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Abstract

Precise regulation of circulating glucose is crucial for human health and ensures a sufficient supply 

to the brain, which relies almost exclusively on glucose for metabolic energy. Glucose homeostasis 

is coordinated by hormone-secreting endocrine cells in the pancreas, as well as glucose utilization 

and production in peripheral metabolic tissues including the liver, muscle, and adipose tissue. 

Glucose-regulatory tissues receive dense innervation from sympathetic, parasympathetic, and 

sensory fibers. In this review, we summarize the functions of peripheral nerves in glucose 

regulation and metabolism. Dynamic changes in peripheral innervation have also been observed in 

animal models of obesity and diabetes. Together, these studies highlight the importance of 

peripheral nerves as a new therapeutic target for metabolic disorders.
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Neural regulation of blood glucose

Glucose homeostasis is the tight maintenance of blood glucose levels (within 4–6 mM) in 

response to internal changes or external events such as feeding, fasting, stress, or exercise. 

Both hyper- and hypo-glycemia have life-threatening consequences, with the global 

prevalence of chronic hyperglycemia or diabetes being approximately one in eleven among 

adults [1]. Further, diabetes brings increased risks for cardiac dysfunction, renal failure, and 

blindness [2]. A better understanding of diverse mechanisms by which the body regulates 

blood glucose levels has significant implications for human health.

Multiple organs contribute to the regulation of blood glucose levels. One key locus is the 

pancreatic islets of Langerhans, which secrete the hormones insulin and glucagon to exert 
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opposing actions on blood glucose levels. Insulin signals to peripheral tissues such as the 

liver, skeletal muscles, and fat depots, to promote glucose uptake from the bloodstream. 

Conversely, glucagon signals to liver and muscle to elevate circulating glucose levels by 

breakdown of glycogen (glycogenolysis) or promotes de novo glucose synthesis from 

simpler precursors (gluconeogenesis) in liver and kidneys. The central nervous system 

(CNS) plays a key role in coordinating the glucose-regulatory activity of peripheral organs. 

Hypothalamic regions control islet hormone secretion and whole-body glucose homeostasis 

via the autonomic nervous system, which consists of the anatomically and functionally 

distinct branches of the sympathetic and parasympathetic nervous systems [3]. Autonomic 

nerves directly innervate islets, liver, and adipose tissue, to control hormone secretion, 

glucose production, and metabolism through release of neurotransmitters and neuropeptides. 

Further, sensory nerves relay information about metabolic cues from peripheral tissues to the 

brain and locally release neuropeptides to influence glucose homeostasis. In this review, we 

focus on the peripheral nervous system and functions of autonomic and sensory innervation 

of islets, adipose tissue, and liver, in glycemic control. Further, we discuss emerging 

evidence that suggests that changes in peripheral innervation might contribute to metabolic 

dysfunction.

Islet innervation

Pancreatic islets are micro-organs consisting of distinct endocrine cell types including 

insulin-secreting β-cells, glucagon-secreting α-cells, somatostatin-secreting δ-cells, ε-cells 

that secrete ghrelin, and pancreatic polypeptide (pp)-secreting cells, as well as vascular cells, 

immune cells, fibroblasts, nerves and glia. Recent studies have revealed distinct inter-species 

variability in islet organization [4]. Murine islets have a segregated architecture with β-cells 

found at the core, and α-cells and other endocrine cells located at the periphery or mantle, 

whereas in human islets, endocrine cells are largely randomly dispersed [5]. Pancreatic islets 

are richly innervated by sympathetic and parasympathetic fibers, as well as by nociceptive 

sensory fibers [6] (Figure 1A). While islet-intrinsic mechanisms governing endocrine cell 

development and functions have received much attention, the role of extrinsic factors, 

specifically innervation, remain under-appreciated.

Sympathetic nerves

Sympathetic nerves arrive at the pancreas via splanchnic nerves originating from 

prevertebral celiac and superior mesenteric ganglia [6, 7]. In mice, sympathetic innervation 

is localized largely at the islet periphery, with nerves making direct contacts with glucagon-

secreting α-cells (Figure 1A) [5]. In human islets, sympathetic nerves primarily contact 

contractile vascular cells, specifically, pericytes and smooth muscle cells, within the islet [5, 

8]. These findings suggest that sympathetic innervation influences islet hormone secretion 

via distinct mechanisms in mice versus humans, with nerve-mediated modulation of 

hormone release in human islets likely to be indirect. However, other studies, using high-

resolution 3-dimensional imaging, argue for species similarities, with mouse islets exhibiting 

abundant sympathetic nerve-vascular contacts within the islet core similar to that in humans 

