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Abstract

Innate immune cells can develop exacerbated immunological response and long-term 

inflammatory phenotype following brief exposure to endogenous or exogenous insults, which 

leads to an altered response towards a second challenge after the return to a non-activated state. 

This phenomenon is known as trained immunity (TI). TI is not only important for host defense and 

vaccine response, but also for chronic inflammations such as cardiovascular and metabolic 

diseases such as atherosclerosis. TI can occur in innate immune cells such as monocytes/

macrophages, NK cells, ECs and non-immune cells such as fibroblast. In this brief review, we 

analyze the significance of TI in endothelial cells (ECs), which are also considered as innate 

immune cells in addition to macrophages. TI can be induced by a variety of stimuli including LPS, 

BCG, and oxLDL, which are defined as risk factors for cardiovascular and metabolic diseases. 

Furthermore, TI in ECs is functional for inflammation effectiveness and transition to chronic 

inflammation. Rewiring of cellular metabolism of the trained cells takes place during induction of 

TI, including increased glycolysis, glutaminolysis, increased accumulation of TCA cycle 

metabolites and acetyl-CoA production, as well as increased mevalonate synthesis. Subsequently, 

this leads to epigenetic remodeling, resulting in important changes in chromatin architecture that 

enables increased gene transcription and enhanced pro-inflammatory immune response. However, 

TI pathways and inflammatory pathways are separated to ensure memory stays when 

inflammation undergoes resolution. Additionally, reactive oxygen species (ROS) play context-

dependent roles in TI. Therefore, TI plays significant roles in endothelial cell and macrophage 

pathology and chronic inflammation. However, further characterization of TI in ECs and 
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macrophages would provide novel insights into cardiovascular disease pathogenesis and new 

therapeutic targets.

Graphical Abstract

1. Trained immunity inducers are risk factors for cardiovascular diseases 

and other chronic metabolic diseases

Cardiovascular disease (CVD) is the leading cause of death worldwide. Sub-endothelial 

retention of oxidized plasma lipoproteins triggers the recruitment of monocytes, 

macrophages, T cells, and other immune cells into arteries, suggesting that innate and 

adaptive immunity contribute to form atherosclerotic plaques1. Dogmatic descriptions of the 

immune system characterize the innate immune system with monocytes, macrophages, 

dendritic cells, and endothelial cells (ECs) as the rapid, non-specific branch and the adaptive 

immune system with T cells and B cells as the delayed but specific arm that coordinates the 

immune response and provides “memory” of the encounter in the form of memory T cells 

(Tm)2 for a future exposure to the same pathogen. While this paradigm was mostly accurate, 

recent discoveries have provided evidence that the innate immune system also has 

“memory” of past infections/non-infectious stimuli that inform future enhanced 

immunological responses. Whereas the memory of the adaptive immune system provides 
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specific defenses against a particular pathogen encoded in the genome of a specialized Tm 

cell type, innate immune memory in all the innate immune cells provides a more robust but 

non-specific immune response to a future unrelated immunological threat, which is codified 

within the host’s epigenome3. As innate immune memory is a relatively newly described 

phenomenon in humans, many terms have been used to describe the process4.

Innate immune memory or trained immunity (TI)5 can be defined as an initial immune 

response modifying the immune response to a future exposure of an unrelated pathogen 

(Figures 1A and 1B). This initial “priming” response can either position the innate immune 

system for an elevated immune response (trained potentiation with increased pro-

inflammatory cytokine generation) or a suppressed immune response (trained tolerance)5. 

These modified immune responses can exist for days to months6, 7. TI can be induced by 

different stimuli including Bacillus Calmette-Guerin (BCG), β-glucan, oxidized low-density 

lipoprotein (oxLDL), Lipopolysaccharides (LPS), and others8–10 (Table 1A)

TI has not only been identified in myeloid precursors, macrophages and circulating 

monocytes11, 12, but also in other innate immune and non-immune cells. For example, TI 

properties have been demonstrated in vascular smooth muscle cells13, ECs14, 15, primed 

adipose mesenchymal stem cells16, and bone marrow-derived hematopoietic stem cells 

(HSC)17 contributing to both human auto-inflammatory diseases such as hyper-

immunoglobulin D (IgD) syndrome (HIDS)18 and sterile inflammatory diseases such as 

atherosclerosis11, 19. These studies have demonstrated that sterile lipid inflammatory 

mediators prime myeloid precursor cells in the bone marrow. However, what features of 

sterile lipid inflammatory mediators have as one of the CVD risk factors identified that are 

similar to infectious agents in eliciting innate immune responses in the cardiovascular 

system? As we pointed out recently, the common properties of identified CVD risk factors 

are to elicit innate immune memory (trained immunity) of the cardiovascular system so that 

the innate immune responses to the risk factor(s) or other non-specific stimuli can be 

amplified and long lasting20.

2. Trained immunity in endothelial cells is functional for inflammation 

effectiveness and transition to chronic inflammation

We previously argued that ECs are conditional innate immune cells14, 21. ECs function to 

regulate vascular permeability, metabolite and waste exchange, and immune cell 

extravasation into tissue22–25. ECs also express many of the same pattern recognition 

receptors and cytokines as other profession immune cells such as macrophages24, 26. 

Importantly, ECs have an immune response modulation (promotion or suppression) 

functions on both the innate and adaptive immune systems by expressing T cell co-

stimulation/immune checkpoint receptors27–29. Proper EC function is so critical that EC 

dysfunction is the first step towards the inflammatory cascade that leads to the development 

of CVD22. EC detection of hyperlipidemia, hyperglycemia, and hyperhomocysteinemia 

metabolic danger-associated molecular patterns (DAMPs) leads to the expression of 

cytokines and adhesion molecules that initiate the recruitment of monocytes and T cells into 

major arteries leading to atherosclerosis30–37. However, two important questions remain: 1) 
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whether DAMPs-sensing capacities are functionally linked to TI in ECs? And 2) whether 

pro-atherogenic stimuli make ECs undergo metabolic and epigenetic reprogramming, which 

leads to TI?

