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Abstract

Catalytic reductive coupling of enone, acrylate or vinyl heteroaromatic pronucleophiles with 

carbonyl or imine partners offers an alternative to base-mediated enolization in aldol and Mannich 

type reactions. In this monograph, direct catalytic reductive aldol and Mannich reactions are 

exhaustively catalogued on the basis of metal or organocatalyst. Step-wise processes involving 

enone conjugate reduction to form discrete enol or (metallo)enolate derivatives followed by 

introduction of carbonyl or imine electrophiles and aldol reactions initiated via enone conjugate 

addition are not covered.

Graphical Abstract

1. Introduction: Historical Perspective and Scope of Review

With initial observations by Kane (1838),1,2 but attributed to independent reports by Borodin 

(1869)3,4 and Würtz (1872),5,6 the aldol reaction is the Proteus of enolate-mediated C-C 

bond formations and persists as one of the most broadly utilized transformations in chemical 

synthesis. Core physical organic and stereochemical principles associated with the aldol 

reaction,7–13 applications of the aldol reaction in the total synthesis of natural products,14–19 

and catalytic enantioselective aldol reactions20–24 have been reviewed. Indeed, the 

maturation of organic chemistry as a field, from its very inception to the current state-of-the-

art, may be viewed through the lens of the aldol reaction and the diverse issues of selectivity 

posed by this fundamental transformation. The development of methods for base-mediated 

enolization of carbonyl compounds to furnish structurally defined (metallo)enolates had a 

pronounced impact on the field of aldol chemistry. Discrete formation of lithium enolates 

was first reported by Hauser (1951) using lithium amide.25–28 Wittig (1963) later described 

the use of lithium diisopropylamide (LDA) in deprotonations of aldimines in so-called 
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“Wittig directed aldol condensations.”29–31 More detailed studies into dialkylamide bases 

ensued, which defined methods for stereoselective enolization under kinetically controlled 

conditions, as understood by Irelands model (1976),32 or under thermodynamic conditions. 

These advances, combined with the observations of Dubois (1967)33–35 and Heathcock 

(1980)36 that (Z)- and (E)-enolates undergo carbonyl addition stereospecifically through 

closed “Zimmerman-Traxler”37 transition structures to provide syn- and anti-addition 

products, respectively, laid the foundation for absolute stereocontrol, as exemplified by the 

use of Evan’s auxiliary (1981).38 Finally, in parallel with progress on stereocontrolled aldol 

additions of lithium12 and boron13,14,39 enolates, alternate, mechanistically distinct 

strategies for stereoselective aldol addition arose. The Mukaiyama aldol reaction (1973)40,18 

intermolecular variants of the Hajos-Parrish-Eder-Sauer-Wiechert reaction (1971),41–43 

metal-catalyzed asymmetric aldol additions reported by Hayashi and Ito (1986)44 and 

“direct” metal-catalyzed asymmetric aldol additions reported by Shibasaki (1997)45,46 

offered powerful complementary approaches to stereoselective aldol addition (Figure 1).

Along with this expansion in scope in aldol chemistry, certain limitations were brought to 

light. For example, whereas regioselective enolization is readily achieved for nonsymmetric 

ketones possessing different degrees of substitution at the α-positions, such as 

methylcyclohexanone, upon deprotonation under kinetically or thermodynamically 

controlled conditions,47,48 divergent regioselectivity is seldom attained in enolizations of 

non-symmetric ketones that possess identical degrees of substitution at the α-positions. The 

deprotonation of cholesterane-3-one represents a classic case.49–53 Thermodynamically 

controlled enolization delivers the Δ3-enolate with good isomer selectivity. In contrast, the 

Δ2-enolate cannot be formed selectively via deprotonation under kinetic or thermodynamic 

conditions. Further, introduction of 7,8-unsaturation results in an inversion of 

regioselectivity. An overwhelming thermodynamic preference in favor of the Δ2-enolate is 

observed, and the Δ3-enolate cannot be formed selectivity under kinetically or 

thermodynamically controlled deprotonation conditions. Reductive enolate generation, 

initially realized in the context of the Reformatsky reaction (1887),54 enables regiospecific 

formation of enolate isomers that are often inaccessible via base-mediated deprotonation. In 

what may be viewed as a prelude to the catalytic reductive aldol reaction, reductive 

enolization based on the dissolving metal reduction (Li/NH3) of conjugated enones was 

reported by Stork (1965) (Scheme 1).55,56

Following Stork’s seminal studies, a diverse array of metal catalysts for the conjugate 

reduction of α,β-unsaturated carbonyl compounds were developed utilizing molecular 

hydrogen,57–63 silanes or borohydrides.64–71 This work encompasses enantioselective 

conjugate reductions of α,β-unsaturated carbonyl compounds catalyzed by ruthenium,72–80 

rhodium,81–93 iridium,94–109 palladium,110–113 copper114–120 and cobalt complexes,121–128 

as well as enantioselective Lewis base-catalyzed conjugate reductions.129–131,226 

Additionally, preformation of enol derivatives in the context of tandem 1,4-reduction-

carbonyl addition sequences have been disclosed.132–146 As described in the review 

literature, this abundance of prior art laid the foundation for catalytic reductive couplings of 

α,β-unsaturated carbonyl compounds partners with carbonyl electrophiles, termed 

“reductive aldol reactions.”147–162 Discovered over 30 years ago by Revis (1987),163 

catalysts for reductive aldol coupling based on rhodium,163–189 cobalt,190–195 iridium,175,196 
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ruthenium,197–199 palladium,200 nickel,201–203 platinum,204 copper,205–220 zinc221 and 

indium222–225 have been described. Additionally, Lewis base-catalyzed reductive aldol 

additions have been described.226–229 Related catalytic reductive Mannich reactions230–237 

and reductive couplings of vinyl heteroaromatic pronucleophiles to carbonyl and imines 

partners were developed in parallel.238–241

As shown herein, the catalytic reductive aldol reaction complements the scope of preexisting 

protocols for aldol addition. One advantage of the reductive aldol reaction resides in the 

ability to directly deploy feedstock pronucleophiles such as acrylates and methyl vinyl 

ketone, which enhances step-economy and minimizes mass-intensity (Figure 2).242 That is, 

for chiral auxiliary-based aldol additions, for example, the Evans aldol reaction,38,243 

multiple steps are required for auxiliary synthesis and attachment, enolization and auxiliary 

removal, with each step utilizing sacrificial reagents that generate stoichiometric byproducts. 