[9].
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Defining specific effects of sympathetic innervation on peripheral organ function has been 

challenging due to wide-spread distribution of sympathetic nerves and difficulties in 

manipulating projections to a single target tissue. The impact of innervation on islet function 

has been traditionally investigated through a combination of surgical, electrophysiological, 

and pharmacological approaches in rodents. Early studies indicated that sympathetic 

innervation acts to rapidly elevate blood glucose levels. Electrical stimulation of splanchnic 

nerves inhibits glucose-stimulated insulin secretion (GSIS) and increases glucagon secretion 

in islets [7]. Sympathetic activity is also critical for the body’s response to hypoglycemia, 

also known as the counter-regulatory response. Prolonged hypoglycemia, as during fasting, 

enhances sympathetic activity, which in turn stimulates glucagon release from α-cells to 

enhance circulating glucose levels [10]. The effect of sympathetic innervation on other islet 

hormones is less well-characterized, but sympathetic activity reduces secretion of 

somatostatin and pancreatic polypeptide [7], suggesting that sympathetic nerves have a more 

expansive role in regulation of blood glucose than currently appreciated.

Effects of sympathetic innervation on islet hormone secretion are largely mediated by the 

neurotransmitter norepinephrine (NE), acting via α- or β-adrenergic receptors [7]. Electrical 

activation of sympathetic nerves induces NE release [11], and exogenous NE treatment or 

adrenergic receptor agonists recapitulate effects of electrical activation of sympathetic 

nerves on inhibiting GSIS [12, 13]. Conversely, adrenergic receptor antagonists prevent the 

ability of sympathetic activity to inhibit insulin secretion [14]. The inhibitory effects of 

sympathetic nerves on insulin secretion are largely mediated by α-adrenergic receptors [7]. 

In particular, pharmacological and genetic studies in mice support a critical role for the 

Adra2a receptor in mediating NE-dependent suppression of insulin secretion [15]. Adra2a is 

the most abundant adrenergic receptor in adult mouse and human islets [15]. Adra2a 

receptor-specific agonists elicit a profound decrease in islet insulin secretion [13], and 

animals with overexpression of Adra2a, specifically in β-cells, are glucose-intolerant [16]. 

In contrast, Adra2a knockout mice have enhanced insulin secretion and improved glucose 

tolerance [17]. Notably, in humans, a single-nucleotide polymorphism in Adra2a that results 

in protein over-expression leads to reduced insulin secretion and increased pre-disposition to 

type 2 diabetes [18]. These findings highlight the potential advantages of Adra2a antagonists 

in enhancing insulin secretion and treating hyperglycemia in diabetes. In contrast to α-

adrenergic receptors, NE acting via islet β-adrenergic receptors are capable of enhancing 
insulin secretion [7], and activation of both α- and β-adrenergic receptors promotes 

glucagon secretion [7]. Thus, the precise effects of NE on islet hormone secretion relies on 

adrenergic receptor abundance and activity. Sympathetic nerves also influence islet function 

via the neuropeptides galanin and Neuropeptide Y (NPY) [7]. Like NE, Galanin and NPY 

inhibit insulin secretion and enhance glucagon secretion [19, 20], suggesting these 

neuropeptides augment neurotransmitter effects.

While the role of sympathetic nerves in acutely regulating islet hormone secretion is well-

appreciated, an emergent concept is the potential role for innervation in islet development 

and maturation. In embryonic mice, ablation of sympathetic nerves results in perturbed islet 

morphology, with a loss of β-cell-cell contacts and intermingling of α- and β cells at the 

core [21]. Together, these findings suggest that sympathetic nerves provide key 

organizational cue(s) during islet formation (Figure 1B). Mice lacking sympathetic nerves 
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are also glucose intolerant later in life [21]. The early effects of sympathetic innervation on 

islet architecture are mediated, in part, via signaling through β-adrenergic receptors, since 

developmental blockade of β-adrenergic signaling using propranolol recapitulated the effects 

of nerve ablation on islet architecture [21]. Together, these findings suggest that sympathetic 

innervation and NE exert distinct effects on developing versus mature islets (Figure 1B), 

likely by engaging separate adrenergic receptors.

Autonomic dysfunction is a component of diabetic neuropathy, where damage to peripheral 

nerves occurs as a long-term consequence of hyperglycemia [22]. However, an early and 

selective loss of sympathetic innervation to islets occurs in humans with type 1 diabetes and 

in animal models of the disease, prior to the onset of hyperglycemia [23, 24]. The 

mechanisms underlying this early and selective loss of islet sympathetic nerves remain 

unclear. One possibility could involve immune cell infiltration of islets, since the 

denervation is only observed in animal models of immune-mediated diabetes [25]. The nerve 

loss could also occur by mechanisms analogous to axon pruning during development, since 

deletion of the p75 neurotrophin receptor, an essential mediator of the process, also inhibited 

the loss of innervation in diabetic mice [26, 27]. Further, impaired synaptic transmission in 

sympathetic ganglia, where the cell bodies reside, is another early event observed in in 

streptozotocin-induced diabetes, a model of type 1 diabetes [28]. Elevated glucose results in 

inactivation of nicotinic Acetylcholine Receptors (nAChRs) in sympathetic ganglia, 

impairing their ability to receive input from pre-ganglionic projections. Together, these 

studies suggest that sympathetic neuropathy could be an early contributor to pathogenesis in 

diabetes.