TI has also been characterized in ECs. One such study illustrates that how innate immune 

potentiation in EC uses the same atherogenic metabolic DAMP38, oxLDL, that elicits innate 

immune training, similar to that in monocytes, oxLDL-mediated immunologic memory in 

ECs15. In this study, they demonstrate that oxLDL promotes an increased innate immune 

cell phenotype (increased cytokine production, increased adhesion molecule expression), 

switch from oxidative phosphorylation (OXPHOS) to glycolysis via metabolic 

reprogramming and epigenetic modifications downstream protein kinase B (Akt)-

mammalian target of rapamycin (mTOR) signaling. Other studies have identified oxLDL-

mTOR signaling in monocytes, and reported that shear stress triggers hypoxia-inducible 

factor 1-α (HIF1-α) in ECs9, 39–41. Another study characterizes the effects of bacterial 

endotoxin LPS induced-immune tolerance in human umbilical vein ECs (HUVECs) and the 

potential use of monophosphoryl lipid A (MPLA), a compound similar in structure to LPS, 

to induce trained tolerance as a potential therapeutics to suppress innate immune 

inflammation42–44. These results suggest that ECs function as conditional innate immune 

cells; and that they are the gatekeepers and make decision on trained immunity or trained 

tolerance that control the progression towards atherosclerosis.

EC are highly heterogeneous despite arising from a common progenitor45. This 

heterogeneity is reflected by distinctive patterns of inflammation-induced changes in 

leukocyte recruitment and protein expression between different ECs46, 47. Certain vascular 

beds including arteries and veins in heart, kidney and lung are more susceptible to the 

development of inflammation48. For example, EC in certain location in the arterial tree as 

the aortic arch and carotid arteries are particularly susceptible to atherosclerosis 

(atherosclerotic prone regions) whereas others such as the distal internal carotid and upper 

extremity arteries, are usually spared41, 49. Indeed, ECs lining those arteries in the 

atherosclerotic prone regions characterized by hyper-inflammatory state and probably 

upregulation of the TI pathways. Furthermore, microvascular ECs inflammation and 

immune response contributes to hypertension50–52, presumably via TI pathways. 

Additionally, a growing body of evidence suggests a role for consideration of ECs activation 

and inflammation as a major contributor to the pathophysiology of venous 

thromboembolism53, 54. Therefore, the key event in the initiation of venous 

thromboembolism formation is most likely vein wall inflammation and studies showed that 

probable association between venous thromboembolism and several other markers of 

inflammation such as IL-6, MCP1, IL-8, and tumor necrosis factor-alpha exists55–57. 

Moreover, microvascular ECs inflammation, hypertension, and thromboembolism have been 

shown to be associated with COVID-1958, 59 presumably also via TI pathways. Why do ECs 

need to have TI function? ECs have TI function to achieve the following purposes: 1) 
making EC sensing of DAMPs more effective; 2) guiding trans-EC migration of monocytes, 

T cells and other immune cells to the atherogenesis-prone regions of major arteries such 

aortic sinus in TI-enhanced manners; 3) differentiating CVD risk factors (inducing TI 

pathways) from non-inflammatory stimuli (not inducing TI pathways), for example, all the 

70,926 compounds identified in the foods (https://foodb.ca/compounds) that have potential 
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to get into human blood circulation20; and 4) making inflammation triggered by CVD risk 

factors become chronic. This conclusion opens exciting new possibilities in targeting EC 

trained immunity for the treatment of not only CVD, but also for the treatment of other 

metabolic inflammatory diseases.

3. Reprogramming of bioenergetic metabolic pathways in trained 

immunity generates compounds for epigenetic memory

The five classical signs of inflammation are heat, pain, redness, swelling and loss of 

function, in which ECs play essential roles. The processes have to be highly effective in 

secreting cytokines, recruiting innate immune cells, phagocytosis, cell locomotion, and 

killing of pathogens or cells, all of which require high energy via bioenergetic metabolic 

reprogramming4 selected from 2,847 metabolic pathways (https://metacyc.org/)14. To 

provide the energy needed to function properly, the metabolic processes of the innate 

immune cells are regulated precisely. Trained immunity is intrinsically linked to changes in 

cellular bioenergetic metabolism. These metabolic pathways include the glycolytic pathway, 

tricarboxylic acid cycle (TCA) cycle, acetyl-coenzyme A (acetyl-CoA) generation, and 

mevalonate pathway, which are closely intertwined, because of shared fuel inputs and the 

dependence on the products of other pathways to serve as precursors (Figure 1C)18, 60.

Glycolysis

Glycolysis is a major metabolic pathway and plays an important role in biosynthetic 

pathways. In this pathway, glucose is converted to pyruvate in the cytoplasm and enters into 

the TCA cycle or fermented into lactate. The “Warburg Effect,” first identified in highly 

metabolically active cancer cells, has been identified as a key metabolic transition to 

glycolysis, which is seen in cells undergoing biosynthesis of pro-inflammatory 

molecules10, 61, 62. Additionally, the transition from OXPHOS to aerobic glycolysis seen in 

the Warburg Effect63 is also an important metabolic change in TI. This cellular metabolic 

switch has been demonstrated in β-glucan- and BCG-induced, innate immune training in 

monocytes10, 64, 65. In vitro studies reported that β-glucan-trained human monocytes have 

dramatically reduced oxygen consumption and increased glucose consumption and lactate 

production66. Additionally, in vivo studies reported that isolated peripheral blood 

mononuclear cells trained with BCG induce-TI associated with upregulation of the key 

enzymes involved in glycolysis pathways such as hexokinase 2 (HK2) and 

phosphofructokinase platelet (PFKP)60. The molecular mechanism underlying β-glucan and 

BCG induced-TI have been outlined in monocyte in vitro studies. β-glucan and BCG 

training promote a metabolic transition to glycolysis via the pathway of mammalian target of 

rapamycin (mTOR) activation of hypoxia-inducible factor 1α (HIF1α)66, 67. 