Another advantage of the reductive aldol reaction relates to its regiospecificity, and the 

ability to access aldol isomers that are otherwise difficult to prepare (Scheme 2). For 

example, in direct metal-catalyzed45,46,244,245 or secondary amine-catalyzed aldol additions,
246–250 the nonsymmetric ketone 2-butanone undergoes C-C coupling at the less substituted 

enolizable position. In contrast, enantioselective rhodium-catalyzed reductive aldol reactions 

of methyl vinyl ketone provide the corresponding branched isomers with complete levels of 

regiocontrol.188

In this review, catalytic reductive coupling of enone, acrylate and vinyl heteroaromatic 

pronucleophiles to carbonyl and imine partners are exhaustively catalogued on the basis of 

metal catalyst or organocatalyst.147–241 Catalytic reductive Michael reactions are described 

elsewhere.191,192,204,251–254 Step-wise processes involving conjugate reduction to form 

discrete (metallo)enolate derivatives followed by introduction of carbonyl or imine 

electrophiles,132–146 and aldol reactions initiated via conjugate addition255–262 have been 

reviewed elsewhere.263–266 For enone-C=X (X = O, NR) reductive couplings that result in 

functionalization at the β-position of the α,β-unsaturated pronucleophile, the reader is 

referred to the review literature.267–270 The catalytic reductive couplings described herein 

contribute to a departure from the use of premetalated reagents in carbonyl addition.
242, 271–281

2. Catalytic Reductive Aldol and Mannich Reactions

2.1. General Catalytic Mechanisms

To streamline the discussion of mechanism, representative pathways for metal-catalyzed 

reductive aldol coupling are shown for rhodium-catalyzed reactions that employ the generic 

terminal reductant “H-Y”, where, for example, Y = SiR3 or H (Scheme 3). Organocatalyzed 

reductive aldol couplings are less common and their mechanisms will be discussed ad hoc. 

Catalytic cycle A is initiated via H-Y oxidative addition to rhodium(I) to form the 

rhodium(III) hydride I. Oxidative additions of hydrosilane (Y = SiR3)282 or hydrogen (Y = 

H) to neutral283–285 or cationic286–289 rhodium(I) complexes have been reviewed.290–292 

Insertion of the aldehyde carbonyl into the Rh-Y bond to deliver complex II finds precedent 

in aldehyde silylformylations (Y = SiR3) catalyzed by cobalt293 and rhodium,294,295 but is 

unknown for other reductants. Enone or acrylate hydrometalation forms complex III, which 
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upon C-C reductive elimination provides the aldol adduct (as the silyl ether for Y = SiR3) 

with regeneration of low valent rhodium to close the catalytic cycle. In catalytic mechanism 

B, enone or acrylate hydrometalation mediated by complex I furnishes rhodium(III) enolate 

IV, which upon aldehyde addition provides the rhodium(III) aldolate V. Reductive 

elimination of “H-Y”296,297 releases the aldol adduct (as the silyl ether for Y = SiR3) and 

low valent rhodium to close the catalytic cycle. This pathway finds precedent in aldol 

additions of preformed late transition metal enolates.298–302 Though not depicted, oxygen-

silicon reductive elimination296,297 from enolate IV formation followed by Mukaiyama-type 

aldol addition also may affect formation of aldolate V. In catalytic cycle C, oxidative 

coupling of the reactants delivers oxarhodacyclopentane VI.303 σ-Bond metathesis with 

hydrosilane (Y = SiR3)304–306 or hydrogen (Y = H)307 provides complex VII, which upon 

C-H reductive elimination affords the aldol adduct and low valent rhodium to close the 

catalytic cycle. Finally, for catalytic cycle D, a rhodium(I) hydride, which in the case of 

elemental hydrogen as reductant is derived upon formal heterolytic hydrogen activation,
308–310 promotes enone or acrylate hydrometalation to form rhodium(I) enolate VIII. Aldol 

addition affords aldolate IX, which upon hydrogen oxidative addition and O-H reductive 

elimination delivers aldol product.

2.2. Rhodium

2.2.1 Reductant ≠ Hydrogen—In 1987, Revis reported the first examples of reductive 

aldol coupling (Scheme 4).163 Upon exposure to substoichiometric quantities of 

RhCl3•3H2O in combination with Me3SiH as terminal reductant, methyl methacrylate (and 

related α,β-unsaturated esters) undergoes reductive coupling to both aldehyde and ketone 

partners. Aldol products that incorporate contiguous fully substituted carbon centers are 

formed in good yields at ambient temperature at exceptionally low catalyst loading. The silyl 

ketene acetal derived from methyl methacrylate could be detected in crude reaction 

mixtures, and attempted reductive coupling of methyl vinyl ketone to acetone instead 

resulted in enol silane formation. These data are consistent with intervention of catalytic 

mechanism B (Scheme 3). Using the rhodium catalyst derived from Rh4(CO)12 and MePh2P, 

Matsuda reports enone-aldehyde reductive couplings mediated by Et2MeSiH.164 Modest 

levels of syn-diastereoselectivity are observed for certain reaction products. Participation of 

β,β-disubstituted enone pronucleophiles is a notable feature of this catalytic system. Like 

Revis’ catalytic system, enol silanes are detected as byproducts. For the processes developed 

by both Revis and Matsuda, exposure of preformed silyl enol ethers to the carbonyl 

electrophile under the reaction conditions does not result C-C coupling. These data implicate 

rhodium enolates as reactive intermediates in the C-C bond forming event, and that 

Mukaiyama aldol pathways are not operative.

Rhodium-catalyzed reductive aldol cyclizations were first reported by Motherwell (Scheme 

5).165,166 Diastereoselectivity in these processes is catalyst-dependent. Cyclizations 

catalyzed by Wilkinson’s complex, RhCl(PPh3)3, display a modest preference for formation 

of the cis-diastereomer. For cyclizations catalyzed by RhH(PPh3)4, a more pronounced 

preference for the anti-diastereomer is observed. The reaction is restricted to aldehyde 

electrophiles, as attempted cyclization onto a tethered ketone catalyzed results in olefin 

isomerization-enone hydrosilylation to form the indicated enol silane. The observed 
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divergence in diastereoselectivity may reflect intervention of distinct catalytic pathways. For 

example, cyclizations catalyzed by RhCl(PPh3)3 vs RhH(PPh3)4 may occur through catalytic 

cycles B and D (Scheme 3), respectively; the latter involving a low-valent rhodium hydride. 

These different catalytic cycles might, in turn, possess different kinetic preferences for 

formation (E)- vs (Z)-enolates, which would be anticipated to undergo stereospecific 

addition.33–36

The first diastereo- and enantioselective reductive aldol couplings were developed by 

Morken (Scheme 6).167–169 Using an arrayed catalyst screening method, 192 independent 

catalytic systems were evaluated, which revealed a strong interdependence of reaction 

variables.167 Based on this approach, conditions for the diastereoselective reductive coupling 

of methyl acrylate and benzaldehyde were identified. Using the catalyst assembled from 

[Rh(cod)Cl]2 and Me-DuPhos in combination with Cl2MeSiH as terminal reductant, the 

aldol was obtained in good yield with exceptional syn-diastereoselectivity. Good levels of 

syn-diastereoselectivity are persevered upon application of these conditions to alternate 

reactants, but use of enolizable aldehydes results in lower isolated yields. Although these 

reactions employ a chiral ligand, racemic products are obtained. As subsequently 

determined, the reductant, Cl2MeSiH, promotes formation of silyl ketene acetals that 

spontaneously participate in carbonyl addition.169 Use of Et2MeSiH as reductant prevents 

such racemic background reactions, enabling enantioselective aldol addition of phenyl 

acrylate, albeit with lower levels of diastereocontrol.168 Under these conditions, but in the 

absence of aldehyde, less than 5% of the silyl ketene acetal was detected after 24 hours. 

