
Journal of the American Medical Informatics Association Volume 7 Number 5 Sep / Oct 2000 475

Research Paper n

Exploring Performance Issues
for a Clinical Database
Organized Using an
Entity-Attribute-Value
Representation

ROLAND S. CHEN, MD, PRAKASH NADKARNI, MD, LUIS MARENCO, MD,
FORREST LEVIN, MS, JOSEPH ERDOS, MD, PHD, PERRY L. MILLER, MD, PHD

A b s t r a c t Background: The entity-attribute-value representation with classes and
relationships (EAV/CR) provides a flexible and simple database schema to store heterogeneous
biomedical data. In certain circumstances, however, the EAV/CR model is known to retrieve data
less efficiently than conventionally based database schemas.

Objective: To perform a pilot study that systematically quantifies performance differences for
database queries directed at real-world microbiology data modeled with EAV/CR and
conventional representations, and to explore the relative merits of different EAV/CR query
implementation strategies.

Methods: Clinical microbiology data obtained over a ten-year period were stored using both
database models. Query execution times were compared for four clinically oriented attribute-
centered and entity-centered queries operating under varying conditions of database size and
system memory. The performance characteristics of three different EAV/CR query strategies were
also examined.

Results: Performance was similar for entity-centered queries in the two database models.
Performance in the EAV/CR model was approximately three to five times less efficient than its
conventional counterpart for attribute-centered queries. The differences in query efficiency
became slightly greater as database size increased, although they were reduced with the addition
of system memory. The authors found that EAV/CR queries formulated using multiple, simple
SQL statements executed in batch were more efficient than single, large SQL statements.

Conclusion: This paper describes a pilot project to explore issues in and compare query
performance for EAV/CR and conventional database representations. Although attribute-centered
queries were less efficient in the EAV/CR model, these inefficiencies may be addressable, at least
in part, by the use of more powerful hardware or more memory, or both.

n J Am Med Inform Assoc. 2000;7:475–487.

Affiliations of the authors: Yale University, New Haven, Con-
necticut (RSC, PN, LM, PLM); Evergreen Design, Guilford, Con-
necticut (FL); and Veterans Affairs Medical Center, West Haven,
Connecticut (JE).

This work was supported in part by NIH grants T15-LM07056
and G08-LM05583 from the National Library of Medicine and
by grant U01-CA78266 from the National Cancer Institute.

Correspondence and reprints: Prakash M. Nadkarni, MD, Cen-
ter for Medical Informatics, Yale University School of Medicine,
P.O. Box 208009, New Haven, CT 06520-8009;
e-mail: ^prakash.nadkarni@yale.edu&.

Received for publication: 10/26/99; accepted for publication:
03/06/00.

A problem that data modelers commonly encounter
in the biomedical domain is organizing and storing
highly diverse and heterogeneous data. For example,
a single patient may have thousands of applicable de-
scriptive parameters, all of which need to be easily
accessible in an electronic patient record system.
These requirements pose significant modeling and im-
plementation challenges.

One increasingly popular solution that addresses
these issues is to model data using the entity-attrib-
ute-value (EAV) approach. This model, which was
historically seen first in LISP association lists,1 has



476 CHEN ET AL., Evaluating EAV/CR Database Performance

been used in multiple applications, including the
HELP system2,3 and the Columbia-Presbyterian Clin-
ical Data Repository.4,5 The EAV approach offers many
advantages, including its flexibility and ability to store
heterogeneous data in a simple, easily maintained for-
mat. Our group has recently enhanced this represen-
tation to permit data modeling with classes and re-
lationships (EAV/CR).6

Despite its significant benefits, EAV design has the po-
tential to be less efficient than ‘‘conventional’’ data-
base schemas when accessing data. In particular, at-
tribute-centered queries, where the query criterion is
based on the value of a particular attribute, are most
likely to show impaired performance. This is espe-
cially true when query criteria combine one or more
simple conditions in Boolean fashion. An example of
such a query is ‘‘find all patients with blood cultures
positive for either Streptococcus pneumoniae OR Can-
dida albicans.’’ The reason for the potential perfor-
mance degradation is that the relatively fast AND,
OR, and NOT operations that would be required if
we were operating on conventional schema tables
must be converted to considerably slower set-based
equivalents (set intersection, union, and difference, re-
spectively) for EAV tables.

Attribute-centered queries are important for research
questions; their performance is not critical for the care
of individual patients. The contents of the production
(patient-care) database serve, however, as the basis for
any research databases that an institution must sup-
port, and the question is how such research databases
must be implemented. There are two ways to do so:

n The simplest solution is to periodically take a
backup copy of the production database and restore
it onto separate hardware, with only modest trans-
formation, e.g., addition of indexes. (It is undesir-
able to run resource-intensive attribute-centric que-
ries directly on the production system because they
would take CPU cycles away from the simple but
critical queries that assist management of individ-
ual patients.)

n An alternative solution is to redesign the schema
completely as numerous conventional tables on
separate hardware and transform the production
EAV data prior to loading it into these tables. The
tables may reside in a single research database or
in multiple, special-purpose databases. One could
extract all the data or only a subset, focusing on the
attributes of greatest clinical or epidemiologic in-
terest. Such a procedure is followed at Intermoun-
tain Health Care, where multiple conventionally
structured data marts are populated by export of

data subsets from the HELP repository,17 whose
contents are mostly in EAV form.

The first solution is easy to set up, but queries may
not perform well. The second solution promises better
performance but is more elaborate because of the data
transformations involved. The required transforma-
tions can be extensive if one has to support multiple
research efforts. To determine which solution is ap-
plicable in given circumstances, it would be useful to
have performance metrics that compare the relative
performance of attribute-centric queries on EAV sche-
mas and equivalent queries on conventional schemas.