Pharmacological inhibition of Akt-mTOR-HIF1α pathway or glycolysis pathway using 

wortmannin, rapamycin, and 2-deoxyglucose (2-DG) (Table 1B), as well as gene knockout 

of HIF1α in myeloid cells reverses the pro-inflammatory phenotype in trained innate cells66.

Pro-atherogenic lipids, such as oxLDL and lysophosphatidylcholine (LPC), have been 

shown to drive TI phenotypes in innate immune cells as well as ECs9, 20, 68–71. Training of 

monocytes with oxLDL induces TI and increases glycolysis, however, inhibition of 
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glycolysis with 2-DG and inhibition of the inducible PFK-2/FBPase isozyme 6-

phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) prevent development of 

TI72. Genetic variation in PFKFB3 and PFKP genes is associated with the increased tumor 

necrosis factor-α (TNF-α) and inteleukin-6 (IL-6) production ex vivo upon training with 

oxLDL73. Human aortic endothelial cells (HAECs) primed with oxLDL exhibit increased 

glycolysis and lactate production15. Similarly, the TI phenotype in oxLDL-primed HAECs is 

reversed upon treatment with mTOR inhibitors (Torin1), glycolysis inhibitors 3-(3-

pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) and HIF1α inhibitors (KC7F2)15.

Tricarboxylic acid cycle (TCA) for citrate-Acetyl-CoA generation and fumarate 
accumulation

Another important metabolic event in trained immune cells is the TCA cycle’s anabolic 

repurposing towards synthesizing cholesterol from acetyl-CoA and citrate. The TCA cycle 

in mitochondria represents a critical pathway of cellular energy metabolism resulting in the 

oxidation of different substrates, including pyruvate generated from glycolysis in the 

cytosol18.

In addition to the transition from OXPHOS to glycolysis, β-glucan trained macrophages 

have increased levels of glycolysis-related metabolites (including Acetyl-CoA). The TCA 

cycle-related metabolites such as citrate, succinate, malate, and fumarate are increased in 

trained monocytes due to the partial shutdown of the TCA cycle66. Citrate can be generated 

from glycolysis via pyruvate or generated from glutamine (glutaminolysis) and converted 

into α-ketoglutarate to enter the TCA cycle74, 75. Then citrate is transported from the 

mitochondria into the cytoplasm by the citrate carrier (CIC), is converted into acetyl-CoA by 

adenosine triphosphate (ATP)-citrate lyase (ACLY)76 and used as a precursor in mevalonate/

cholesterol biosynthesis pathway and lipogenesis pathway. Moreover, ACLY-catalyzed 

acetyl-CoA is a key determinant of cellular protein acetylation and used as an acetyl donor 

for histone acetylation, regulating the expression of several genes77. Importantly, acetyl-CoA 

generated from both glycolysis and glutamine can induce histone acetylation of genes of 

glycolytic enzymes, including; hexokinase 2 (HK2), phosphofructokinase (PFK), and lactate 

dehydrogenase (LDH) resulting in increased glycolysis78. Additionally, ACLY acts as a key 

enzyme in macrophage inflammatory response. Different inflammatory stimuli including 

LPS, interferon-γ (IFN-γ), and TNF-α induce ACLY expression in immune cells79.

Metabolomics and transcriptomic studies of β-glucan trained immune cells showed that 

these trained cells increase accumulation of the TCA cycle metabolite fumarate80. Several 

lines of evidence showed that succinate and fumarate accumulation is associated with 

stabilization of HIF-1α leading to increased glycolysis and IL-1β production81, 82. 

Furthermore, fumarate accumulation leads to epigenetic reprogramming by inhibiting 

lysine-specific histone demethylase 5 (KDM5)80. Furthermore, increased glutamine 

metabolism (glutaminolysis) is one of the important metabolic changes in macrophages 

trained with BCG and β-glucan to produce more citrate for Acetyl-CoA generation in the 

cytosol60, 80. Notably, the glutamine pathway inhibition by the glutaminase inhibitor, 

Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) inhibits β-glucan and 

BCG induced TI in vitro and in vivo60, 80.
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Mevalonate synthesis pathway

The cholesterol biosynthesis is an effector molecule involved in inflammatory responses83. 

Acetyl-CoA generated from the TCA cycle in the cytoplasm can enter the cholesterol 

biosynthesis pathway and generate cholesterol using the enzyme, 3-hydroxy-3-

methylglutaryl CoA reductase (HMGCAR), which is the rate-limiting step in the cholesterol 

biosynthesis pathway. Cholesterol plays a critical role in the inflammatory function of 

different immune cells. Lipid rafts in the cellular membrane are important for inflammatory 

signal transduction pathways83. Furthermore, cholesterol accumulation in monocytes/

macrophages play a key role in the acceleration of atherosclerosis84. Increased cholesterol 

synthesis is an important hallmark of β-glucan trained monocytes. In fact, this is 

accomplished not by cholesterol biosynthesis but rather by an accumulation of the upstream 

metabolite mevalonate18. As highlighted earlier, Akt-mTOR-HIF1α drives metabolic 

reprogramming through the mevalonate pathway, which is considered the underlying 

mechanism that induces TI. In addition, β-glucan trained macrophages show an upregulation 

of cholesterol and fatty acid synthesis pathways. Of note, increased cholesterol synthesis is 

critical for the β-glucan-induced training of mature myeloid cells and the hematopoietic 

stem and progenitor cells (HSPCs)12.

The functions of the mevalonate synthesis pathway in TI can be summarized: first, human 

monocytes exposed to mevalonate for 24 hours increase cytokine production and induce TI 

associated with increased aerobic glycolysis and enrichment of histone 3 lysine 4 tri-

methylation (H3K4me3) on the promoters of several cytokine genes18. Second, inhibition of 

the mevalonate pathway by using statins (HMGCAR inhibitor) significantly reduces TI 

induced by oxLDL and β-glucan in vitro and in vivo18, 85 presumably by a negative 

feedback to decrease Acetyl-CoA generation for histone acetylation. Third, pharmacological 

inhibition studies demonstrated that mevalonate enhances TI via activation of the insulin-like 

growth factor 1 receptor (IGF1-R) and subsequent stimulation of mTOR signaling and 

glycolysis pathway by a positive feedback loop18.