Additionally, exposure of preformed silyl ketene acetal to aldehyde under these conditions in 

the absence of the acrylate led to the formation of the reductive aldol product in < 5% yield. 

Reactions employing PhMe2SiD as reductant result in partial deuteration at the former 

acrylate β-position with complete regiocontrol, consistent with reversible acrylate 

hydrometalation.

The preceding enantioselective aldol additions of phenyl acrylate are accompanied by 

oxidative esterification side-products, which form with identical levels of diastereo- and 

enantioselectivity.170 Studies into the reaction mechanism led to several significant 

observations. Very little of the rhodium precatalyst entered the catalytic cycle, instead 

pooling as the chloro-bridged dimer, [Rh(BINAP)Cl]2. Moreover, upon exposure to 

hydrosilane, the dimer [Rh(BINAP)Cl]2 was converted to a species with NMR spectral 

characteristics consistent with the corresponding hydride-bridged dimer, [Rh(BINAP)H]2. 

To facilitate formation of the rhodium(I) hydride and, therefrom, entry into catalytic cycle B 
(Scheme 3), it was posited that cationic rhodium(I) precatalysts would be beneficial. Indeed, 

the authors found that using precatalyst (R)-[Rh(cod)BINAP]BF4 an expansion of reaction 

scope to encompass enal electrophiles could be realized (Scheme 6). Alternatively, by 

simply using a greater excess silane, the reaction of β-substituted acrylate pronucleophiles 

could be achieved.170,172 In further studies, the authors demonstrate that comparable yields 

and selectivities are obtained in the formation of the silyl-protected aldol adducts upon use 

of iPrMe2SiH as reductant (not shown).171

In 2005, Nishiyama disclosed a remarkably efficient Rh(phebox) catalyst for asymmetric 

silane-mediated reductive aldol addition (Scheme 7).173 Using tert-butyl acrylate as 
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pronucleophile, uniformly high anti-diastereo- and enantioselectivities were observed across 

diverse aldehyde electrophiles. The level of enantiomeric enrichment is highly dependent 

upon the choice of silane, suggesting the silyl group is present during the 

enantiodetermining event, which is consistent with catalytic cycle B (Scheme 3). Although 

attempts to modify the structure of the phebox ligand did not avail significant expansion of 

scope (not shown),175,176 it was subsequently shown that ketones are competent 

electrophilic partners in reactions of β-substituted acrylate pronucleophiles catalyzed by the 

parent Rh(phebox) complex.177 High levels of stereoselectivity were observed in reductive 

aldol additions to the chiral α-stereogenic aldehyde, 2-phenyl propionaladehyde, when the 

enantiofacial bias of the catalyst matches the Felkin-Anh preference the aldehyde.179 

Finally, cyclic enones were shown to be effective pronucleophiles.180 These transformations 

are conducted at 50°C with slow addition of hydrosilane. anti-Diastereo- and 

enantioselective aldol addition is postulated to occur through a chair-like transition state37 

by way of the (E)-enolate in accord with the indicated stereochemical model.

In 2005, Willis developed a variant of the catalytic reductive aldol reaction wherein β-

sulfido-aldehydes serve dually as carbonyl electrophiles and reductants.171 As initially 

observed by Bendorff,311 the β-sulfide directs aldehyde C-H oxidative addition to form a 

chelated acylrhodium hydride. Enone hydrometalation provides a rhodium enolate. Carbonyl 

addition to a second β-sulfido-aldehyde provides an aldolate, which upon C-O reductive 

elimination delivers the O-acyl aldol with concomitant catalyst regeneration. Thus, oxidative 

esterification balances reductive aldol addition. The authors later demonstrated that crossed 

three-component reductive aldol addition could be achieved upon use of tert- butyl 

glyoxalate as the electrophilic partner.178 Although these reactions proceed in excellent 

yield, the lack of diastereo- and enantiocontrol diminishes their preparative utility (Scheme 

8).

In 2002, Matsuda reported the first rhodium-catalyzed reductive Mannich reaction (Scheme 

9).230 Exposure of methyl acrylate to N-tosyl or N-phenyl imines in the presence of 

Et2MeSiH and substoichiometric quantities of [Rh(cod){P(OPh)3}2]OTf led to good yields 

of the Mannich products, however, modest levels of diastereoselectivity were observed. A 

Rh(phebox)-catalyzed reductive Mannich reaction of tert-butyl acrylate and N-phenyl imines 

mediated by Et2MeSiH was subsequently reported by Nishiyama (Scheme 9).233 Good 

yields were accompanied by uniformly good levels of anti-diastereoselectivity. Finally, using 

Et2Zn as terminal reductant, Ando developed a reductive Mannich reaction of methyl 

acrylate with N-benzyl or N-p-methoxyphenyl imines (Scheme 9).236 In this process, anti-
diastereoselective imine addition delivers a zinc amides that undergoes cyclization to furnish 

cis-β- lactams in good to excellent yields and high levels of relative stereocontrol. The 

authors applied this method to the synthesis of the β-lactam cholesterol absorption inhibitor 

(±)-ezetimib (not shown).237

2.2.2 Reductant = Hydrogen—Hydroformylation, the prototypical C-C bond forming 

hydrogenation, is a longstanding method for industrial chemical manufacture.312–317 As 

described in the review literature,154,273,277,278,318,319 the Krische laboratory developed the 

first hydrogen-mediated reductive couplings beyond carbon monoxide, including reductive 

aldol additions.181–189 Using cationic rhodium catalysts, hydrogenation of enone-aldehydes 
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promotes syn-diastereoselective aldol cyclization to form 5- and 6-membered rings (Scheme 

