

(Supplementary Table S3 and Supplementary Fig. S2). The dense

KM was made sparse at a 5th degree relatedness threshold (�0:011)

using the recommended algorithm; this sparse KM had 2236 clus-

ters, of which 2080 were singletons and the largest had 23 members.

The differences in P values when using this sparse KM rather than

the dense KM were small; 99.9% of variants had differences in

� log 10ðpÞ < 0:25, over 99.9999% had differences <0.5 and the

maximum difference was only 0.59. Given a variant with a ‘true’ P

value of 5:0� 10�8, a difference in � log 10ðpÞ < 0:25 would

correspond to a reported P value 2 ð8:9� 10�8;2:8� 10�8Þ.

4 Discussion

GENESIS adds to an existing collection of R/Bioconductor packages

to provide a cohesive, computationally efficient set of genomic ana-

lysis tools that utilize GDS format, all within the R environment.

Workflows may utilize the extensive collection of genome
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annotations and associated packages that are part of Bioconductor

for tasks such as assigning rare variants to genes in an aggregate as-

sociation test. Working examples are provided in the GENESIS

package vignettes.

Making an empirical GRM/KM sparse can be thought of as

approximating low levels of relatedness as ‘unrelated.’ In the simula-

tions presented here, we observed that the computational gain

afforded by sparsity is significant in large samples, and the differen-

ces in calculated P values are unlikely to change the impact of

results. We expect this to generally hold true, but the magnitude of

the impact of this approximation will likely depend on the genetic

architecture of the phenotype; we plan to explore this further in fu-

ture work.

The structure of the GENESIS code allows straightforward add-

ition of new methods and algorithms. Features currently in develop-

ment include saddle point approximations to calibrate logistic

mixed model P values when there is case–control imbalance (Dey

et al., 2017; Zhou et al., 2018).
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