Multiple levels of experimental evidence showed the in vitro pharmacological inhibitors of 

mevalonate pathway, glycolysis, glutaminolysis, and pharmacological blockers of histone 

methyltransferases could ameliorate induction of TI. Furthermore, in vivo studies using 

mouse models have confirmed these results80. These results would allow the development of 

novel pharmacological strategies to inhibit TI. However, future extensive studies and further 

elucidation of the mechanism of TI in endothelial cells will provide an exciting novel 

prospect for the development of pharmacological strategies to reduce atherosclerotic 

cardiovascular diseases and other metabolic diseases.

4. Epigenetic reprogramming is formed for enhancement of cytokine 

responses when encountering subsequent specific or non-specific 

challenges

The epigenetic reprogramming of trained immune cells is driven, at least in part, by a 

rewiring of intracellular metabolic pathways86. A switch from OXPHOS to increased 

glycolysis is key for the development of the trained phenotype69. In addition, increased 
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glutaminolysis and fumarate accumulation can inhibit histone demethylase KDM5 and 

affects histone methylation80. β-glucan induced TI depends on the intracellular 

accumulation of mevalonate and the subsequent activation of the IGF-1 receptor18. 

Therefore, epigenetic modification plays a critical role in mediating TI. During the TI 

process, the first stimulations, such as BCG, oxLDL or LPS, rewrite the epigenetic 

modifications of inflammatory cytokines’ enhancers or promotors in innate immune cells. 

After the epigenetic modification, second stimuli induce high cytokine production, activate 

intracellular signaling molecules, and enhance inflammatory response87. These epigenetic 

modification in TI includes histone methylation and acetylation88, 89. However, the 

epigenetic modifications induced by different stimuli are variable in mechanisms and cell 

types of TI.

BCG vaccination promotes the binding of H3K4me3 at the promoters of inflammatory genes 

encoding TNFα, IL6, and Toll-like receptor 4 (TLR4)90. Besides H3K4me3, BCG 

significantly augments IL-1β production via histone 3 lysine 27 acetylation (H3K27ac) 

enrichment and protects against virus infection in monocytes91. In addition to enrichment of 

histone modification, studies also found that BCG leads to decreased H3K9me3, a repressor 

mark, and enhances TI response60. Furthermore, β-glucan priming increases cytokine 

production by enrichment of H3K4me3 but not H3K27me3 in monocytes92 via an increased 

levels of long non-coding RNAs in macrophage93. The top 500 genes, induced by H3K4me3 

in β-glucan treatment, are related to the production of cytokines and chemokines in 

atherosclerosis progression9. To clearly study the relationship of H3K4me3 with TI, studies 

found that inhibition of histone demethylase KDM5 by fumarate accumulation80 

significantly increases the levels of H3K4me3, suggesting that the TCA cycle product 

fumarate plays an important role in β-glucan mediated TI9. In addition to H3K4me3, β-

glucan also increases H3K4me1 and H3K27ac in monocyte-to-macrophage differentiation 

and TI67.

oxLDL, an established risk factor for CVD and chronic kidney disease, is also critical for TI 

induction. oxLDL priming significantly increases the enrichment of H3K4me3 at the 

promoters or enhancers of pro-atherogenic cytokines and chemokines9 as well as H3K27ac 

at the promoters of IL-6 and IL-8 via mTOR-HIF1α signaling in ECs15. The oxLDL 

induced TI is abrogated by non-specific histone methyltransferase inhibitor. Besides this, 

inhibition of histone methylation by pan-methyltransferase inhibitor 5’-methylthioadenosine 

(MTA) blocks the phenotype of TI induced by β-glucan94 and BCG92. LPC is another risk 

factor and DAMP for atherosclerosis36 has been reported to induce TI enzymes via 

H3K14ac in HAECs20.

Additionally, aldosterone, the main mineralocorticoid hormone, induces the gene 

expressions related to fatty acid metabolism and pro-inflammatory cytokines production via 

H3K4me3 enrichment in macrophage95. Super-low dose LPS has been shown to induce TI 

in vivo and in vitro. LPS promotes enhancer activities in H3K4me1 and H3K27ac and TI in 

HSCs96 and macrophage97. Studies reported that the epigenetic changes could maintain 12 

weeks, which are mediated by CCAAT/enhancer binding protein (C/EBP) transcription 

factor family in LPS-induced TI96. In addition to active epigenetic reprograming, LPS also 

induces TI by inhibiting histone 3 lysine 9 di-methylation (H3K9me2), a suppressive histone 
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modification, via stress-response transcription factor ATF7 phosphorylation-mediated 

mechanism98. Human cytomegalovirus (HCMV) also induces TI via DNA hyper-

methylation at promoters of altered cytokines in natural killer (NK) cells99.

Based on these publications, H3K4me3, H3K27ac, H3K14ac, and H3K4m1 have been 

reported to participate in most stimuli-induced TI in different cell types including ECs. In 

addition, future work is needed to identify other stimuli involved in TI and epigenetic 

reprogramming in ECs.

5. Reactive oxygen species (ROS) play context-dependent roles in trained 

immunity

Cellular metabolic pathways and signaling molecules are significantly correlated to 

epigenetic rewriting in TI. We recently proposed that ROS systems are a new integrated 

network for sensing homeostasis and alarming stresses in organelle metabolic process100. 

Previous studies reported that ROS production can be regulated by circular RNAs and 

associated with different cardiovascular metabolic inflammation101. In addition, ROS 

generated in metabolic processes are reported to participate in the process of TI and the 

metabolic reprogramming during immune responses leads to excessive ROS production102. 