10).181–183 Enones bearing tethered ketones also undergo aldol cyclization with complete 

levels of syn-diastereoselectivity, however, variable quantities of competing enone 

hydrogenation are observed (indicated parenthetically).182 In related cyclizations of enones 

bearing tethered 1,3-diketones, bicyclic ring systems that incorporate three contiguous 

stereocenters are formed and competing enone hydrogenation is not observed.182 The aldol 

addition of aldehyde enolates to ketones represents a particularly challenging transformation 

due to the reversibility of carbonyl addition.11,320 Rhodium-catalyzed hydrogenation of 

enal-ketones delivers the aldol adducts in good yield with a preference for the syn-

diastereomer, but competitive enal hydrogenation is again evident.183

Initially developed intermolecular variants of the hydrogen-mediated reductive aldol reaction 

gave the desired products as diastereomeric mixtures (not shown).181 It was later found that 

cationic rhodium complexes modified by tri-2-furylphosphine321,322 catalyzed 

intermolecular hydrogen-mediated reductive aldol addition of methyl vinyl ketone or ethyl 

vinyl ketone with excellent levels of syn-diastereoselectivity (Scheme 11).185 Notably, 

diverse reducible functional groups (alkynes, alkenes, benzylic ethers, nitroaryl and aromatic 

bromides) were tolerated under the reductive coupling conditions. Additionally, more highly 

functionalized enone pronucleophiles, such as crotyl vinyl ketone, were found to undergo 

chemoselective aldol reductive coupling at the less substituted vinyl moiety with good levels 

of syn-diastereoselectivity and without competing hydrogenation of the crotyl substructure.
186 Substrate-directed asymmetric induction is achieved in intermolecular hydrogen-

mediated reductive aldol additions of vinyl ketones to N-Boc-α-aminoaldehydes.187 

Complete levels of syn-diastereoselectivity are accompanied by complete levels of anti-
Felkin-Anh control due to intramolecular NH-O hydrogen-bonding in the low dielectric 

reaction medium. As determined by HPLC analysis, enantiomeric purity of the 

configurationally labile α-aminoaldehydes is fully preserved under the essentially neutral 

hydrogenation conditions. Acrolein and higher enals participate in hydrogenative aldol 

coupling with α-ketoaldehydes.184 The resulting β-hydroxy-γ-ketoaldehydes are unstable, 

but are amenable to condensation with hydrazine to furnish 3,5-disubstituted pyridazines in 

good yield (not shown).

Highly diastereo- and enantioselective intermolecular hydrogen-mediated reductive aldol 

additions required the design of a chiral congener of tri-2-furylphosphine ligand; a 

formidable task as use of chelating phosphine ligands led to catalytically inactive rhodium 

complexes. Ultimately, a benzothiophene-substituted TADDOL-like phosphonite ligand was 

identified through modular ligand design, in which the P-aryl, ketal and carbinol substituents 

of the TADDOL-like scaffold were independently varied to illuminate key structure-

selectivity trends. The ligand AP-I (“AbbasPhos-I”), which combines all three optimal 

substructures, provided the highest yields and stereoselectivities. Using the preformed 

cationic rhodium phosphonite complex, [Rh(cod)(AP-I)2]OTf, hydrogenation of 

commercially available methyl vinyl ketone or ethyl vinyl ketone in the presence of aliphatic 

aldehydes provided the aldol adducts with excellent control of relative and absolute 

stereochemistry (Scheme 12).188 The reactions are operationally facile and are conducted at 

0 °C simply using balloons of hydrogen gas. A stunning application of the asymmetric 
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intermolecular hydrogen-mediated reductive aldol reaction is found in the total synthesis of 

the actin-binding marine polyketide swinholide A, a macrodiolide bearing 30 stereogenic 

centers (Scheme 13).188 Hydrogenative aldol addition occurs chemoselectively in the 

presence of alkene and diene functional groups with good levels of catalyst-directed 

diastereoselectivity.

Regarding the mechanism of the hydrogen-mediated reductive aldol reaction, cationic 

rhodium-catalysts are required, as neutral rhodium complexes promote simple enone 

hydrogenation. Additionally, basic additives such as lithium carbonate incur a small but 

significant increase in isolated yield (ca 20%). The acidity of cationic rhodium hydrides323 

along with the improvement in yield upon introduction of substoichiometric base suggests 

heterolytic hydrogen activation (H2 + RhI-X → RhI-H + HX)308–310 and entry into catalytic 

cycles involving low valent rhodium monohydrides, that is, catalytic cycle D (Scheme 3). 

Here, syn-diastereoselectivity would require enone hydrometalation to form the (Z)-rhodium 

enolate as the major isomer. An alternate interpretation is based on the following 

observations. Unlike neutral rhodium(I) complexes,283–285 hydrogen oxidative addition is 

often turn-over-limiting for cationic rhodium(I) complexes.286–289 Cationic rhodium(I) 

complexes also have an additional vacant coordination site, which facilitates simultaneous 

coordination of both enone and aldehyde reactants. These effects may conspire to promote 

enone-aldehyde oxidative coupling to form rhodium(III) oxametalacycles303 as in catalytic 

cycle C (Scheme 3). To gain insight into the reaction mechanism, the intermolecular 

reductive coupling of methyl vinyl ketone was conducted under an atmosphere of elemental 

deuterium (Scheme 14).185 Precisely one deuterium atom was incorporated into the aldol 

product exclusively at the former enone β-position. While this result alone cannot 

differentiate catalytic cycles C and D, alkene hydrometalation is often reversible and 

typically does not occur with complete regioselectivity, suggesting oxidative coupling 

pathways may be operative. The rhodium complex [Rh(cod)(AP-I)2]OTf has been 

characterized single crystal X-ray diffraction analysis. A related model to account for 

diastereo- and enantiodetermining oxidative coupling is herewith proposed (Scheme 14).

Related hydrogen-mediated reductive Mannich-type reactions of enone and vinyl azine 

pronucleophiles have been developed (Scheme 15).232,238 Rhodium-catalyzed 

hydrogenation of methyl vinyl ketone or ethyl vinyl ketone in the presence of electron 

deficient N-(o-nitrophenylsulfonyl)imines delivers reductive Mannich-type products with 

good levels of syn-diastereoselectivity.232 N-Arylimines also participate in reductive 

coupling, but lower levels of syn-diastereoselectivity are evident. Similarly, hydrogenation 

of 2-vinyl azines in the presence of N-arylsulfonyl imines at ambient temperature and 

pressure employing cationic rhodium catalysts results in regioselective reductive coupling to 

furnish branched products of imine addition.238 Under an atmosphere of elemental 

deuterium, the reductive coupling product incorporates a single deuterium atom exclusively 

at the former β-position of the vinyl moiety, which is consistent with vinyl azine-imine 

oxidative coupling to furnish a cationic aza-rhodacyclopentane, as described in catalytic 

mechanism C (Scheme 3).
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2.3. Cobalt

The first cobalt catalysts for reductive aldol coupling were described by Mukaiyama in 

1989.190 A cobalt(II) precatalyst modified by dipivaloylmethane (dpm) was used in 

combination with phenylsilane as reductant (Scheme 16). Diverse pronucleophiles 

participate in the reductive coupling, including α,β-unsaturated nitriles, amides and esters. 

The aldol adducts are formed in good yield, but as diastereomeric mixtures. Related aldol 

cyclizations occur with complete levels of syn-diastereoselectivity,191 which may be 

explained on the basis of the indicated stereochemical model, which involves aldol addition 

by way of the (Z)-cobalt enolate through a closed transition structure.37 Unlike the 

intermolecular reactions, attempted aldol cycloreduction of α,β-unsaturated nitriles, amides 

and esters resulted in simple conjugate reduction.