We have not found any published reports that quan-
tify these performance differences systematically. Of
related interest are the influences on query perfor-
mance exerted by factors including database size and
hardware configuration (e.g., amount of available
physical memory). The questions addressed in this
paper are:

n Does degradation of query performance occur and,
if so, how severely?

n Can degradation, if present, be mitigated by data-
base or query design strategies and, if so, to what
extent?

Answers to these questions would provide valuable
insights into the viability of the EAV approach for
supporting large-scale databases.

In this paper, we explore issues in database perfor-
mance for real-world microbiology data stored using
an EAV/CR and conventional approach. In particular,
we examine: 1) the differences in execution time for a
set of clinically relevant database queries operating on
an EAV/CR and conventional schema containing the
same set of data, 2) the relative efficiency of different
EAV/CR query strategies, and 3) the effect of database
size and physical memory on database performance.
Finally, we examine monitors of system performance
and identify potential performance bottlenecks for the
competing database schemas.

Background

The EAV model, which has been described in great
detail elsewhere,7–9 can be visualized conceptually as
a database table with three columns: 1) ‘‘Entity ID’’ or
‘‘Object ID’’; 2) ‘‘Attribute,’’ or a pointer to a separate
‘‘Attributes’’ table; and 3) ‘‘Value,’’ containing the
value corresponding to the particular entity and at-
tribute. In an electronic patient record system, the en-
tity ID usually refers to a specific patient-associated



Journal of the American Medical Informatics Association Volume 7 Number 5 Sep / Oct 2000 477

event stored as a patient ID and time stamp. The at-
tribute and value columns correspond to a specific pa-
rameter (e.g., potassium) and its value, respectively.
Each entity-attribute-value triplet occupies one row in
the table. Since attributes are not represented as col-
umns, this single table can store all values in the da-
tabase.

EAV/CR enhances the basic EAV approach by using
the object-oriented concepts of ‘‘classes’’ and ‘‘rela-
tionships’’ to facilitate data modeling. Classes in
EAV/CR are data structures that store the attributes
(possibly including other classes) associated with a
particular type of entity. For example, a bacterial iso-
late from a blood culture could be modeled with the
class ‘‘Bacterial Organism’’ that contains attributes
‘‘OrganismoID’’ (which references an organism name),
‘‘Quantityocultured’’, and ‘‘Antimicrobialotested.’’
(The last attribute is multivalued, because multiple
antimicrobials are typically tested against a single cul-
ture.) ‘‘Antimicrobialotested,’’ in turn, is itself a class
with the attributes ‘‘AntimicrobialoID’’ (which refer-
ences a drug name) and ‘‘Sensitivityoresult.’’

As in object-oriented modeling, objects represent in-
stances of a class. Thus, in our previous example,
every cultured bacterial isolate possesses an object ID
as an instantiation of class ‘‘Bacterial Organism.’’ Re-
lationships are used to describe inter-class interac-
tions. Metadata, or information about the data con-
tained in the database, is then applied to describe,
maintain, update, and access the data. This overall ap-
proach allows the system to incorporate new attrib-
utes without altering the underlying physical data-
base schema.

Conventional schemas, in contrast, model parameters
as distinct columns. For example, the parameter
‘‘Organismoname’’ could be represented as a column
in a table ‘‘MicrobialoOrganism.’’ As the database
evolves to accommodate diverse data, the number of
parameters grows and the number of columns and
tables that are needed increases. Thus, with a rapidly
evolving and expanding domain such as medicine,
where new tests and concepts are commonplace, the
underlying schema requires frequent modification.
This is particularly true of clinical medicine, where
there can be dozens of specialty-specific tables, each
with a constantly growing list of fields.

The ability of the EAV approach to store diverse data
in a single (or few) tables greatly simplifies the phys-
ical schema of the database. It provides an efficient
way to access all data pertinent to a specific object
(i.e., entity-centered queries). In an EMR, this often
takes the form of ‘‘Select all data (clinical findings, lab
tests, etc.) for patient X.’’ In a conventional schema

with numerous tables, the user would need to search
every table containing patient data to extract the rel-
evant data for the patient, making query development
laborious. Furthermore, not all these tables may con-
tain data for a given patient; as a result, many tables
may be searched unnecessarily.

As stated previously, it is the attribute-centered que-
ries that are of concern to the developer who is fo-
cused on efficiency. To systematically quantify the per-
formance of an EAV/CR schema compared with its
conventional counterpart, we chose the domain of mi-
crobiology. This domain, which has been the subject
of many previous database models,10,11 provides the
potential to work with complex data structures where
class attributes exist as both primitive types (e.g.,
strings) as well as other classes.

Methods

In this section, we describe our test database and
schema and various aspects of the evaluation strategy
that we devised. In each case we provide the rationale
of our design decisions.

Data Description

Each specimen collected from a patient in the Veterans
Administration (VA) system is assigned a unique ID.
The ID of the ordering physician is also recorded
against the specimen. One or more tests (e.g., Gram
stain and culture) may then be run on each specimen.
For each culture, a panel of antimicrobial sensitivity
tests is performed. The data are stored in DHCP,12 an
M language database that serves as the clinical patient
repository used nationwide by VA Medical Center
(VAMC) hospitals.

The entity-relationship diagram for the original data
is shown in Figure 1 (details have been omitted for
clarity). All classes/entities can be traced to the class
‘‘Microbiology Specimen,’’ which sits at the ‘‘top’’ of
the class diagram. Classes contain either primitive
types or other classes as attributes, which enable
classes to relate to one another.

It should be noted that the entities ‘‘bacterial culture,’’
‘‘fungal culture,’’ etc. shown in Figure 1 are repre-
sented in separate tables in DHCP. During the process
of data transformation, we merged these into a single
table, since the separate tables have similar structures.