Major questions that remain to be addressed include elucidating the signaling pathways that 

mediate acute effects of sympathetic neurotransmitters/neuropeptides on hormone secretion, 

and identity of nerve-derived factors and pathways that underlie effects of innervation on 

islet development. Notably, β-adrenergic receptor antagonists (β-blockers) are commonly 

used to treat cardiovascular disease and hypertension, including in pregnant women [29]. 

Therefore, inhibition of adrenergic signaling during fetal development could have lasting 

impacts on glycemic control. Finally, neurons and β-cells have distinct developmental 

origins, but share remarkable similarities in electrical properties, ion channel composition, 

and exocytosis machinery involved in regulated secretion [30]. Recent studies suggest that 

islet endocrine cells are capable of secreting several neurotransmitters, including dopamine 

(see Box 1) [4]. The contributions of islet-intrinsic neurotransmitters to islet function, as 

well as their mechanisms of action relative to neurotransmission, remain to be elucidated.

Parasympathetic nerves

Parasympathetic innervation to the pancreas originates from the dorsal motor nucleus of the 

vagus [7]. Preganglionic vagal nerves project to intrapancreatic ganglia, from which post-

ganglionic projections directly innervate islets. Parasympathetic nerves densely innervate 

mouse islets, contacting both α- and β-cells, in contrast to human islets where the 

innervation is sparser and follows the blood vessels (Figure 1A) [5]. Stimulation of vagal 

nerves increases both circulating glucagon and insulin in mammals [7]. Parasympathetic 

nerves are specifically critical for the body’s response to acute changes in blood glucose [7]. 
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Following a meal, there is an early increase in circulating insulin (<10 minutes in humans) in 

anticipation of an impending rise in blood glucose levels, termed the “cephalic phase” of 

insulin secretion [7]. Cephalic insulin secretion is blunted by blockade of parasympathetic 

nerve activity [45]. Parasympathetic activity also contributes to the counter-regulatory 

response during hypoglycemia, when vagal efferent nerve activity is increased, which in 

turn, stimulates glucagon secretion to elicit enhanced circulating glucose [10].

Acetylcholine (ACh) is the primary neurotransmitter secreted by parasympathetic nerves, 

and islets express all five subtypes of muscarinic ACh receptors (AChRs) [46]. 

Pharmacological inhibition or deletion of M3 AChRs results in impaired insulin secretion 

and glucose intolerance in mice, suggesting that it is the most relevant receptor for mediating 

the effects of cholinergic signaling on insulin secretion [47]. Pancreatic parasympathetic 

nerves also secrete the neuropeptides vasoactive intestinal peptide (VIP) and pituitary 

adenylate cyclase-activating polypeptide (PACAP), to augment the effects of ACh in 

promoting islet hormone secretion [48]. Gene deletion of VIP or PACAP receptors in mice 

or their pharmacological blockade results in defects in GSIS and impairs glucose tolerance 

[49, 50].

In addition to regulating hormone secretion, parasympathetic innervation regulates β-cell 

proliferation. Early studies suggested that vagal hyper-activation, resulting from injury or 

lesions to the ventromedial hypothalamus, resulted in pancreatic hyperplasia and β-cell 

proliferation in adult rats [51]. Conversely, vagotomy prevents an increase in β-cell 

proliferation that occurs to compensate for insulin resistance in mouse models of obesity 

[52].

Sensory nerves

Afferent sensory nerves leave the pancreas via the splanchnic nerves and relay information 

from visceral tissues to the CNS [53]. Neuronal tracing indicates that cell bodies of 

pancreatic sensory nerves lie within the dorsal root ganglia (DRG) and nodose ganglion 

[54]. Sensory nerves in mouse islets contact the periphery where non-β-cells are found and 

occasionally penetrate the islet interior (Figure 1A) [8]. The role of sensory nerves in 

regulating islet hormone secretion remain poorly defined, relative to autonomic innervation. 

A large proportion of sensory nerves express the non-selective cation channel transient 

receptor potential vanilloid 1 (TRPV1), and are sensitive to capsaicin [55]. Capsaicin-

mediated ablation of sensory nerves at the whole-body level, and specifically in the 

pancreas, results in enhanced GSIS and improved glucose tolerance without influencing 

insulin sensitivity or β-cell mass in mice [56]. Thus, sensory innervation appears to inhibit 

insulin secretion in response to elevated glucose. Interestingly, the effects of sensory 

denervation are only observed in male mice [56], suggesting sex-specific effects of 

innervation on glucose homeostasis. Studies in animal models of diabetes suggest that 

sensory denervation also has beneficial effects on glucose metabolism in pathological 

conditions. Capsaicin-mediated ablation of sensory nerves prevents progression of diabetes 

in Zucker Diabetic Fatty (ZDF) rats, a model for type 2 diabetes [57], and limits islet 

inflammation and β-cell stress in non-obese diabetic (NOD) mice, a model for type 1 

diabetes [58].
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The neuropeptides calcitonin gene-related polypeptide (CGRP) and substance P (SP), 

present in sensory nerve terminals in the pancreas, may mediate inhibitory effects of sensory 

innervation on insulin secretion. CGRP treatment inhibits GSIS in isolated islets [59]. 