We previously reported that ROS mediate LPC-induced TI enzyme transcription in 

HAECs20, 100 and that IL-35 can downregulate three ROS promoters and upregulate one 

ROS attenuator103. In addition, ROS generation is increased by BCG and oxLDL priming in 

monocytes8. Studies further reported that oxLDL-induced ROS production via mTOR 

signaling plays critical role in promoting TI71. To further study ROS production’s function 

in TI in vivo, mice are first trained with BCG followed by a second stimulation with a type 

of ROS hypochlorous (HOCL). After ROS stimulation, the productions of cytokines and 

chemokines, such as C-C chemokine receptor type 2 (CCR2), C-X-C receptor type 4 

(CXCR4), lymphocyte antigen 6 (Ly6C) and C-C motif chemokine ligand 2 (CCL2) are 

significantly increased104. However, other publications reported that β-glucan decreases 

ROS production and increases mTOR signaling in trained monocytes8. Additionally, studies 

reported that mitochondrial ROS (mtROS) production inhibits the transcriptional factors and 

gene expressions, but not epigenetic remodeling in TI105. Therefore, further studies are 

needed for the detailed role and mechanisms for ROS production and TI in ECs.

ROS are the upstream direct activator of NOD-, LRR- and pyrin domain-containing protein 

3 (NLRP3)-caspase-1 inflammasome, which is an important mediator of TI. The nucleotide-

binding site domain in NLRP3 is highly sensitive to ROS100. After tightly binding with, the 

NLRP3 is activated and promotes the progression of TI. In addition, oxLDL and 

extracellular ATP promote the activation of NLRP3 inflammasome and induction of TI via 

H3K4me1, H3K4me3 and H3K27ac enrichment9. Thus, the ROS-NLRP3 inflammasome 

pathway may be the potential regulating mechanism of TI. However, the other detailed 

mechanisms have been less reported than the ROS-NLRP3 inflammasome pathway, and 

further studies are needed. Taken together, ROS play context-dependent roles in TI.
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6. Trained immunity pathways and inflammatory pathways are separated 

to ensure memory stays when inflammation undergoes resolution

Adaptive immunological memories are carried out by special functional cell populations, 

memory T2 and memory B lymphocytes, which are separated from effector T cells/B cells89. 

Thus, this mechanism ensures that the robust immune responses to dominant pathogens are 

carried out by effector cells. In contrast, immune memories are carried out by a small 

number of memory cells with high antigen specificities. However, an important question 

remains whether this important mechanism exists in innate immune cells. We previously 

found out that innate immune memory pathway and effector pathway are separated in LPC-

trained ECs; and that LPC-induced H3K14ac binds more TI gene genomic regions (78.95%) 

than that of effector genes (43.12%)20. Another publication reported that epigenetic 

reprogramming-modulated innate immune memory is separated from the transcriptional 

factors-regulated innate immune effector pathways in HAECs. Anti-inflammatory cytokines, 

such as IL-35 and IL-10, inhibit the effector pathways in LPC-induced TI in ECs, whereas 

having no inhibition affects the expression of memory pathway genes105. Further studies are 

needed to determine the detailed mechanisms of separation of memory and effector 

pathways in TI.

7. Trained immunity plays significant roles in endothelial pathology and 

chronic inflammation

Infections

Immune memory is a defining feature of the acquired immune system. However, 

reprogramming of innate immunity can also result in enhanced responsiveness to subsequent 

triggers, which forms the basis on which chronic inflammatory diseases develop4. ECs have 

been documented the existence of non-specific characteristics of innate immunity when 

exposed to exogenous or endogenous stimuli14. Dengue viruses cause two severe diseases 

that alter vascular fluid barrier functions, dengue hemorrhagic fever and dengue shock 

syndrome106. ECs are critical targets of dengue virus infection that can contribute to 

viremia, elicit immune-enhancing responses via high-level induction and secretion of 

activating and recruiting cytokines by immune cells107. The immune memory of prior 

infection of the dengue virus could provide protection for 2–3 months. When short-term 

cross-protection wanes, patients with secondary infections (not limited to dengue virus) are 

at higher risk of severe disease than patients without prior infection108, suggesting the innate 

immune training on ECs may have harmful effects on how the immune system responds to 

subsequent same or other pathogen invasions109. Based on these findings, several trials are 

currently underway to determine whether BCG can help prevent the Coronavirus Disease 

2019 (COVID-19)110.

Association between infections and cardiovascular diseases

Epidemiological evidence indicates that TI links infection and CVD111, 112. Impaired anti-

coagulant function and expression of the endothelium genes upon infection with influenza 

viruses or other respiratory viruses have been linked to a risk of myocardial infarction 
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beyond the short-term post-infection period113. Prior instances of bacteremia and sepsis also 

substantially increase the 5-year risk of cardiovascular events. Endothelial dysfunction and 

pro-coagulant changes in the blood provide a biological basis for the association114, 115. The 

strength and time-related patterns of the association between infections and increased risk of 

cardiovascular events suggest a causal relationship, that the associations are stronger and last 

longer when the infections are severe111. Indeed, rather than exposure to specific pathogens, 

the accumulated non-specific infectious burdens, including infections of Chlamydophila 
pneumoniae, Helicobacter pylori, cytomegalovirus and human immunodeficiency virus 

(HIV), are associated with future development of atherosclerosis116–118. A longitudinal 

population-based study found that severe early life infections are associated with sub-

clinical atherosclerosis in adulthood119, 120. Regardless of the induction of a systemic 

inflammatory response and activation of the immune system, exposure to pathogens 

correlates with local activation of ECs and the appearance of pro-coagulant activity, leading 

to endothelial dysfunction. In addition to the atherogenic phenotype of trained macrophages, 

enhanced adhesive markers and cytokine production capacity in trained ECs also indicate 

that the TI protects against re-infections but may accelerate the development of chronic 

inflammation such as atherosclerosis112.

Other than microbial products, endogenous sterile stimuli could trigger TI in multiple 

clinical scenarios. In the atherosclerosis-prone mice model, Western-type diet- induced 

systemic inflammations contribute to the enhanced responses to subsequent LPS 

stimulation68. The transcriptional and epigenetic reprogramming of circulating monocytes 

and their bone marrow myeloid progenitor cells devote to the TI phenotype, which persists 

even after the mice had been switched to a normal chow diet, regardless of circulating 

cholesterol levels and systemic inflammatory markers returning to normal. We previously 

demonstrated that ECs also underwent transcriptional and epigenetic alterations upon LPC 

stimulation in vitro and Western diet feeding in vivo121. The changes of a group of enzyme 

genes lasted even when the endothelial activation markers are obstructed by the 

administration with anti-inflammation cytokines, suggesting endogenous sterile stimuli 

induced immune memory could also be built-in ECs105.