The original, raw, antimicrobial sensitivity data had
the names of antimicrobials (e.g., ‘‘streptomycin,’’
‘‘chloramphenicol’’) hard-coded as columns in a table.
This represents poor table design. With each new an-
timicrobial introduced into the institution, the table



478 CHEN ET AL., Evaluating EAV/CR Database Performance

F i g u r e 1 Entity-relationship diagram for the microbiology data. For reasons of space, some tables, which are not
relevant to the queries in the text, are not shown.

structure needs updating, and all forms dependent on
the table require redesign with each change. It may
be possible to use this design in the M language,
where all disk-based data structures are sparse by de-
sign. In relational database management systems
(RDBMSs), however, such a design wastes much
space, because NULL values of empty columns are
still recorded. Further, RDBMSs have a limit on the
maximum number of columns per table (e.g., 255),
which might be exceeded in some circumstances.
Even if space and column constraints are unimpor-
tant, necessitating alterations in the table structure
and application code each time the number of objects
changes is not a good system design approach.

Other parts of the DHCP schema are correctly de-
signed. For example, in the Pharmacy subschema,
names of medications are not hard-coded as columns
but treated as data: the ID of the drug in the Orders
table references a list of drugs in a Drugs table. There-
fore, to make comparisons between EAV and con-
ventional schemas more realistic, we first transformed
the sensitivity data into the (correct) row-modeled
form, where the antimicrobial ID was an attribute in

a column and referenced a table of antimicrobial drug
names.

Data Extraction

We extracted a dataset from VA Connecticut DHCP
that contains all the available online data, which range
from 5/1/87 to 9/26/98 and include results from
more than 135,000 microbiology test specimens and
more than 400,000 antimicrobial sensitivity tests for
more than 28,000 patients. The extracted data were
transformed for storage into a SQL Server 7.0 RDBMS.
The extraction was done in two steps. We first created
a conventional schema from the data (transforming
the data where appropriate, as described above). We
then created an EAV/CR schema from the conven-
tional one by assigning a unique object ID to each
instance of a particular class. In all, there were 965,529
instantiated objects in our database.

The Conventional Schema

The conventional schema is shown in Figure 2. All
primary and foreign keys, as well as fields used for



Journal of the American Medical Informatics Association Volume 7 Number 5 Sep / Oct 2000 479

F i g u r e 2 The conventional physical database schema. Fields in some tables are not shown, for reasons of space; for
the most part, only fields linking to other fields are illustrated.

search (e.g., antimicrobial and organism names), are
indexed.

It should be noted that the culture and antimicrobial
sensitivity tables can be considered special-purpose or
homogeneous EAV tables (because each stores only a
single class of data in row-modeled form). In contrast,
‘‘EAV’’ databases contain general-purpose tables that
store heterogeneous data (across many classes).

The EAV/CR Schema

The EAV/CR physical schema is shown in Figure 3.
As in all EAV/CR schemas, there are two parts to the
schema: metadata and data. (The EAV/CR metadata
schema are not illustrated. They have been described
in detail,6 and a summary is available on the
Web at http://ycmi.med.yale.edu/nadkarni/eavocro
frame.htm). Attributes are segregated by data type
(e.g., string values are stored in ‘‘EAVoTEX,T’’
whereas dates are held in ‘‘EAVoDATE’’).

The table EAVoOBJECTS is of particular interest. It
accommodates situations where one object can con-
tain another object and permits objects to be associ-
ated with one another. In this table, the ‘‘Value’’ field
is the ID of a ‘‘child’’ object. Thus, in our logical
schema, tests are children of a specimen, cultures are
children of a test, and antimicrobial sensitivity results
are children of a culture. In other words, when data
are hierarchic (as in consecutive one-to-many relation-

ships), each record in EAVoOBJECTS represents one
node of a tree. To traverse down an object hierarchy
starting with a particular object, we locate that object’s
ID in the ObjectoID column of EAVoOBJECTS. We
then gather all Values (child Object IDs) for this entity.
We then recurse, searching for these IDs in the
ObjectoID column, and so on.

One well-known method of minimizing the number
of recursive queries when traversing an object hier-
archy is to redundantly store the ID of the ‘‘ancestor’’
object against every record in a tree, so that all de-
scendants of the ancestor can be retrieved in a single
SQL statement.13 If a significant percentage of queries
also use the ‘‘ancestor’’ class, the number of joins re-
quired to retrieve the data is also minimized. To allow
us to explore this means of schema optimization and
its impact on queries, we created an ‘‘ancestor’’ field
containing the microbiology specimen ID associated
with each test value in EAVoTEXT.

We indexed all object ID columns and created a com-
pound index on attribute-value pairs for tables EAVo
TEXT and EAVoDATE, since queries typically select
data using both an ‘‘attribute ID’’ and ‘‘value’’ to-
gether as search criteria. In addition, a separate index
was created for the Value column of EAVoOBJECTS,
since the nature of a query might make it desirable to
traverse an object hierarchy from descendant to an-
cestor.



480 CHEN ET AL., Evaluating EAV/CR Database Performance

F i g u r e 3 EAV physical database schema. Since all EAV tables share the same structure, the details of two tables have
been omitted.

Expanding the Size of the Data

To measure the effects of database size on perfor-
mance, we replicated the contents of our initial two
databases (EAV/CR-Small and Conventional-Small)
and reassigned newly created, unique IDs for each
new object. The replicated data were then appended
onto the corresponding, original database to create
‘‘new’’ databases with twice the number of objects
(EAV/CR-Medium and Conventional-Medium). This
process was then repeated to yield databases four
times larger than our originals (EAV/CR-Big and
Conventional-Big). Since the underlying schemas did
not change, queries did not require modification
within a given representation. The ‘‘Big’’ data set rep-
resents the equivalent of 30 to 40 years’ worth of mi-
crobiology data for all patients in VAMC Connecticut.