Further, mice with global deletion of α-CGRP, one of two CGRP isoforms in mice, exhibit 

improved glucose tolerance, insulin sensitivity, and are protected from diet-induced obesity 

[60]. The effects of SP are less clear, with reports of both inhibitory and stimulatory effects 

on insulin secretion in isolated islets [7].

Adipose innervation

Adipose tissue is broadly distributed throughout the body as either white adipose tissue 

(WAT) or brown adipose tissue (BAT), and serves as both an energy storage and endocrine 

organ. WAT serves primarily as an energy reservoir by storing triglycerides that can be 

broken down by the process of lipolysis and released during times of need [61]. WAT also 

dynamically communicates with other peripheral tissues by releasing adipokines to control 

energy balance and glucose homeostasis [62]. In contrast, BAT has a large capacity for 

glucose and lipid clearance, which it metabolizes to generate heat in a process called non-

shivering adaptive thermogenesis [63]. Similar to WAT, activated BAT releases endocrine 

factors called batokines to influence glycemic control and insulin sensitivity [64]. In mice, 

genetic or pharmacological activation of BAT protects from a gain in body fat and metabolic 

dysfunction caused by high fat feeding [65], whereas BAT dysfunction or ablation elicits 

insulin resistance and obesity [66]. Notably, WAT adipocytes can be induced to acquire a 

brown-like phenotype, or de novo adipogenesis can occur in BAT, in response to chronic 

cold exposure or other stimuli, in a process called “browning/beiging” [65]. The 

identification of functional BAT and beige fat in humans [67] has raised interest in their 

potential as anti-obesity targets.

Adipose tissue is densely innervated by sympathetic fibers, which play a key role in adipose 

tissue-mediated lipolysis, thermogenesis, and glycemic control (Figure 2) [68, 69]. Sensory 

nerves are key for relaying information to the CNS regarding the adiposity of fat depots [70–

72], and for secretion of neuropeptides that locally impact adipocyte function [72] (Figure 

2). Parasympathetic nerves are barely detected in adipose tissue, and their role in adipose 

functions have been proposed to be minor [68]. Attaining more comprehensive knowledge of 

how peripheral innervation governs adipose function is critical for understanding the role of 

fat depots in glucose homeostasis, and for designing successful therapies to improve glucose 

homeostasis and combat obesity.

Sympathetic innervation

Initially, the degree of sympathetic innervation of WAT, as assessed using conventional 

methods of immunostaining in thin slices of fixed tissue, was unclear [61]. However, recent 

advances in tissue clearing and whole organ imaging reveal dense networks of sympathetic 

fibers in WAT, with nerve terminals in close apposition to over 90% of adipocytes in mice 

(Figure 2) [73]. Innervation is observed in both the WAT parenchyma and vasculature in 

several species [69]. Decades of work from several laboratories provide evidence that 

sympathetic activity enhances lipolysis and fat mobilization [61]. Optogenetic stimulation of 
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sympathetic nerves in WAT indicate that sympathetic activation is sufficient to promote 

increased lipolysis and deplete fat depots in mice [74]. Conversely, ablation of sympathetic 

nerves blocks lipolysis, increases fat pad size, and adipocyte proliferation and differentiation 

[75]. Nerve-derived effects are primarily due to NE acting on adipose β-adrenergic 

receptors. Mice with deletion of all three β-adrenergic receptors (Adrb1, Adrb2, and Adrb3) 

exhibit massive obesity in response to a high-fat diet [76].

WAT also exerts endocrine control over blood glucose through secretion of adipokines, most 

importantly leptin. Circulating leptin acts on neurons in the hypothalamus to inhibit food 

intake, deplete fat mass, and promote glucose metabolism in the periphery [77]. The 

sympathetic nervous system mediates some of leptin’s actions, as leptin-sensitive neuronal 

circuits in the CNS converge on efferent sympathetic nerves to promote lipolysis in white 

adipocytes [74]. Notably, leptin synthesis and secretion itself is under the control of 

sympathetic activity, where sympathetic nerves act via β-adrenergic receptors on adipocytes 

to lower circulating leptin in the fasted state, as a mechanism to couple leptin levels to 

nutrient availability [78]. Sympathetic neurite density in WAT is also reduced in both mouse 

and human tissues under pathophysiological conditions of obesity and diabetes [79].