Ischemia/reperfusion injury

Organ transplantation has been investigated as another clinical scenario, in which 

endogenous sterile stimuli could trigger TI in myeloid cell122. Meanwhile, hypoxia/ischemia 

as a stimulus for TI has been hypothesized123. Endothelial dysfunction plays a significant 

role in ischemia/reperfusion (I/R) injury in multiple organs124–126, however, it could be 

prevented by ischemic conditioning with a protective intervention based on limited 

intermittent periods of ischemia and reperfusion127. The molecular mechanisms and signal 

transduction reprogramming including less ROS production, reduced neutrophils 

recruitment, and diminished inflammatory reactions during the pre-conditioning process 

indicate the TI characteristics in ECs128, 129. In the context of endothelial training in I/R 

injury, low-dose LPS pre-treatment could also downregulate the expression of endothelial-

cell adhesion receptors, hence alleviate neutrophil invasion into the tissues130.
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Recently, we have reported that ischemic pre- and post-conditioning induce upregulation of 

the canonical and non-canonical inflammasome regulators and TI regulators131. In addition, 

ischemic pre-conditioning has been demonstrated to alter the brain’s epigenetic profile from 

ischemic intolerance to ischemic tolerance132. Meanwhile, the miRNA transcriptome 

changes have also been observed to be involved in the epigenetic reprogramming in the 

brain ischemic tolerance133, 134. As the induction of miR-15a expression has been 

experimentally verified to contribute to ischemic endothelial cell damage functionally, the TI 

phenotype in ECs during the ischemic pre-conditioning may provide neuroprotective roles in 

later ischemia injuries135.

Smoking

Cigarette smoking (CS)-induced EC damage and endothelial dysfunction seem to be dose-

related and contribute to vascular injury, atherogenesis, chronic obstructive pulmonary 

disease (COPD) and increased CVD risk136–138 presumably via increasing TI. Smoking 

cessation leads to prolonged improvements in endothelial function139, 140 presumably by 

inhibiting TI. During this process, epigenetic alterations have been demonstrated to play 

important roles in the specificity and duration of gene transcription141, 142. Indeed, the 

modification of histone deacetylase 6 (HDAC6) has been evidenced to mediate the 

disruption of lung endothelial barrier integrity after CS exposure, enhancing the 

susceptibility to following acute lung injury143. Besides, protein arginine methyltransferase 

6 (PRMT6) has been identified in mediating CS-induced apoptosis and inflammation in 

HUVECs; and modulating this methyltransferase has been demonstrated to be associated 

with HIV-1 infectivity144 and lung tumor progression145. Taken together, those TI findings 

may explain the enhancement of CS-induced endothelial impairment to the development of 

AIDS and tumorigenesis146.

Conclusion

The complexity of the immune system remains at the heart of both infectious and sterile 

inflammatory diseases. In the case of cardiovascular diseases, the inflammatory response 

starts with endothelial cell activation147, 148, which coordinates the subsequent leukocyte 

infiltration. In this context, endothelial cells function as conditional innate immune cells. 

Recent studies have shown that innate immune memory (trained immunity) is a feature of 

monocytes, macrophages, NK cells and endothelial cells149, 150. Taken together, these 

studies support our argument that endothelial cells, in their capacity as conditional innate 

immune cells with TI function, are the gatekeepers that control the initiation and progression 

of cardiovascular disease, including atherosclerosis.

Endothelial cells are primed for a potentiated innate immune response common driver of 

atherosclerosis. Recent studies have demonstrated how the canonical atherogenic DAMP, 

oxLDL, elicits innate immune training in endothelial cells via 1) increased cytokine and 

adhesion molecule expression production, 2) a metabolic switch from OXPHOS to 

glycolysis, 3) epigenetic modifications of pro-inflammatory genes, and 4) ATK-mTOR-

HIF1α signaling. Furthermore, changes in shear stress at atheroprone sites in the vasculature 
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have shown key features of trained immunity including 1) upregulation of glycolysis, 2) 
histone modifications, and 3) HIF1α signaling41.

These conclusions open exciting new possibilities in targeting EC trained immunity for the 

treatment of not only cardiovascular disease but also for the treatment of other metabolic and 

inflammatory diseases. The regulation of trained innate immunity may provide new insights 

and therapeutic targets in various disease contexts151. Promoting trained immunity is 

beneficial for preventing diseases, for example, using the BCG vaccine for children after 

birth can reduce child morbidity and mortality152, and can be used as immunotherapies in 

the treatment of various cancers such as lymphomas, leukemia153, melanomas154, and 

bladder cancer155, 156. On the other hand, potentiating TI could lead to persistent non-

resolving vascular inflammation and chronic inflammatory diseases such as atherosclerosis. 

TI inducers such as oxLDL, LPS, and a Western-type diet induce intense inflammatory 

responses and epigenetic reprogramming, leading to exacerbate atherosclerotic 

cardiovascular diseases3, 60, 68. Therefore, promoting the reverse of trained immune 

potentiation, a phenomenon known as trained immune tolerance has potential therapeutic 

uses. Endothelial cell tolerance to LPS challenge induced by MPLA characterizes the effects 

of LPS induced-immune tolerance in HUVEC and the potential use of MPLA, a compound 

similar in structure to LPS, to induce trained tolerance as a potential therapeutic to suppress 

innate immune inflammation44. Further studies are required to elucidate the molecular 

underpinnings driving endothelial cell TI and their roles in human inflammation and disease.
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Nonstandard Abbreviations and Acronyms

CVD Cardiovascular disease

ECs Endothelial cells

TI Trained immunity

OxLDL Oxidized low-density lipoprotein

BCG Bacillus Calmette-Guerin

LPS Lipopolysaccharides

DAMPs Danger-associated molecular patterns
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LPC Lysophosphatidylcholine

OXPHOS Oxidative phosphorylation

mTOR Mammalian target of rapamycin

HIF1-α Hypoxia-inducible factor 1-α

HUVECs Human umbilical vein ECs

HAECs Human aortic endothelial cells

TCA Tricarboxylic acid cycle

Acetyl-CoA Acetyl-coenzyme A

ACLY Adenosine triphosphate (ATP)-citrate lyase

H3K4me3 Histone 3 lysine 4 tri-methylation

H3K27ac Histone 3 lysine 27 acetylation

ROS Reactive oxygen species
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Highlights

• Innate immune cells can develop exacerbated immunological response after 

exposure to endogenous or exogenous insults, which phenomenon as trained 

immunity (TI).