Investigations into the reaction mechanism reveal silane-dependent partitioning of 

hydrometalative vs anion radical pathways (Scheme 17).192 Aldol cyclization mediated by 

d3-phenylsilane results in incorporation of a single deuterium at the former enone β-position 

as a 1:1 epimeric mixture, inferring rapid isomerization of the kinetic cobalt enolate in 

advance of carbonyl addition. For bis(enone) substrates, the silane source was found to 

influence competing Michael cycloreduction and [2 + 2] cycloaddition manifolds.192,324 

Tetrahedral d7-metal complexes such as Co(dpm)2 are paramagnetic and participate in single 

electron oxidative addition.325 Co(II) complexes are also subject to disproportionation.326 

As illustrated in equations A and B (Scheme 16), these reaction manifolds enable access to 

cobalt(I) complexes, which exist in equilibrium with the corresponding cobalt(III) silyl 

hydrides. Whereas use of PhSiH3, for which oxidative addition occurs readily, triggers 

hydrometalation en route to products of reductive cyclization, use of PhMeSiH2 stabilizes 

cobalt(I) to promote catalytic anion radical [2 + 2] cycloaddition. Intervention of anion 

radical intermediates is corroborated by [2 + 2]cycloadditions induced via cathodic 

reduction327 or single electron transfer from arene anion radicals.328

In a powerful extension of scope, the laboratory of Lam reports cobalt-catalyzed reductive 

aldol additions of α,β-unsaturated amides to ketone electrophiles mediated by Et2Zn 

(Scheme 17).193–195 The authors initial report describes aldol cyclizations to form 5- and 6-

membered rings.193 Excellent levels of syn-diastereoselectivity were observed. 

Intermolecular reactions were developed subsequently.194 Here, acrylamides as well as 

fumaric amides undergo syn-diastereoselective aldol addition to ketones. Notably, the 

fumaric amides deliver aldol adducts as single regioisomers. Attempted enantioselective 

reactions using chiral ligands led to racemic products, suggesting aldol addition occurs 

through the (Z)-zinc(II) enolate. Hence, to induce asymmetry an N-acryloyloxazolidine 

pronucleophile is employed.195 The mechanism for zinc(II) enolate formation is based on 

related Lewis acid-assisted oxidative additions of transition metals to enones to form oxy-π-

allylmetal species.329–333 Specifically, β-hydride elimination from the indicated ethyl 

substituted oxy-π-allylcobalt intermediate followed by C-H reductive elimination delivers 

the zinc(II) enolate (Scheme 18). The ethylzinc(II) enolates that arise via cobalt-catalyzed 

conjugate reduction of acryloylmorpholine can also be captured via imine addition to furnish 

Mannich products with good levels of anti-diastereoselectivity (Scheme 19).235
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2.4. Iridium

Highly syn-diastereo- and enantioselective iridium-catalyzed reductive aldol couplings were 

reported by Morken using an Ir(pybox) catalyst and Et2MeSiH as terminal reductant 

(Scheme 20).196 Inductively activated aldehydes that incorporate adjacent alkoxy groups are 

required as the parent aliphatic aldehydes do not participate in coupling. Closely related 

Ir(phebox) complexes investigated by Nishiyama catalyze anti-diastereo- and 

enantioselective reductive aldol reactions of tert-butyl acrylate and benzaldehyde, 

representing a ligand-dependent inversion in diastereoselectivity.175 Excellent yields and 

stereoselectivities are observed at relatively low loadings of the catalyst (1 mol%) (Scheme 

20).

As described by Morken, iridium-catalyzed reductive couplings of pentafluorophenyl 

acrylates with N-aryl imines mediated by Et2MeSiH provide Mannich products, which 

spontaneously cyclize to deliver β-lactams (Scheme 21).231 Competing hydrosilylation of 

alkene and alkyne functional groups is not observed. A linear Hammett correlation involving 

both the imine N-aryl moiety and the acrylate aryloxy group implicate rate-determining 

cyclization. Interestingly, whereas Ando’s rhodium-catalyzed reductive Mannich reactions 

deliver the cis-β-lactams (Scheme 9),237 the iridium-catalyzed reactions display a 

pronounced preference for the corresponding trans-isomers. This divergence in 

diastereoselectivity may be attributed to intervention of zinc(II) vs iridium(III) enolates, 

respectively.

2.5. Ruthenium

Despite enormous progress in the area of ruthenium-catalyzed carbonyl reductive coupling,
275,334–336 true reductive aldol couplings have not been reported. However, closely related 

transformations have been described by Ryu, who reports a 2-propanol-mediated reductive 

homo-coupling of enals catalyzed by RuHCl(CO)(PPh3)3 (Scheme 22).197 This 

transformation involves tandem reductive aldol addition-redox isomerization-aldehyde 

reduction and exploits 2-propanol as the terminal reductant. The catalytic mechanism is 

initiated by enal hydroruthenation to furnish a ruthenium(II) enolate. Aldehyde addition 

provides an aldolate, which upon internal redox isomerization delivers a transient β-

ketoaldehyde. 2-Propanol-mediated reduction of the formyl group provides the reaction 

product. Related redox-neutral cross-couplings have been described wherein alcohols serve 

dually as reductants and aldehyde proelectrophiles (Scheme 22).199

2.6. Palladium

In 1998, a palladium-catalyzed reductive aldol coupling was reported by Kiyooka (Scheme 

23).200 The reaction employs tetrakis(triphenylphosphine)palladium as precatalyst and 

Cl3SiH as reductant. Using N,N-dimethyl acrylamide as pronucleophiles, the aldol product 

is generated in good yield but with modest anti-diastereoselectivity. The corresponding 

reaction of tert-butyl acrylate occurs in low yield and modest syn-diastereoselectivity. The 

reaction mechanism is postulated to involve oxidative addition of the trichlorosilane to 

palladium(0), followed by hydropalladation of the α,β-unsaturated compound. However, 

given the fact that Cl3SiH functions as a reductant in the presence of Lewis base (vide infra, 

Section 2.11.), it is possible that palladium is not required for the reported transformations.
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2.7. Nickel

Triethylborane-mediated reductive aldol additions catalyzed by nickel were developed in the 

laboratory of Montgomery (Scheme 24).201 Surprisingly, sterically unencumbered aryl 

iodides are required for initiation of the catalytic cycle. Specifically, oxidative addition of 

iodobenzene to nickel(0) with subsequent coordination of acrylate and triethylborane 

triggers formation of an ethyl(iodo)nickel complex and a β-aryl boron enolate (as evinced by 

conjugate addition-aldol addition byproducts). Entry into the catalytic cycle occurs from the 

ethyl(iodo)nickel complex, which upon elimination of ethylene forms a nickel hydride. 