Similar to WAT, sympathetic fibers envelop BAT vasculature and penetrate into the 

parenchyma to contact adipocytes [80]. However, BAT is more densely innervated by 

sympathetic nerves than WAT [68]. Enriched innervation of BAT may stem in part from the 

secretion of tissue-specific growth factors. For example, brown adipocytes selectively 

express a novel endoplasmic reticulum (ER)-membrane-bound protein, Calsyntenin3b 

(Clstn3b), which controls the secretion of the growth factor S100b to promote sympathetic 

innervation of BAT and thermogenesis [81]. PRDM16, a master transcriptional co-regulator 

in brown adipocytes, promotes brown fat gene expression but suppresses white fat-selective 

genes, and is also a key regulator of sympathetic innervation of BAT [65]. Sympathetic 

innervation may not only be dictated by adipocyte-derived factors, but also by monocytes or 

macrophages that either infiltrate the tissue or are tissue-resident [82–84]. In a recent study, 

T lymphocytes were found to enhance sympathetic innervation of BAT, in part by driving 

expression of the TGFβ1 growth factor in adipocytes [85], suggesting interactions between 

immune, adipose, and nervous systems that regulate metabolism.

The sympathetic nervous system is a central regulator of BAT-mediated thermogenesis in 

response to cold exposure [63]. Sympathetic nerve-derived NE acts via adrenergic receptors 

on brown adipocytes to generate heat by triggering biochemical events in mitochondria that 

uncouple oxidative phosphorylation from ATP synthesis with the help of a specialized 

mitochondrial protein, Uncoupling Protein 1 (UCP1) [86]. Denervation of BAT leads to loss 

of UCP1 expression, decreased mitochondrial function, and glucose uptake in animals 

exposed to cold or on a high-fat diet [65, 87]. Conversely, activation of β-adrenergic 

receptors, in particular, Adrb3, is sufficient to stimulate BAT thermogenesis and glucose 

uptake in rodents and humans [88].

Emerging evidence suggests that, in addition to promoting thermogenesis, sympathetic 

innervation of BAT influences whole-body metabolism by enabling import of excess glucose 

and lipids from the bloodstream [63]. In mouse models of diabetes and obesity, BAT activity 
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corrects hyperglycemia and hyperlipidemia [65]. BAT is also a source of factors that seem to 

have endocrine functions by acting on peripheral tissues including the pancreas, liver, or 

bone to promote insulin secretion, improve glucose tolerance and insulin sensitivity [64]. 

Knowledge of BAT innervation is largely based on rodent studies. However, similar to 

rodents, human BAT responds to cold or adrenergic stimulation, and BAT activation 

correlates with improved glucose tolerance and insulin sensitivity [89].

An important function of sympathetic activity is the development of beige fat, which are 

white adipocytes that can be triggered to express UCP1, increase mitochondrial activity, and 

become thermogenic under certain conditions such as cold exposure [90]. The appearance of 

beige fat is positively correlated with the degree of sympathetic innervation, and UCP1-

positive beige adipocytes are specifically localized in areas of dense sympathetic innervation 

[91]. Notably, sympathectomy or deletion of β-adrenergic receptors in mice prevents beiging 

in response to cold [73], while treatment with β-adrenergic agonists is sufficient to induce 

beiging [92], pointing to the necessity and sufficiency of sympathetic activity in the process. 

Since browning of WAT promotes energy expenditure, there is much interest in generation 

of beige fat as a therapeutic target in obesity and diabetes.

Sensory innervation

Both CGRP- and SP-positive sensory nerves innervate WAT and BAT in rodents in patterns 

similar to sympathetic nerves [93], but with the cell bodies residing in the DRG [94] (Figure 

2). In contrast to sympathectomy, sensory denervation of WAT increases fat pad mass by 

hypertrophy rather than proliferation [93], suggesting that sympathetic and sensory nerves 

influence white adipocytes by distinct mechanisms. A key function for sensory nerves is to 

detect metabolic signals in adipose tissue and relay the information to the brain [70–72], 

which in turn controls the sympathetic drive to ultimately affect metabolic homeostasis [72]. 

Viral tracing of sensory nerves innervating adipose tissue revealed labeling in several 

hypothalamic and brain stem regions, especially regions involved in the control of 

sympathetic outflow [94], suggesting that the sensory innervation may be part of a sensory-

CNS-sympathetic circuit [72]. Selective denervation of sensory fibers in WAT reduced 

sympathetic activity in not only WAT, but also BAT, and suppressed BAT-mediated 

thermogenesis in response to cold exposure [71]. Together, these studies support an essential 

role for sensory nerves in WAT to relay signals to the CNS to drive sympathetic output to not 

only control lipid mobilization in WAT, but also to regulate thermogenesis in distant fat 

depots in BAT (Figure 2). Sensory nerve terminals may be responding to WAT-derived 

leptin, since nerves express the leptin receptor and are activated by direct leptin injections 

into WAT in Siberian hamsters [95]. Leptin has been proposed to signal directly through 

afferent sensory nerves that relay information to the CNS [72, 95]. Localized denervation of 

sensory nerves by injecting capsaicin directly into intercapsular BAT, the largest BAT depot, 

impaired thermogenesis, suggesting a similar role in surveillance of adiposity [94].