The benchmark timings for EAV/CR-Medium and
Conventional-Medium were intermediate between the
smallest and largest representations, with the data
showing an approximately linear trend between the
‘‘small’’ and ‘‘big’’ databases. The purpose of studying
three database sizes was to allow us to assess better
how relative performance varied with size. To mini-
mize information overload in the tables presented in
the remainder of the paper, we omit further discus-
sion of the two ‘‘medium’’ databases.

The EAV/CR representation consumed approximately
four times the storage of our conventional schema.

EAV/CR-Big consumed 1,177 Mb, with indexes ac-
counting for more than 62 percent. Our largest con-
ventional representation (Conventional-Big) was 301
MB, with approximately 32 percent accounted for by
indexes.

It is true that EAV/CR is more space-efficient for
sparse data. In this case, however, prior to importing
the raw data, we had transformed the bulk of the orig-
inal sparse data (e.g., the antimicrobial sensitivity re-
sults and the cultures) into dense, row-modeled facts
in columns that are mostly IDs (long integers). It is
well known that a row-modeled conventional table
will always take significantly less space than the
equivalent facts represented in EAV form. This is be-
cause a single set of facts is represented as a single
row in a row-modeled table but as multiple rows in
an EAV table, one per fact. For example, to fully de-
scribe a single antimicrobial sensitivity result, we
store several related facts linked to the specimen ID:
the micro-organism that was isolated, the antimicro-
bial tested, and the sensitivity of the former to the
latter. In the EAV representation, each row has the
extra overhead of Object ID and Attribute ID, plus
accompanying indexes.

Query Benchmarking

To compare performance between the two competing
physical representations, we developed several clini-



Journal of the American Medical Informatics Association Volume 7 Number 5 Sep / Oct 2000 481

cally oriented queries, as follows. The two attribute-
centered queries were:

n Query 1: Find all patients with cultures positive for
Pseudomonas aeruginosa.

n Query 2: Find all specimens that grew Streptococcus
pneumoniae and Candida albicans.

The EAV/CR approach, as employed in electronic pa-
tient record systems, is generally known to be efficient
for patient-centered queries (which correspond to
queries based on the Object ID rather than on the At-
tribute and Value). However, we wanted to verify that
this was indeed the case for our data set and deter-
mine the performance penalty, if any, in comparison
with the conventional schema. Therefore, we also cre-
ated two entity-centered queries:

n Query 3: Find all microbiology tests run for a spe-
cific patient.

n Query 4: Find all antimicrobials and sensitivities
tested for a particular culture.

System Description: Memory Allocation

Tests were conducted on a Dell Dimension XPS D300
running Windows NT Server 4 with a 300-MHz Pen-
tium II processor and 66-MHz system bus. Execution
times were recorded using the SQL Server 7.0 Profiler
tool.

We ran our benchmarks with 192 Mb and 256 Mb of
physical RAM and allocated 64 Mb and 128 Mb, re-
spectively, to SQL Server 7. We did this to ensure that
the additional RAM was specifically allocated to the
database. This left 128 Mb of RAM for the operating
system and its associated tasks. The system employed
a Western Digital UDMA, 9.5mS, 5400 RPM hard
drive. We want to emphasize, however, that in our
benchmarks it is the ratio of timings between the
EAV/CR and conventional schemas that are impor-
tant, rather than the absolute timings.

Alternative Formulation of EAV/CR Queries

Formulation of a complex query against an EAV/CR
database is significantly more difficult and error-
prone than is formulation of a functionally identical
SQL query against an equivalent conventional
schema. This is because the physical schema of an
EAV/CR database—the actual tables holding the data
—differs markedly from its logical schema, which
specifies how the classes modeled in the database are
related to each other. For example, when considering
Query 1, the ‘‘culture,’’ ‘‘organism,’’ and ‘‘patients’’ ta-

bles do not physically exist in the EAV/CR schema.
In a conventional schema, in contrast, logical and
physical schemas are identical.

Queries against an EAV/CR system must, therefore,
be formulated in terms of the semantics of the logical
schema and must then be translated into operations
on the tables in the physical schema. We present four
ways to do this, the third and fourth being slight
modifications of the second, as follows:

Method One

A single (large) SQL statement can be created, which
extracts the desired data by joining the necessary ta-
bles. In an EAV/CR schema, however, a small set of
physical tables is used to model many more logical
tables. This results in the same tables being used re-
peatedly under different aliases, with ‘‘self-joins’’ be-
ing performed. In Figure 4, which illustrates this ap-
proach for Query 1, the table EAVoTEXT is used
twice. As the logical schema becomes more complex
and more classes have to be traversed, such SQL gets
progressively harder to write and debug, because it
often incorporates a large number of nested con-
structs.

To complicate matters, when this SQL is sent to an
RDBMS, the latter parses the code and tries to for-
mulate an optimal strategy before executing it. Query
optimization is a problem known to be factorial with
respect to the number of tables or aliases participating
in the join.14 (Factorial 8, or 8!, equals 8 3 7 3 6 . . .
3 2 3 1 = 40,320. An excellent discussion of the query
optimization problem is posted at http://www.
informix.com/informix/solutions/dw/redbrick/
wpapers/star.html.)

Difficulties manifest, therefore, as the number of ali-
ases increase. While DBMS optimizers are claimed by
their vendors to use clever heuristics in such a situa-
tion, simply evaluating each of the numerous alter-
natives takes time. (In an experiment reported by
Nadkarni and Brandt,9 an attempted 20-alias join that
would have yielded only 50 rows in the result set
caused an RDBMS to freeze.)