• TI can occur in innate immune cells such as monocytes/macrophages, NK 

cells, and ECs.

• TI inducers are risk factors for CVD and other metabolic diseases

• TI characterized by metabolic reprogramming and epigenetic modification.

• Reactive oxygen species (ROS) play context-dependent roles in TI.

Drummer et al. Page 24

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Schematic overview of trained immunity experimental design in vitro, in vivo, and the 

complex metabolic pathways involved in trained immunity. A. In vitro induction of trained 

immunity: Traditional and novel immune cells are trained by β-glucan, oxLDL, LPS, and 

BCG for 24 hours. Cells are washed twice with PBS and rested in culture media for 24 

hours, 3 days, or 6 days, after which the cells are restimulated with LPS or Pam3Cys for 24 

hours. Then cytokine productions are measured. B. In vivo induction of trained immunity by 

a Western diet priming and LPS restimulation. Low-density lipoprotein receptor deficient 

(LDLR−/−) mice are fed with Western diet for 4 weeks, then, normal chow diet for another 4 

weeks. Six hours before sacrifice, mice are injected intravenously with LPS or PBS. C. 
Overview Figure Showing the Metabolic and epigenetic reprogramming in trained 

immunity. Trained immunity inducers bind to their receptors in the cell membrane or 

intracellular receptors, leading to enhanced signaling of the Akt–mTOR–HIF-1α pathway, 
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modifications in metabolic pathways (increased glycolysis, increased acetyl-CoA 

generation, increased mevalonate synthesis), and epigenetic reprogramming. This results in 

increased pro-inflammatory cytokine production and enhanced innate immune response 

(trained immunity). Abbreviation: oxLDL: oxidized low-density lipoprotein, BCG: Bacillus 
Calmette–Guérin, LPS: Lipopolysaccharide, cROS: Cytosolic reactive oxygen species, 

LDLR−/− mice: Low-density lipoprotein receptor knockout mice, Akt: Serine/threonine 

protein kinase, mTOR: Mammalian target of rapamycin, HIF1: Hypoxia-inducible factor 1α, 

2-DG: 2-deoxyglucose, GLUT1: Glucose transporter 1, HK2: Hexokinase 2, PFKFB3: 

Phosphofractokinase-2/FBPase isozyme 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 3, Acetyl CoA: Acetyl Coenzyme A, α-KG: α-ketoglutarate, OXPHOS: 

Oxidative phosphorylation, CIC: Citrate carrier, ACLY: Adenosine triphosphate (ATP)-

citrate lyase, HMGCAR: 3-hydroxy-3-methylglutaryl CoA reductase, H3K27ac: Histone 3 

lysine 27 acetylation, H3K4m3: Histone 3 lysine 4 tri-methylation, H3K14ac: Histone 3 

lysine 14 acetylation, TNFα: Tumor necrosis factor α, IL-6: Interleukin-6, IL1-β: 

Interleukin 1-β, NOD2: Nucleotide-binding oligomerization domain-containing protein 2, 

MDP: Muramyl dipeptide, NF-kB: nuclear factor (NF)-κB, FA: Fatty acid, MR: 

Mineralocorticoid receptor, HDACs: Histone deacetylase, HATs: histone acetyl transferases, 

KDM: Histone lysine demethylase. Figure created with BioRender (https://

app.biorender.com/user/signin).
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Table 1. A.

A schematic summary of training programs induced in different cell types.

Stimulation Receptor Cell type Training immunity 
signaling

Metabolic remodeling Epigenetic 
remodeling

PMID

β-glucan Dectin-1 Monocytes
BMPCs

Akt-mTOR-HIF1α 
IL-1
GM-CSF/CD131

Glycolysis
Glutaminolysis
Mevalonate synthesis

H3K4me1
H3K4me3
H3K27ac

25258083
29328908
27866838

BCG NOD2 Monocytes
BMPCs

Akt-mTOR, IFN-r, 
IL-32

Glycolysis
Glutaminolysis
Mevalonate synthesis

H3K9me3
H3K4me3
H3K27ac

27926861
29328912
29324233

OxLDL TLR Monocytes mTOR dependent ROS Glycolysis
Mevalonate synthesis

H3K4me3 27733422
30723479

LPS TLR4 Monocytes IRAK-M, Tollip,JNK-
miR24, ATF7

Glucose and cholesterol 
metabolism

H3K4me1
H3K4me3
H3K9me2
H2K27me

27824038
26322480

Aldosterone Mineralocorticoid Monocytes Fatty acid synthesis 
pathway

Fatty acid synthesis H3K4me3 31119285

HMGB1 TLR
RAGE

Splenocytes IRAK-M 24089009
26970440

LPC GPCR Endothelial cells ROS Glycolysis
Acetyl-CoA generation
Mevalonate synthesis