There are several key open questions regarding functions of sensory innervation in adipose 

tissue, including the role of sensory innervation in beiging, identity of adipose-derived 

factors that stimulate sensory nerve terminals, and functions of neuropeptides, CGRP and 

SP.
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Liver innervation in regulation of glucose homeostasis

The liver is a key organ in regulating whole-body metabolism, and disruptions in liver 

function have major consequences for glucose and lipid homeostasis [96]. The liver is the 

principal site of glucose storage. During fasting, the liver elevates circulating glucose levels 

by breakdown of glycogen or de novo glucose synthesis from simpler precursors [96]. 

Conversely, following a meal, the liver responds by shutting down hepatic glucose 

production, suppressing glycogenolysis and synthesizing triglycerides for storage [96]. In 

humans, the influence of peripheral innervation in regulation of hepatic glucose metabolism 

was initially thought to be limited, since severing of all hepatic nerves during liver 

transplants did not elicit significant effects on whole-body blood glucose regulation [97]. 

However, long-term, increased incidence of diabetes, dyslipidemia, and obesity have been 

reported in liver transplant recipients [98], suggesting a role for the nervous system, in 

particular autonomic nerves, in contributing to liver regulation of metabolism.

The liver receives both sympathetic and parasympathetic innervation (Figure 3) [99]. 

Sympathetic innervation arrives at the liver via the celiac and superior mesenteric ganglia, 

which in turn receive input from pre-ganglionic neurons in the intermediolateral column in 

the spinal cord and higher brain regions in the brainstem and hypothalamus [99]. According 

to the few developmental studies to date on liver innervation in both human and mouse 

tissues, sympathetic innervation starts in the liver during late embryonic development, with 

the density of innervation progressively increasing postnatally [100]. Parasympathetic 

innervation originates in the vagal dorsal motor nucleus from which pre-ganglionic nerves 

project to the liver [99]. In mammals, a common feature in liver innervation is that 

autonomic nerves are largely found surrounding the hepatic artery, portal vein, and bile ducts 

[99]. However, there are species differences in the extent of innervation in liver parenchyma, 

with rodents having reduced innervation relative to humans [99]. In rodents, nerve-mediated 

modulation of metabolic functions is predominantly indirect, either via the vasculature or by 

regulating gap junction signaling between parenchymal cells [99, 101].

In early studies, sympathetic activity in the liver was found to rapidly increase circulating 

glucose by promoting glycogen breakdown to glucose (glycogenolysis) and suppressing 

glycogen production [102]. Sympathetic control of glycogenolysis proceeds primarily via 

activation of α-adrenergic receptors, particularly Adra1b, since its deletion resulted in 

excessive accumulation of glycogen [103]. Sympathetic nerves may also influence hepatic 

glucose production through release of neuropeptides [104]. Galanin augments the liver’s 

response to NE in elevating circulating glucose levels [104], while NPY increases glucose 

uptake by the liver, and opposes hepatic glucose release in response to glucagon and 

norepinephrine [104].

In contrast to sympathetic innervation, parasympathetic innervation promotes glycogen 

synthesis and suppresses glucose production [105]. In addition to directly regulating glucose 

availability, the liver also indirectly regulates blood glucose levels by modulating the insulin 

sensitivity of other organs [97]. Parasympathetic denervation or cholinergic blockade of the 

liver reduces insulin sensitivity globally, and diminishes glucose uptake in peripheral tissues 

[106].
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In insulin-resistant states such as in obesity or type 2 diabetes, the liver communicates to the 

pancreas via systemic factors and neuronal signaling to promote β-cell proliferation to 

compensate for insulin resistance [107]. In mouse models of insulin resistance or obesity, the 

liver secretes factors such as serpin, a protease inhibitor, or hepatocyte growth factor (HGF) 

to enhance β-cell mass [108, 109]. Further, afferent splanchnic nerves carry sensory 

information from the liver to the brain, which in turn communicates via vagal efferent nerves 

to the pancreas to elicit enhanced β-cell proliferation or insulin secretion (Figure 3) [110]. 

This neuronal relay mechanism is activated by extracellular signal-regulated kinase (ERK) 

signaling in the liver [110], although how ERK signaling activates sensory fibers innervating 

the liver, and the identity of the vagal-derived factors that promote the pancreatic effects 

remain to be determined. Nevertheless, these results highlight the potential of developing 

therapeutic approaches based on innervation in ameliorating aberrant glucose homeostasis in 

obesity and type 2 diabetes, and perhaps even promoting β-cell regeneration after their loss 

in type 1 diabetes. The liver is also the only major internal organ that shows significant 

regenerative potential in adult mammals [111]. Intriguingly, liver regeneration appears to 

exert beneficial effects on islet function, with increases in islet mass, β-cell proliferation, and 

insulin secretion observed after partial hepatectomy [112]. Thus, neuronal signaling in the 

liver-pancreas axis could contribute to restoring metabolic homeostasis following injury or 

disease.