Simultaneous coordination of acrylate and triethylborane results in acrylate hydrometalation, 

likely by way of an oxy-allylnickel(II) intermediate,329–333 to form a boron enolate with 

regeneration of the key ethyl(iodo)nickel complex to close the catalytic cycle. The boron 

enolate undergoes spontaneous aldol addition with good levels of syn-diastereoselectivity. 

Corroborating the authors mechanistic hypothesis, nickel(II) precatalysts promote an 

alternate reaction pathway that involves ethyl transfer to the acrylate followed by aldol 

addition.

The Lam laboratory reports highly diastereoselective nickel-catalyzed reductive aldol 

cyclizations onto tethered ketones mediated by Et2Zn (Scheme 25).202 Esters and amides 

undergo cycloreduction to form lactone and lactam products, respectively. The mechanism 

was probed by deuterium labelling studies, but these were inconclusive (not shown). 

However, when the ketone electrophile is tethered to the α,β-unsaturated carbonyl through 

the β-carbon the indicated homoaldol adduct is obtained. This result suggests intervention of 

catalytic cycle C (Scheme 3), wherein oxametalacycles formation occurs by of oxy-π-

allylnickel intermediates.329–333 The nickel-catalyzed reductive aldol cyclization was used 

by the Lam laboratory to complete the formal synthesis of salinosporamide A (Scheme 25).
203

2.8. Platinum

Platinum complexes modified by SnCl2 are effective catalysts for alkene hydrogenation.
337–339 Jang and coworkers have demonstrated that the PtCl2-SnCl2 catalyst system 

promotes inter- and intramolecular hydrogen-mediated reductive aldol reactions (Scheme 

26).204 Addition occurs with good to complete levels of syn-diastereoselectivity for 

intermolecular couplings and corresponding cycloreductions, respectively. Reactions 

mediated by triethylsilane also were explored but lower efficiencies were observed (not 

shown). Under a deuterium atmosphere, incomplete incorporation of 2H at the former enone 

β-position is evident, corroborating reversible enone hydrometalation in advance of C-C 

coupling. A monohydride mechanism involving LnPtD(SnCl3) was proposed (see Scheme 3, 

Cycle D).

2.9. Copper

Reductive aldol cyclizations promoted by stoichiometric quantities of Stryker’s reagent, 

[Ph3PCuH]6, have been described.205–207 Additionally, Stryker’s reagent was reported to 

catalyze hydrosilane-mediated conjugate reduction of enones to form enol silanes that 

engage in aldol reactions with carbonyl electrophiles.135–136 While true reductive aldol 

reactions catalyzed by Stryker’s reagent remain undeveloped, related ynone-ketone 
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cycloreductions catalyzed by Stryker’s reagent and mediated by hydrosilane have been 

reported by Chui (Scheme 27).207

The first copper-catalyzed reductive aldol reaction was reported by Maruoka in 1999.208 The 

reaction mechanism is believed to involve copper(I) chloride initiated enone hydrostannation 

to form a tin enolate. The reaction does not proceed in the presence of galvinoxyl (5 mol%), 

which implicates a catalytic mechanism involving radical species. The authors speculate that 

copper serves a dual role in catalyzing tin enolate formation and subsequent Mukaiyama 

aldol addition. This process is applicable to the addition of vinyl ketone pronucleophiles to 

aliphatic, α,β-unsaturated or aromatic aldehydes. Good isolated yields are accompanied by 

modest levels of syn-diastereoselectivity (Scheme 28).

Copper-catalyzed reductive aldol cyclizations mediated by silane were reported by Lam 

(Scheme 29).209 Upon exposure of keto-enones to 1,1,3,3-tetramethylhydroxysiloxane 

(TMDS) in the presence of copper catalysts modified by MeO-BIPHEP, β-hydroxylactone 

formation occurs with complete syn-diastereoselectivity and moderate enantioselectivity.209 

In related work, reductive cyclization of α,β-unsaturated keto-amides was found to provide 

4-hydroxypiperdin-2-ones with high levels of substrate-directed asymmetric induction.183 

The authors propose a mechanism akin to catalytic cycle D (Scheme 3), in which 

Cu(OAc)2•H2O is converted to a copper(I) monohydride complex, which hydrometallates 

the α,β-unsaturated ester or amide to form a copper enolate. Intramolecular ketone addition 

delivers a copper aldolate, which upon σ-bond metathesis with siloxane304–306 forms the 

aldol product with regeneration of the copper(I) monohydride.

An impressive diastereo- and enantioselective intermolecular reductive aldol coupling of 

acrylate pronucleophiles to unactivated ketones was reported by Riant (Scheme 30).211 

Using a copper complex derived from [CuF(PPh3)3]·2MeOH and a “TANIAPHOS” ligand 

in combination with phenylsilane as reductant, exceptional levels of anti-diastereo- and 

enantioselectivity are observed. Whereas corresponding aldehyde additions conducted under 

these conditions exhibit modest levels of diastereoselectivity and uneven levels of 

enantioselectivity (not shown),212,215 related cyclizations of enone-diones provide bicyclic 

aldol adducts that incorporate 3-contiguous stereogenic centers with excellent control of 

relative and absolute stereochemistry.217 Copper-catalyzed acrylate-ketone reductive aldol 

coupling using [CuF(PPh3)3]·2MeOH as precatalyst has been explored further by 

Fukuzawa218 and Li;219 however, improved selectivities were not observed (not shown). 

Later, Li reported high yielding reductive aldol reactions of dimethyl maleate with 

acetophenones that deliver racemic lactone products as diastereomeric mixtures (not shown).
220

Shibasaki and Kanai explored the intermolecular reductive aldol coupling of acrylates, β-

substituted acrylates and allenic esters using [CuF(PPh3)3]•2EtOH as precatalyst and 

triethoxysilane as the stoichiometric reductant, which displayed modest levels of relative and 

absolute stereocontrol (not shown).213 However, in subsequent work using copper catalysts 

modified by a “TANIAPHOS” ligand and pinacolborane as reductant, enhanced 

stereoselectivities were observed in reductive aldol couplings of allenic esters to 

acetophenone (Scheme 31).214 Furthermore, using (R)-DTBM-SEGPHOS as ligand in 
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combination with Cy3P as an additive, the same reactants form products of vinylogous 

reductive aldol addition with high levels of enantiocontrol and complete alkene (Z)-

stereoselectivity (Scheme 31). As in the preceding examples (Schemes 29 and 30), these 

processes are postulated to proceed by way of copper(I) monohydrides through catalytic 

cycle D (Scheme 3).