H3K14ac 31153039

Fungal Chitin TLR Monocytes - - Histone 
methylation

26887946

WD - BMPCs NLRP3
IL-1

- 29328911

CMV NK cells SYK
PLZF

- Methylation 25786175
25786176

Uric acid - Monocytes IL-1β
Akt

- Histone 
methylation

28484006
31853991

Abbreviation: HIF1α: Hypoxia-inducible factor 1-alpha, BMPCs: Bone marrow progenitor cells, GM-CSF: Granulocyte-macrophage colony-
stimulating factor, CMV: Cytomegalo-virus, BCG: Bacillus Calmette-Guerin, oxLDL: Oxidized low-density lipoprotein, LPS: 
Lipopolysaccharides, GPCR: G-protein coupled receptor, NOD2: Nucleotide-binding oligomerization domain-containing protein 2, IFN-γ: 
Interferon gamma, TLR: Toll-like receptor, IRAK-M: IL-1 Receptor-Associated Kinase M, HMGB1: High mobility group box 1, RAGE: receptor 
for advanced glycation end-products, LPC: Lysophosphatidylcholine, WD: Western diet, H3K27ac: Histone 3 lysine 27 acetylation, H3K4m3: 
Histone 3 lysine 4 tri-methylation, H3K14ac: Histone 3 lysine 14 acetylation, H3K9m2: Histone 3 lysine 9 dimethylation, Akt: Serine/threonine 
protein kinase, mTOR: Mammalian target of rapamycin, NLRP3: NLR family pyrin domain containing 3.
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Table 1B.

Trained-immunity-regulating pathway inhibitors.

1st stimulus 2nd stimulus Inhibitor Function Effect on trained 
immunity

PMID

I- Inhibition of signaling pathways

β-glucan (10 μg/ml) for 24 h LPS (10 ng/ml)
Pam3Cys (10 g/ml)

Wortmannin Akt inhibitor Inhibit trained 
immunity

25258083

β-glucan (10 μg/ml) for 24 h LPS (10 ng/ml)
Pam3Cys (10 g/ml)

Rapamycin mTOR inhibitor Inhibit trained 
immunity

25258083

β-glucan (10 μg/ml) for 24 h LPS (10 ng/ml)
Pam3Cys (10 g/ml)

AICAR mTOR inhibitor Inhibits trained 
immunity

25258083

β-glucan (10 μg/ml for 24 h LPS (10 ng/ml)
Pam3Cys (10 g/ml)

Metformin AMPK inhibition Inhibit trained 
immunity

25258083

β-glucan (10 μg/ml) for 24 h LPS (10 ng/ml)
Pam3Cys (10 g/ml)

Ascorbate HIF1α inhibitor Inhibit trained 
immunity

25258083

LPS (200 ng/ml) for 6 h OxLDL (50 μg/mL) for 
24 h

Z-VAD-fmk NLRP3 activation 
inhibitor

Inhibits IL-1β 
secretion

23812099

LPS (200 ng/ml) for 6h OxLDL (50 μg/mL) for 
24 h

MβCD Cholesterol crystal 
formation inhibitor

inhibits the 
cholesterol crystals 
and IL-1β 
secretion

23812099

II- Inhibition of metabolic pathways

β-glucan (10 μg/ml) for 24 h LPS (10ng/ml)
Pam3Cys (10 g/ml)

2-DG Inhibits HK2 (glycolytic 
rate limiting step)

Inhibit trained 
immunity

27926861
25258083

OxLDL (10 μg/mL) for 24 h LPS (10 ng/ml) 3PO Inhibit glycolytic 
enzyme PFKFB3

Inhibit trained 
immunity

32350546

β-glucan (5 μg/ml), oxLDL 
(10 μg/ml), (R)-mevalonic 
acid (100–1000 μM), BCG 
(5 μg/ml)

LPS (10 ng/ml)
Pam3Cys (10 μg/ml)

fluvastatin HMGCAR inhibitor Inhibit trained 
immunity

29328908

β-glucan (5 μg/ml), oxLDL 
(10 μg/ml),
(R)-mevalonic acid (100–
1000 μM), BCG (5 μg/ml)

LPS (10 ng/ml)
Pam3Cys (10 μg/ml)

6-fluoromeval-
onate

Mevalonate-
pyrophosphate 
decarboxylase inhibitor

Enhance trained 
immunity

29328908

LPS (200 ng/ml) for 6 h OxLDL (50 μg/mL) for 
24 h

CYTOD CD36 inhibitor inhibit formation 
of cholesterol 
crystals and IL-1β 
secretion

23812099

Aldosterone for 24 h LPS (10 ng/ml)
Pam3Cys (10 μg/ml)

Cerulenin FAS inhibitor Inhibit trained 
immunity

31119285
32241223

III- Inhibition of epigenetic reprogramming

β-glucan (10 μg/ml) for 24 h LPS (10 ng/ml)
Pam3Cys (10 g/ml)

MTA Non-selective 
Methyltransferase 
inhibitor

Inhibit trained 
immunity

25258083
29328908
30380404

β-glucan (10 μg/ml) for 24 h LPS (10 ng/ml)
Pam3Cys (10 g/ml)

ITF (ITF2357) HDACi Inhibit trained 
immunity

25258083

β-glucan (10 μg/ml) for 24 h LPS (10 ng/ml)
Pam3Cys (10 g/ml)

Cyproheptadine Set7 methyltransferase 
inhibitor

Inhibit glycolysis 25258083

β-glucan (10 μg/ml) for 24 h LPS (10 ng/ml)
Pam3Cys (10 g/ml)

Resveratrol HDAC/sirtuins activator Inhibit trained 
immunity

25258083
30380404

- - UMLILO Inhibit H3K4me3 
epigenetic priming

Inhibit trained 
immunity

30733945

Abbreviation: 2-DG: 2-deoxyglucose, HK2: Hexokinase2, PFKFB3: Phosphofractokinase-2/FBPase isozyme 6-phosphofructo-2-kinase/
fructose-2,6-biphosphatase 3, HMGCAR: 3-hydroxy-3-methylglutaryl CoA reductase, IL1-β: Interleukin 1-β, HDACi: Histone deacetylase 
inhibitor, AICAR: Adenosine monophosphate–activated protein kinase (AMPK) activator, Z-VAD-fmk: Benzyloxycarbonyl-Val-Ala-Asp-
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fluoromethyl ketone, MβCD: Methyl-β-cyclodextrin, 3PO: 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one, CYTOD: Cytochalasin D, FAS: Fatty 
acid synthetase, MTA: 5′-Methylthioadenosine, UMLILO: Upstream Master LncRNA of the inflammatory chemokine Locus.
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