Concluding Remarks and Future Perspectives

The findings of crosstalk between nerves and peripheral metabolic tissues open up a fertile 

area for detailed studies that have broad translational implications. Modulation of 

innervation in glucose-regulatory peripheral tissues presents an emerging avenue for 

treatment of metabolic dysfunction. To date, much of the information on nerve effects on 

individual tissues has been gleaned from surgical or genetic ablation of nerves or 

pharmacological manipulations that come with widespread and non-specific effects. Most 

previous studies have also focused on the role of neural activity in regulating glucose 

homeostasis. However, recent studies highlight the considerable structural plasticity of adult 

peripheral nerves, specifically under conditions of obesity or diabetes [9, 73, 79, 113, 114]. 

The molecular mechanisms underlying the dynamic regulation of innervation in pathological 

conditions are poorly understood. Notably, it remains to be determined whether nerve 

remodeling that occurs in pathological situations is a contributing factor to the pathogenesis 

or a “bystander effect”. Exciting areas for future research include: gaining a more 

comprehensive understanding of the anatomical, molecular, and cellular basis of neural 

connections in glucose-regulatory tissues; clarifying how innervation is established during 

development and maintained during adult life; identifying the cell types that are directly 

targeted by nerves; and elucidating nerve-derived factors, in addition to neurotransmitters, 

that mediate effects on glucose regulation (see Outstanding Questions). In addition to tissues 

covered in this review, nerves also impact the ability of bone and muscle to regulate glucose 

homeostasis, either through influencing release of bone-derived hormones that augment 

insulin secretion [115], or via insulin-independent mechanisms of glucose uptake in skeletal 

muscle [116]. Thus, the general role of peripheral nerves in promoting inter-organ 

communication in regulating glucose homeostasis and the mechanistic underpinnings 
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warrant further studies. Further, recent advances in whole organ imaging, tissue clearing, 

and 3D reconstructions make it possible to comprehensively map peripheral innervation in 

specific target tissues and reveal regional differences in innervation. Peripheral nerves do not 

make classical synaptic contacts with targets as in the CNS [117]. Instead, nerve terminals 

are located 100–200 μm from target cells, and neurotransmitter release occurs from 

varicosities along the axonal shaft [117]. Advances in serial section electron microscopy 

have the potential to provide high-resolution insight into cell types that are directly 

connected by peripheral nerves and morphology of the nerve-target contacts. Further, 

technological advances in single cell sequencing, optogenetics, and chemical genetic tools 

offer new opportunities to explore the molecular profiles of specific neuronal sub-types 

projecting to end-organs and associated circuits. Together, these, and other approaches will 

allow for more targeted and localized manipulation of interactions between local nerve fibers 

and target cell types to advance the knowledge of the role of peripheral innervation in 

metabolic health and whole-body energy balance.
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Box 1.

Neurotransmitter secretion by islet cells

Recent studies highlight that innervating fibers are not the only source of 

neurotransmitters in pancreatic islets, but that neurotransmitters are also produced and 

secreted from islet endocrine cells [4]. Among islet neurotransmitters, dopamine (DA) is 

the best characterized [31]. DA is synthesized in β-cells and packaged into insulin 

secretory granules via the vesicular monoamine transporter 2 (VMAT2) [32]. DA then 

acts in an autocrine fashion to suppress insulin secretion by binding to dopamine 

receptors on the surface of β-cells [33, 34]. DA is also a biological precursor for NE, 

raising the possibility that islet cells may secrete NE, although it remains unclear whether 

Dopamine Beta Hydroxylase (DBH), the enzyme needed to convert DA to NE is 

expressed in islets [35].

While pancreatic parasympathetic fibers are cholinergic, a recent study suggested that, in 

human islets, glucagon-producing α-cells are the predominant source of Acetylcholine 

(ACh). In human islets, parasympathetic fibers are sparser compared to murine islets [5], 

and the cholinergic enzymes, vesicular acetylcholine transporter vAChT and choline 

acetyltransferase (ChAT) are detected in α-cells [36]. Notably, human α-cells secrete 

ACh in response to lowered glucose levels, which has been suggested to act as a 

paracrine signal to potentiate β-cell function [36]. Serotonin is another neurotransmitter 

affecting islet function; serotonin regulates β-cell proliferation in rodents and zebrafish 

[37], although the source of serotonin remains unclear. Serotonin signaling may play a 

specific role during pregnancy when there is a compensatory expansion in β-cell mass to 

counter the mild insulin resistance that typically develops during this period [38]. During 

pregnancy, a dramatic rise in serotonin-synthesizing enzymes, serotonin production, and 

signaling machinery occurs in rodent islets [38]. Notably, inhibition of the serotonin 

receptor, 5-hydroxytryptamine receptor-2b (Htr2b), blocks the increase in β-cell mass 

and causes glucose intolerance in pregnant mice.

The classical inhibitory neurotransmitter, Gamma-amino butyric acid (GABA), has also 

been suggested to play an important role in modulating islet hormone secretion [39]. 

GABA is secreted from β-cells, and acts in an autocrine fashion to promote insulin 

secretion while inhibiting glucagon secretion [39]. Other studies have suggested that 

GABA contributes to maintenance of islet mass and protects β-cells from apoptosis [40]. 