The only justifiable circumstances for using a single-
statement approach for EAV/CR query are for queries
with a modest number of aliases (as in Figure 4), or
for ‘‘stored’’ queries, a facility available in many
DBMSs. (In execution of stored queries, the parsing
phase is bypassed, because the query has already been
‘‘compiled,’’ so to speak, with a plan of execution al-
ready worked out.)

Method Two

The second method uses a ‘‘divide and conquer’’
strategy. A series of simple queries are specified in



482 CHEN ET AL., Evaluating EAV/CR Database Performance

F i g u r e 4 Database query developed using a single SQL
statement. In this and the next three figures, attribute
ID 20 refers to organism name and ID 9 refers to patient
ID.

F i g u r e 5 Database query developed using temporary
tables created and deleted dynamically to store interim
data.

terms of individual classes in the conceptual schema.
Each query accesses one or two tables at a time to
create a temporary table. The temporary tables are
then combined with joins, using appropriate set op-
erations (intersection, union, difference), if necessary.
When the final result is obtained, temporary tables
created along the way are deleted.

In this particular case, the DBMS optimizer has no
problem with individual queries. In fact, the execution
plan devised by optimizers often involves creating
temporary tables, and we are explicitly telling the
DBMS what to do at each step rather than relying on
the DBMS to determine its own strategy. Figure 5 il-
lustrates this method for Query 1.

It is, of course, possible that, if a DBMS spends
enough time analyzing a complex query, it will arrive
at a solution superior to what we have manually spec-
ified. However, for highly complex ad hoc queries
(unlike stored procedures), the time required to devise
an execution plan may be much greater than the time
required to actually execute it.

Method Three

A slight modification of the second method is to re-
populate and empty existing indexed temporary ta-
bles instead of creating and deleting them. The poten-
tial rationale is that if intermediate result sets created
by a simple query are large, then, when the result sets
are to be combined, the query optimizer will often
create temporary indexes to speed up the join process.
If we maintain several indexed tables for the sole pur-
pose of holding intermediate results, then, when the
tables are populated through INSERT queries, the in-
dexes are also populated, and subsequent joins will
be speeded up. Figure 6 illustrates this approach. No-
tice the very great similarity to the code in Figure 5.

The only differences are that we use INSERT INTO
. . . SELECT instead of SELECT . . . INTO, and
TRUNCATE TABLE instead of DROP TABLE.

This strategy, however, is double-edged. If interme-
diate results are small, then the DBMS may perform
joins in memory rather than on disk. If so, we have
created disk-based indexes for nothing. Index main-
tenance uses machine resources and time, because
whenever rows are removed or added to a table, the
indexes on the table must also be maintained.

Method Four

A minor modification of the third method is to use
initially un-indexed temporary tables, which are in-
dexed only after all records are inserted. Record in-
sertion is expected to be faster because the indexes do
not have to be maintained each time a new record is
added to the corresponding table. The query is illus-
trated in Figure 7.

We applied all four methods to Query 1 operating on
EAV/CR-Big with 128Mb RAM allocated to the da-
tabase. We found that our second method (developing
simple queries that created tables and later removed
them) gave the best results.

Measuring Caching Effects

When the exact same query is sent to a DBMS mul-
tiple times, the execution times for the second and
subsequent runs are often significantly shorter than
for the first. This is because the DBMS uses caching,
either in memory or on disk. The SQL string of a
query is stored (so that the text of a new query may
be compared with it), along with the execution plan.



Journal of the American Medical Informatics Association Volume 7 Number 5 Sep / Oct 2000 483

F i g u r e 7 Database query developed using un-indexed
tables to store interim data, which are indexed only after
data are inserted into the tables.

F i g u r e 6 Database query developed using previously
created and indexed tables to store interim data.

If the result set is small enough, it may also be cached.
Therefore, in an extreme case, a repeated query will
not cause any disk activity at all: the DBMS, having
decided that it is identical to a previous one, will in-
stantaneously return a stored result.

It is important to determine caching effects for con-
ventional versus EAV/CR schemas, especially if que-
ries on the latter consist of a batch rather than a single
statement. (All the individual queries in a batch might
not be cached.) To measure caching effects, each query
was executed five times in succession immediately
following system start-up for each combination of sys-
tem memory and database size. We used five runs to
control for ‘‘cold’’ database, or start-up effects.15

We report the timings for every query result in two
ways: as initial query execution time and as cached
execution time (the average of the four succeeding
runs). The former probably simulates the real-world
situation more closely than the latter, since it is less
likely that two different users of the system will per-
form successive identical ad hoc queries.

Utilizing the Ancestor Field

We also compared execution times for queries that
made use of the ancestor field construct with execu-
tion times for those that did not. As stated previously,
the use of the ancestor field allows the composer of a
query to ‘‘cheat’’ and shorten the traversal path in
suitable circumstances. It was necessary to quantify
the benefit obtained while recognizing that queries
may not always be able to take advantage of this field.

Monitoring System Performance

Operating system performance was monitored with
Windows NT performance monitor in conjunction
with SQL Server Objects and Counters. We recorded
the following parameters:

n The number of physical database page reads per
second

n The number of disk reads per second

n The percentage of time the hard disk was busy with
read/write activity

n The percentage of time the processor handled non-
idle threads

Page read frequency is a surrogate measure of disk
I/O (input/output) efficiency. A high percentage of
hard disk activity and a large number of disk reads
per second suggest a potential disk I/O bottleneck.
Finally, a high degree of processor activity suggests a
potential processor-related bottleneck.

We performed these evaluations for Query 1 during
initial execution (when there was no data caching)
and the fifth run of the sequence of five (where cach-
ing effects were presumed to be most significant). SQL
Server 7 and Windows NT provide system measure-



484 CHEN ET AL., Evaluating EAV/CR Database Performance

ments every second; we averaged these values over
the duration of the query’s execution to obtain sum-
mary measurements.