Lipshutz reports a copper-catalyzed reductive aldol cyclization of β,β-disubstituted enone 

pronucleophiles using a copper catalyst modified by a “JOSIPHOS” ligand (Scheme 32).216 

In this process, enantiodetermining enone reduction triggers aldol cyclization to form 

products that embody 3-contiguous stereogenic centers with excellent levels of diastereo- 

and enantioselectivity. As the initially formed stereocenter guides the stereochemistry of 

carbonyl addition, the reactions are stereospecific with (E)- and (Z) enones providing 

enantiomeric products under otherwise identical conditions. Specifically, pseudo-equatorial 

disposition of the methyl-bearing stereocenter that arises via conjugate reduction enforces 

the indicated chair-like conformation from which carbonyl addition occurs by way of the 

(Z)-enolate.

In 2008, Shibasaki and Kanai reported copper-catalyzed reductive Mannich reactions of 

acrylate pronucleophiles with N-diphenylphosphinoyl ketimines mediated by pinacol borane 

(Scheme 33).234 Using a CuOAc-PPh3 catalyst, the Mannich products are generated in good 

yield with excellent diastereocontrol for ketimines bearing aromatic, aliphatic and vinyl 

substituents. In an initial evaluation of chiral ligands using borane reductants, significant 

levels of enantioselectivity proved to be elusive. However, using (EtO)3SiH as reductant 

highly diastereo- and enantioselective copper-catalyzed reductive Mannich reactions could 

be achieved.

Based on the concept of using azaarenes as activating groups,238,340 Lam developed copper-

catalyzed reductive aldol reactions of vinyl-substituted heteroaromatic pronucleophiles with 

ketones (Scheme 34).239 The absolute stereochemistry of the indicated isoquinoline-

containing product is opposite to that of the pyrimidine-containing product, even though the 

same enantiomer of chiral ligand was employed used. The authors developed related 

diastereo- and enantioselective reductive coupling of vinylazaarenes with N-Boc aldimines 

mediated by 1,1,3,3-tetramethylhydroxysiloxane (TMDS). The Mannich-type products are 

generated with good levels of anti-diastereo- and enantioselectivity.

2.10. Zinc

Very recently, a zinc-catalyzed acrylate-ketone reductive aldol coupling was reported by 

Mlynarski (Scheme 35).221 Using the catalyst derived from Zn(OAc)2 and the indicated 

chiral diamine ligand, good yields of aldol product were obtained. Although modest 

stereoselectivities were observed, this catalyst system merits further investigation due to its 

cost-effectiveness. The reducing agent, (EtO)3SiH, readily forms ate-complexes with Lewis 

basic compounds, and control experiments conducted in the absence of metal salts were not 

disclosed. As described in the review literature,341 the proposed intervention of zinc vs 

silicon hydride intermediates is unclear.
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2.11. Indium

Following reports of stoichiometric InBr3-Bu3SnH promoted reductive aldol additions by 

Baba and Shibata,222 catalytic processes were developed employing hydrosilane as reductant 

(Scheme 36).223 This catalyst system is applicable to the syn-diastereoselective coupling of 

enone pronucleophiles with aldehydes. The authors propose that the catalytic cycle is 

initiated via transmetallation between InBr3 and Et3SiH to form HInBr2 and Et3SiBr, 

enabling entry to a monohydride-based catalytic cycle (see Scheme 6, Cycle D). syn-

Diastereoselectivity is believed to arise through addition of the (Z)-indium enolate, which is 

formed upon hydrometalation of the enone s-cis-conformer through a 6-centered transition 

structure,133,134 followed by stereospecific carbonyl addition through a Zimmerman-Traxler 

type transition structure.37 A contemporaneous study by Hosomi and Miura utilizes PhSiH3 

as reductant for intermolecular indium-catalyzed reductive aldol coupling and, as shown, 

corresponding reductive cyclizations.224 In subsequent work, Shibata conducted 

intermolecular indium-catalyzed enone-ketone reductive aldol couplings that proceed with 

high levels of syn-diastereoselectivity.225 Remarkably, the latter process is applicable to 

sensitive α-bromoketones.

2.12. Organocatalyzed Reactions

Beyond metal-catalyzed processes, significant progress on organocatalytic reductive aldol 

additions has been made.226–229 Lewis basic catalysts in combination with Cl3SiH as 

reductant have proven particularly effective, as initially illustrated by Nakajima and Sugiura 

(Scheme 37).226 Specifically, using substoichiometric quantities Ph3P=O, enone-aldehyde 

reductive coupling occurs in good yield but with low levels of diastereocontrol. Enone 

reduction from the s-cis-conformer was postulated to occur through the indicated boat-like 

transition structure. In subsequent work, the same authors disclosed highly syn-diastereo- 

and enantioselective reductive aldol reactions using (S)-BINAPO as catalyst.227 Asymmetric 

additions to aromatic and α,β-unsaturated aldehydes were described. Continued studies by 

Nakajima and Kotani demonstrate that tertiary amines can serve as reductants in syn-

diastereo- and enantioselective reductive aldol reactions.228 These processes likely involve 

hydride transfer from the amine to Cl3SiOTf by virtue of the so-called tert-amino effect; a 

topic that has recently been reviewed.342 Schindler recently reported a variant of the 

organocatalyzed reductive aldol reaction mediated by Cl3SiH that exploits α,α-disubstituted 

pronucleophiles.229 This process delivers aldol adducts bearing quaternary carbon 

stereocenters. The authors propose a boat-like transition structure to account for relative 

stereochemistry. Diastereoselectivity was dependent on the steric demand of the aldehyde 

with pivaldehyde and, as illustrated, ortho-substituted benzaldehydes providing the highest 

levels of relative stereocontrol. A secondary amine-catalyzed tandem conjugate reduction-

Mannich addition mediated by the Hantzsch ester has been described, but this method is a 

step-wise process in which the imine is added to the reaction mixture after the enal is 

reduced (not shown).343

3. Conclusion and Outlook

Chemical synthesis in the 20th century to the present day has largely been reliant on the use 

of non-native structural elements to manage issues of reactivity and selectivity. More ideal 
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chemical synthesis requires direct deployment of basic chemical feedstocks in atom-efficient 

transformations for which issues of isomer-selectivity and functional group compatibility are 

catalyst controlled.242 While concepts pertaining to efficiency in chemical synthesis are 

longstanding344,345 and perhaps self-evident, the frequency with which they are discussed 

far exceeds the instances in which they are realized. Nevertheless, progress on step- and 

atom-efficient complex molecule synthesis has been made.346,347 In this context, the aldol 

reaction, which itself may be viewed as a bellwether for organic chemistry as a field, 

continues to pose unmet challenges in efficiency and selectivity. The reductive aldol 

reaction, discovered just over 30 years ago, addresses many of these unresolved issues: (a) 

the regiospecific nature of the reductive aldol reaction enables formation of aldol isomers 

that are otherwise inaccessible; (b) highly diastereo- and enantioselective additions to ketone 

electrophiles is possible; (c) the parent acrylate and enone pronucleophiles are inexpensive 

chemical feedstocks; and (d) in the case of hydrogen-mediated reductive aldol couplings,
181–189 diastereo- and enantioselective reactions occur in the absence of stoichiometric 