Intriguingly, two recent studies reported that GABA or GABA receptor activation by the 

anti-malarial drug, artemisinin, induces trans-differentiation of α-to-β cells in islets in 

several species [41, 42]. However, these findings have since been challenged by rigorous 

lineage tracing of mature α-cells that revealed no effects on their conversion either by 

long-term GABA or artemisinin treatment [43, 44].

In future studies, it will be of interest to determine the spatial and temporal regulation of 

endogenous neurotransmitter secretion from islet cells, and to dissect their relative 

contribution to islet function compared to neurotransmitter release from nerve terminals.
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Outstanding Questions

How is innervation of glucose-regulatory tissues established during development and how 

is it maintained during adulthood?

Which cell types in metabolic tissues are directly contacted by peripheral nerves, and 

what morphological specializations and synaptic machinery underlie the nerve-target cell 

connectivity?

Other than the classical neurotransmitters and neuropeptides, what nerve-derived factors 

act on peripheral cell types to elicit metabolic outcomes?

Do peripheral nerves play a broader role than currently appreciated in mediating crosstalk 

between glucose-regulatory organs? If so, what are the underlying mechanisms of inter-

organ communication?

To date, little is known about heterogeneity of sympathetic neurons. Do molecularly 

distinct sympathetic neuron populations control diverse functional effects in islets, 

adipose tissue, and liver? If so, what are the identities of these neuronal sub-types?

Peripheral nerves innervating metabolic tissues remodel their connections and 

arborization patterns in pathological conditions such as diabetes and obesity. Do these 

changes in innervation contribute to metabolic dysfunction? What molecular mechanisms 

underlie nerve plasticity in disease states?
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Highlights

Metabolic tissues such as pancreatic islets, adipose tissue, and liver receive extensive 

innervation from peripheral sympathetic, parasympathetic, and sensory nerves.

Peripheral nerves regulate hormone secretion, energy expenditure, and systemic glucose 

homeostasis through the release of neurotransmitters and neuropeptides.

Structural plasticity of innervation in glucose-regulatory tissues is observed in 

pathophysiological conditions including obesity and diabetes.

Defining the anatomical, cellular, and molecular bases of nerve-metabolic target tissue 

crosstalk may allow for specific modulation of peripheral nerves in the development of 

therapeutic avenues for metabolic disorders.
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Figure 1: Peripheral nerves modulate islet hormone secretion and development.
(A) Pancreatic islets of Langerhans are innervated by sympathetic, parasympathetic, and 

sensory fibers originating from celiac and mesenteric ganglia, dorsal motor vagal nuclei, and 

dorsal root ganglia, respectively. Sympathetic nerves act to limit insulin secretion and 

promote glucagon secretion, whereas parasympathetic nerves stimulate secretion of insulin 

and glucagon, and also influence β-cell proliferation during obesity. Sensory nerves inhibit 

insulin release. (B) During embryonic development, sympathetic innervation promotes 

endocrine cell migration from the ductal epithelium and governs islet organization through 

the release of the neurotransmitter norepinephrine.
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Figure 2: Adipose tissue innervation regulates lipolysis, thermogenesis, and glucose homeostasis
White adipose tissue (WAT) serves as a storage depot for energy-rich triglycerides that are 

broken down in times of need (lipolysis), whereas brown adipose tissue (BAT) burns glucose 

and fat to generate heat (thermogenesis). Sympathetic nerves stimulate WAT lipolysis 

through the release of norepinephrine. Leptin, a WAT-derived hormone, acts on the central 

nervous system (CNS) to promote lipolysis, which is mediated by sympathetic efferents to 

WAT. Sympathetic activity also suppresses leptin release as part of a negative feedback loop. 

In BAT, sympathetic innervation is a key regulator of thermogenesis and promotes the 

uptake of excess glucose and lipids from the bloodstream. Sympathetic nerves are involved 

in the conversion of white adipocytes to brown or “beiging”. Sensory nerves relay 

information about metabolic cues from adipose tissue to the CNS, which in turn, controls 

sympathetic output to regulate WAT lipolysis and BAT thermogenesis.
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Figure 3: Liver innervation in the regulation of glucose homeostasis
The liver receives sympathetic and parasympathetic innervation. Sympathetic nerves elevate 

blood glucose levels by promoting glucose production (gluconeogenesis) and the breakdown 

of glycogen into glucose (glycogenolysis). Conversely, parasympathetic nerves lower blood 

glucose levels by promoting the storage of glucose as glycogen and inhibiting 

gluconeogenesis. Hepatic parasympathetic innervation also modulates the insulin 

responsiveness of several peripheral tissues. A liver-brain-pancreas neuronal relay, 

consisting of afferent sensory nerves, the central nervous system, and efferent vagal nerves, 

promotes β-cell proliferation and enhanced insulin secretion as a compensatory response 

during insulin-resistant conditions of obesity and diabetes.
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