Results and Interpretation

Comparing Different EAV/CR Query Strategies
for Attribute-centered Queries

As stated earlier, there are at least four different strat-
egies to use when performing attribute-centered que-
ries of EAV/CR data. Prior to contrasting the
EAV/CR and conventional schemas for different
memory configurations and database sizes, we had to
decide which of these strategies was most viable. We
report the comparative benchmarks with each ap-
proach for Query 1 (finding all patients with cultures
positive for P. aeruginosa).

n Initial execution times. The approach of developing
multiple SQL statements to create temporary tables
produced the quickest initial run (97.3 sec). The ap-
proach of creating a single large query took 108.5
sec, indicating that, even with a three-alias join, the
time the optimizer takes to devise a plan is signif-
icant. (Disk activity was higher; this is expected be-
cause the DBMS optimizer must consult disk-based
structures to make its decision.) The approach of
multiple SQL statements reusing indexed tempo-
rary tables gave the longest time (126.2 sec), indi-
cating that, at least in this particular case, pre-in-
dexing reusable tables does not necessarily pay off.
The approach of multiple SQL statements reusing
initially un-indexed temporary tables took 114.7
sec. This was better than pre-indexing but not as
good as de novo creation of temporary tables.

n Cached execution times. Here, the single-statement
approach gave results that were dramatically better
than with multiple statements (14.3 sec versus 86.6
sec for temporary table creation, 95.9 sec for in-
dexed temporary table reuse, and 89.9 sec for un-
indexed temporary table reuse). The operating sys-
tem statistics showed zero disk activity for the
single statement, indicating caching effects. We con-
cluded that the DBMS does not efficiently cache
batches of SQL statements; only the last-used state-
ment appears guaranteed to be cached. In practice,
as we have stated earlier, caching does not provide
any real benefit for ad hoc queries, which are un-
likely to be repeated twice in succession.

Similar results were observed when these strategies
were applied to Query 2 (find all specimens with S.
pneumoniae and C. albicans).

The time difference of 10 percent between the multi-
ple-statement and single-statement approaches is not
particularly dramatic. We hypothesized, however, that
as the number of classes involved in a query in-
creased, these differences would become increasingly
pronounced. We tried out a new query, ‘‘Find all pa-
tients with cultures positive for P. aeruginosa that
showed resistance to ceftazidime.’’ (This query also
involves the ‘‘AntimicrobialoTested’’ class and ‘‘Anti-
microbial Name’’ attribute.) The initial execution
times for the multiple-statement and single-statement
queries were 194 sec compared with 338 sec, respec-
tively. In other words, using multiple statements al-
most halved execution time. (Our experience is in line
with that reported in a well-known database article,16

which stated that giant, ‘‘elegant’’ SQL statements are
often too complex for the limited intelligence of a
DBMS optimizer.)

Because of these results, we used the multiple state-
ment approach, with creation of temporary tables, to
benchmark EAV/CR query performance for the re-
maining analyses.

Comparing Performance of the EAV/CR and
Conventional Representations for
Entity-centered Queries

Queries on the conventional and EAV/CR schemas
gave comparable execution times:

n Query 3: Find All Microbiology Tests for a Single
Patient. Initial times ranged from 1 to 2 sec for the
EAV/CR schema, compared with 0.9 to 1.4 sec for
the conventional schema. (The smaller and larger
numbers in each range apply to the ‘‘Small’’ and
‘‘Big’’ versions of each database.) The correspond-
ing cached times reduced to 0.6 and 0.5 sec irre-
spective of database size.

n Query 4: Find All Antimicrobials and Sensitivities
Tested for a Particular Culture. Initial times were
2.1 to 2.4 sec for the EAV/CR schema compared
with 2.2 to 2.7 sec for the conventional, with cached
timings for both EAV/CR and conventional sche-
mas being 1.5 to 1.7 sec.

To summarize, increasing the volume of the data by
a factor of four (in the ‘‘Small’’ versus ‘‘Big’’ data-
bases) had little effect on entity-centered queries. This
is expected, because for such queries, which use in-
dexes well and return small amounts of data, search
time tends to increase logarithmically rather than lin-
early with data size. The results indicate that, com-
pared with the EAV/CR schema, the conventional
schema may be marginally more efficient (if at all,



Journal of the American Medical Informatics Association Volume 7 Number 5 Sep / Oct 2000 485

Table 2 n

Execution Times (in Seconds) for Query 2:
‘‘Find All Specimens Positive for Both
Pseudomonas aeruginosa and Candida albicans’’

EAV/
CR-Small

Anc NoAnc
Conv-
Small

EAV/
CR-Big

Anc NoAnc
Conv-

Big

64-Mb RAM:
Initial query 3.3 21.3 6.9 14.3 141 25.3
Cached 0.7 13.6 4.5 1.5 139 11.0

128-Mb RAM:
Initial query 3.7 22.0 6.8 12.9 83.5 25.1
Cached 0.7 13.7 4.5 1.4 49.4 11.2

NOTE: Times for EAV/CR schema are displayed with and with-
out ancestor construct. Anc indicates ancestor; NoAnc, no an-
cestor.

Table 1 n

Execution Times (in Seconds) for Query 1:
‘‘Find All Patients with Cultures Positive for
Pseudomonas aeruginosa’’

EAV/
CR-Small

Anc NoAnc
Conv-
Small

EAV/
CR-Big

Anc NoAnc
Conv-

Big

64-Mb RAM:
Initial query 29.5 29.5 8.2 97.6 147 29.2
Cached 21.6 20.2 3.6 90.6 140 10.8

128-Mb RAM:
Initial query 30.2 28.9 8.2 97.3 108 26.2
Cached 7.8 11.6 3.7 98.4 98.4 10.2

NOTE: Times for EAV/CR schema are displayed with and with-
out ancestor construct. Anc indicates ancestor; NoAnc, no an-
cestor.

since results for Query 4 are inconclusive), but the dif-
ferences are not large enough to be of major practical
importance.