byproducts. Many future challenges remain. For example, the majority of reductive aldol 

reactions employ hydrosilanes as reductants, which are relatively expensive and deliver 

adducts that incorporate silyl ether moieties. Adapting these catalytic systems to more cost-

effective, less mass-intensive reductants, such as formate, carbon monoxide, 2-propanol or 

hydrogen, and the use of inexpensive base-metal catalysts, would increase the suitability of 

these methods vis-a-vis large-volume chemical manufacture. It is the authors’ hope that the 

chemistry and concepts put forth in this and other monographs242,276,277,279,280 will 

accelerate progress toward these goals and, more broadly, further shift the paradigm for C-C 

bond formation away from premetalated reagents toward processes that directly exploit 

abundant, inexpensive and renewable feedstocks.
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Figure 1. 
Selected milestones in aldol addition and enolization chemistry.
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Figure 2. 
Catalytic reductive aldol and Mannich additions using abundant feedstock pronucleophiles.
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Scheme 1. 
Classic studies highlighting the challenge of regioselective enolization.
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Scheme 2. 
Catalytic reductive coupling enables regiospecific formation of branched aldol isomers.
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Scheme 3. 
General mechanisms for metal-catalyzed reductive aldol addition using silane as terminal 

reductant.
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Scheme 4. 
Rhodium-catalyzed reductive aldol reactions reported by Revis and Matsuda.
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Scheme 5. 
Rhodium-catalyzed reductive aldol cyclizations reported by Motherwell.
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Scheme 6. 
Diastereo- and enantioselective rhodium-catalyzed reductive aldol reactions reported by 

Morken.
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Scheme 7. 
Diastereo- and enantioselective Rh(phebox)-catalyzed reductive aldol reactions reported by 

Nishiyama.

Meyer et al. Page 42

Chem Rev. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 8. 
Rhodium-catalyzed reductive aldol reactions reported by Willis.
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Scheme 9. 
Rhodium-catalyzed reductive Mannich reactions reported by Matsuda, Nishiyama and 

Ando.
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Scheme 10. 
Reductive aldol cyclizations via rhodium-catalyzed hydrogenation reported by Krische.
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Scheme 11. 
syn-Diastereoselective reductive aldol reactions via rhodium-catalyzed hydrogenation 

reported by Krische.
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Scheme 12. 
syn-Diastereo- and enantioselective reductive aldol reactions via rhodium-catalyzed 

hydrogenation reported by Krische.
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Scheme 13. 
Application of the asymmetric intermolecular hydrogen-mediated reductive aldol reaction in 

Krische’s total synthesis of swinholide A.
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Scheme 14. 
Deuterium labelling study and stereochemical model for syn-diastereo- and enantioselective 

reductive aldol reactions via rhodium-catalyzed hydrogenation.
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Scheme 15. 
Reductive Mannich-type reactions via rhodium-catalyzed hydrogenation reported by 

Krische.
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Scheme 16. 
Inter- and intramolecular cobalt-catalyzed reductive aldol reactions reported by Mukaiyama 

and Krische, respectively.
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Scheme 17. 
Silane-dependent partitioning of hydrometalative vs anion radical pathways in silane 

mediated reactions of cobalt(II) diketonates.

Meyer et al. Page 52

Chem Rev. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 18. 
Cobalt-catalyzed reductive aldol reactions reported by Lam.
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Scheme 19. 
Cobalt-catalyzed reductive Mannich reaction reported by Lam.
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Scheme 20. 
Diastereo- and enantioselective iridium-catalyzed reductive aldol reactions reported by 

Morken and Nishiyama.
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Scheme 21. 
Diastereoselective iridium-catalyzed reductive Mannich-type reactions reported by Morken.
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Scheme 22. 
Ruthenium-catalyzed reductive aldol-type reactions reported by Ryu.
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Scheme 23. 
Palladium-catalyzed reductive aldol reactions reported by Kiyooka.
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Scheme 24. 
Nickel-catalyzed reductive aldol reactions reported by Montgomery.
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Scheme 25. 
Nickel-catalyzed reductive aldol cyclizations reported by Lam.
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Scheme 26. 
Inter- and intramolecular platinum-catalyzed reductive aldol reactions reported by Jang.
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Scheme 27. 
Copper-catalyzed reductive aldol cyclization of acetylenic ketones reported by Chui.
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Scheme 28. 
Copper-catalyzed reductive aldol reactions reported by Maruoka.
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Scheme 29. 
Copper-catalyzed reductive aldol cyclizations reported by Lam.
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Scheme 30. 
Inter- and intramolecular copper-catalyzed reductive aldol reactions reported by Riant.
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Scheme 31. 
Copper-catalyzed reductive aldol reactions reported by Shibasaki and Kanai.
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Scheme 32. 
Copper-catalyzed reductive aldol cyclizations reported by Lipshutz.
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Scheme 33. 
Copper-catalyzed reductive Mannich reactions reported by Shibasaki and Kanai.
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Scheme 34. 
Copper-catalyzed reductive aldol and Mannich-type reactions of vinyl-substituted 

heteroaromatic pronucleophiles reported by Lam.
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Scheme 35. 
Zinc-catalyzed reductive aldol reaction reported by Mlynarski.
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Scheme 36. 
Inter- and intramolecular indium-catalyzed reductive aldol reactions reported by Baba, 

Shibata, Hosomi and Miura.
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Scheme 37. 
Organocatalyzed reductive aldol reactions reported by Nakajima, Sugiura, Kotani and 

Schindler.

Meyer et al. Page 72

Chem Rev. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Introduction: Historical Perspective and Scope of Review
	Catalytic Reductive Aldol and Mannich Reactions
	General Catalytic Mechanisms
	Rhodium
	Reductant ≠ Hydrogen
	Reductant = Hydrogen

	Cobalt
	Iridium
	Ruthenium
	Palladium
	Nickel
	Platinum
	Copper
	Zinc
	Indium
	Organocatalyzed Reactions

	Conclusion and Outlook
	References
	Figure 1.
	Figure 2.
	Scheme 1.
	Scheme 2.
	Scheme 3.
	Scheme 4.
	Scheme 5.
	Scheme 6.
	Scheme 7.
	Scheme 8.
	Scheme 9.
	Scheme 10.
	Scheme 11.
	Scheme 12.
	Scheme 13.
	Scheme 14.
	Scheme 15.
	Scheme 16.
	Scheme 17.
	Scheme 18.
	Scheme 19.
	Scheme 20.
	Scheme 21.
	Scheme 22.
	Scheme 23.
	Scheme 24.
	Scheme 25.
	Scheme 26.
	Scheme 27.
	Scheme 28.
	Scheme 29.
	Scheme 30.
	Scheme 31.
	Scheme 32.
	Scheme 33.
	Scheme 34.
	Scheme 35.
	Scheme 36.
	Scheme 37.