Comparing Performance of the EAV/CR and
Conventional Representations for
Attribute-centered Queries

n Query 1: Find All Patients with Cultures Positive
for P. aeruginosa (Table 1). The conventional queries
were three to five times faster than their EAV/CR
counterparts in the initial run, and 2 to 12 times
faster in the cached run. We analyze the results be-
low.

Increasing database size and system memory had lit-
tle influence on the ratio for the initial run. With the
smallest database, greater available RAM improved
caching of EAV/CR queries, but this effect was lost
for the largest database.

Using the ancestor field in the EAV/CR query pro-
vided little or no benefit for the smallest database but
reduced the time for the large database. Here, the ben-
efits were most pronounced with 64 Mb of RAM (with
time reduced by a third), but less so (only one tenth)
as more RAM was added.

The number of page reads per second was consis-
tently larger in the EAV/CR schema, particularly as
the database increased in size. This suggests that
physical disk I/O is a likely bottleneck in this query
operating on the EAV/CR model.

n Query 2: Find All Specimens Positive for S. pneu-
moniae and C. albicans (Table 2). Here, the EAV/CR
queries that used the ‘‘Ancestor’’ field were much
faster than queries on the conventional schema:

twice as fast with the initial query, six to eight times
as fast when cached. Changing database size or in-
creasing system memory had little effect on these
ratios.

When the ancestor field was not used, the EAV/CR
query took longer, with the difference in execution
times widening for initial runs as database size in-
creased. With 64 MB of RAM allocated, the ratios were
3 for the small databases and 5.6 for the large data-
bases. As with Query 1, however, the ratios decreased
(to 3.2 and 3.3, respectively) when 128 Mb of RAM
was allocated.

Our results indicate that while EAV/CR is generally
less efficient than its conventional equivalent, the in-
efficiency can be mitigated, at least in part, by addi-
tional memory. The dramatic benefits of the ancestor
field (specimen ID) in Query 2, which uses this field
specifically, should be put in perspective. Specifically,
incorporation of this extra field in the schema
amounts to deliberate denormalization, a standard
space-for-time tradeoff.* (We could also have done
this in the conventional schema, by adding a speci-
men ID column redundantly to the cultures and an-
timicrobial sensitivity tables. In this case, the altered
conventional schema would almost certainly have
outperformed the EAV/CR schema considerably.)

Our results do suggest that, if performance for certain
types of commonly executed queries is critical in a
particular database, judicious use of ancestor fields
can exert more of an impact than the schema’s un-

*Normalization refers to the database design principle of mini-
mizing data redundancy by storing a fact, as far as possible, in
only a single place. De-normalization refers to design that vio-
lates one or more of these principles.



486 CHEN ET AL., Evaluating EAV/CR Database Performance

derlying design (i.e., EAV/CR or conventional). In
many electronic patient record systems, for example,
almost every item of data is tagged with the ID of the
patient to whom it directly or indirectly pertains, be-
cause a very large portion of queries relates to indi-
vidual patients.

Discussion

We performed a pilot exploration of EAV/CR data-
base efficiency issues that can help guide designers
and programmers of EAV/CR databases, such as elec-
tronic patient record systems, as to the performance
penalty they could expect if they tried to execute com-
plex queries on the EAV/CR data directly, rather than
exporting subsets of the data to a conventional data-
base for querying purposes. However, the following
limitations of our study must be noted.

We examined performance monitors for a single da-
tabase engine running on a single operating system
platform. We chose this configuration largely because
of the available built-in system monitoring tools. The
results generated here may not completely map to
other database engines and operating systems. (Iden-
tical queries conducted on the two schemas using a
Microsoft Access 97 database engine running on Win-
dows 98, however, yielded qualitatively similar re-
sults.)

We cannot predict how performance would be af-
fected by increasing the database to sizes larger than
those tested here. Our results suggest, however, that
the difference in performance appears to widen as da-
tabase size increases for certain queries and that this
can be offset, at least in part, by adding system
memory.

We did not make use of the parallel processing ca-
pabilities of the SQL Server database engine, since we
employed a single processor machine for testing.

Investigations are under way to study additional
methods to optimize query generation and execution.

Our databases were populated with data from one
specific domain, microbiology. We cannot predict how
performance times would differ in a database popu-
lated from increasingly heterogeneous sources of data.
We would expect, however, that the effort needed to
develop queries would increase disproportionately in
the conventional schema compared with the EAV/CR
schema.

The logical schema of our test database may not be
the best candidate for demonstrating the full potential
value for an EAV/CR schema, since the data do not
exhibit sparseness.

The Windows NT operating system performs certain
background tasks for system maintenance that could
conceivably affect specific performance runs. We tried
to minimize these effects by generously dedicating
128 Mb of physical RAM to the operating system at
all times.

These are the lessons we learned from this exercise:

n For entity-centered queries, EAV/CR schemas are
about as efficient as their conventional counter-
parts. Attribute-centered queries are distinctly
slower for EAV/CR data than for conventional data
(three to five times slower, for our test data). Add-
ing more memory improves the ratio, especially for
large volumes of data, as shown by performance
monitor statistics.

n The strategy of querying an EAV/CR database with
simple statements run sequentially is a viable one.
Each individual statement is simple to understand;
in fact, it is simple enough to be created through a
query generator that has knowledge of the
EAV/CR logical schema. (A query generator for
ACT/DB, an EAV/CR database for clinical studies,
is described in Nadkarni and Brandt.9 ) We also
found that using this query approach was more ef-
ficient than creating a single, large SQL query state-
ment. The difference in efficiencies appeared to in-
crease as queries became more complex. Additional
studies are under way to examine this approach un-
der a wider range of conditions.

n The ‘‘ancestor’’ field yielded impressive benefits in
improving efficiency for certain queries. Its primary
limitations are that not all queries can make use of
it and that certain domains may not possess ‘‘nat-
ural’’ candidate ancestor fields. (The existence of an
ancestor field might also complicate the design of
an automatic query generator considerably, because
the generator must know the circumstances in
which shortcuts can be taken.)

While attribute-centered EAV/CR queries are slower
than queries on conventional schemas, this does not
disqualify EAV/CR schemas from consideration for
warehousing biomedical data. For a complex schema,
the increased execution times are significantly offset
by ease of database and query maintainability in the
EAV/CR model. The conventional query’s speed ad-
vantage (being three to five times faster) may appear to
be discouraging for EAV/CR, but the fact is that the
longest EAV/CR query in our fairly large data set took
less than 3.5 min to complete. Continuing enhancements
of CPU speed, increasing RAM capacity, and the
availability of affordable multiprocessor machines



Journal of the American Medical Informatics Association Volume 7 Number 5 Sep / Oct 2000 487

will lower absolute times further, even though they
would benefit conventional and EAV schemas equally.

In any case, long query execution times tend to be far
less critical for non–real-time, attribute-centered que-
ries, which are often submitted in batch mode. (Pa-
tient-centered queries typically submitted in an elec-
tronic patient record system, in contrast, demand
quick response time.) Perhaps the most compelling
justification for moving EAV/CR data subsets to spe-
cially designed, conventionally structured data marts
is when users who demand response times of a few
seconds repeatedly query these subsets.

Conclusions

This paper describes a pilot project to explore issues
in query performance for EAV/CR and conventional
database representations. Although we found that at-
tribute-centered queries performed less efficiently in
the EAV/CR model, we feel that many of the benefits
inherent in the EAV/CR representation help offset this
decrease in performance. Purchasing more memory,
additional processors, or faster hardware , or a com-
bination of these, may prove a very cost-effective ap-
proach to handling these potential inefficiencies, par-
ticularly if the alternative is to maintain two parallel
versions of a database with different structures. We
plan to continue building and optimizing query strat-
egies to support this representation as well as testing
its ability to handle increasingly complex databases
for alternative biomedical domains.

References n

1. Winston PH. Artificial Intelligence. 2nd ed. Reading, Mass:
Addison-Wesley, 1984.

2. Huff SM, Berthelsen CL, Pryor TA, Dudley AS. Evaluation
of an SQL model of the HELP patient database. Proc 15th
Symp Comput Appl Med Care. 1991:386–90.

3. Huff SM, Haug DJ, Stevens LE, Dupont RC, Pryor TA.

HELP the next generation: a new client–server architecture.
Proc 18th Symp Comput Appl Med Care. 1994:271–5.

4. Friedman C, Hripcsak G, Johnson S, Cimino J, Clayton P. A
generalized relational schema for an integrated clinical pa-
tient database. Proc 14th Symp Comput Appl Med Care.
1990:335–9.

5. Johnson S, Cimino J, Friedman C, Hripcsak G, Clayton P.
Using metadata to integrate medical knowledge in a clinical
information system. Proc 14th Symp Comput Appl Med
Care. 1990:340–4.

6. Nadkarni PM, Marenco L, Chen R, Skoufos E, Shepherd G,
Miller P. Organization of heterogeneous scientific data using
the EAV/CR representation. J Am Med Inform Assoc. 1999;
6(6):478–93.

7. Niedner CD. The entity-attribute-value data model in ra-
diology informatics. Proceedings of the 10th Conference on
Computer Applications in Radiology. Anaheim, Calif: Sym-
posia Foundation, 1990:50–60.

8. Nadkarni PM, Brandt C, Frawley S, et al. Managing attrib-
ute-value clinical trials data using the ACT/DB client–
server database system. J Am Med Inform Assoc. 1998;5(2):
139–51.

9. Nadkarni P, Brandt C. Data extraction and ad hoc query of
an entity-attribute-value database. J Am Med Inform Assoc.
1998;5(6):511–27.

10. Nussbaum BE. Issues in the design of a clinical microbiol-
ogy database within an integrated hospital information sys-
tem. Proc 15th Annu Symp Comput Appl Med Care. 1991:
328–32.

11. Delorme J, Cournoyer G. Computer system for a hospital
microbiology laboratory. Am J Clin Pathol. 1980;74:51–60.

12. Department of Veterans Affairs. Decentralized Hospital
Computer System Version 2.1: Programmer’s Manual. San
Francisco, Calif: Information Systems Center, 1994.

13. Celko J. SQL for Smarties: Techniques for Advanced SQL
Programmers. San Mateo, Calif: Morgan Kaufman, 1996.

14. Sybase Corporation. Adaptive Server Anywhere (ASA)
New Features and Upgrading Guide. (Chapter 4. Query
Optimization Enhancements.) Available at: http://sybooks.
sybase . come : 7000 / onlinebooks / group - aw / awg0603e/
dbupen6/. Accessed Jul 29, 2000.

15. Zaniolo C, Ceri S, Faloutsos C, Snodgrass R, Subrahmanian
V, Zicari R. Advanced Database Systems. San Francisco, Ca-
lif: Morgan Kaufmann, 1997.

16. Celko J. Everything you know is wrong. DBMS Mag. 1996;
9(9):18–20.

17. Wang P, Pryor TA, Narus S, Hardman R, Deavila M. The
Web-enabled IHC enterprise data warehouse for clinical
process improvement and outcomes measurement. AMIA
Annu Fall Symp. 1997:1028.


