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JAMIAEditorial Comments

Bioinformatics and
Clinical Informatics:
The Imperative to Collaborate

In this issue, Perry Miller and Russ Altman review the
experiences at Yale and Stanford that have led to a
convergence and cross-pollination between clinical in-
formatics and bioinformatics at those institutions. A
related convergence is revealed by a MEDLINE search
for the string ‘‘informatics’’ in the last five months. Of
346 publications, 175 were in the area of genomics and
not clinical applications. Concurrently, there has been
much discussion within the informatics community
about the dual nature of the research agenda (and, not
coincidentally, the funding opportunities) as it per-
tains to clinical applications and fundamental biolog-
ical research.1,2 Informal discussions with investiga-
tors in bioinformatics and clinical informatics,
however, are tinged with concern that these two dis-
ciplines in biomedical informatics will diverge or at
least that the two investigator communities are not
collaborating sufficiently.

It may, therefore, be timely to briefly review several
major categories in which these two strains of bio-
medical informatics share common methodological
and policy challenges. Moreover, as suggested by this
overview, the success of bioinformatics and clinical in-
formatics will depend on joint successes in resolving
their mutual challenges. The categories outlined here
are by no means intended to exhaustively cover the
areas of commonality but are intended to provide a
useful reference point for discussions on this topic of
increasing relevance to the readership of JAMIA.

Standard Data Models

In less than a decade, the Human Genome project
(HGP)3 has generated a large amount of biological
data that is likely eventually to lead to a qualitative

change in the way in which clinical medicine (diag-
nostics, prognostics, and therapeutics) is practiced. A
central intellectual and technologic asset to this effort
has been GenBank4 and related genomic and protein
databases (e.g., the SWISS-PROT,5 Exon-Intron,6 and
IMGT databases7). Their standardized data models
have allowed research laboratories throughout the
world to rapidly populate them with the very latest
information. In turn, these databases are freely avail-
able throughout the world via the Internet and have
seeded, accelerated, and inspired thousands of re-
search projects.

In contrast, there are few, if any, consequential shared
national clinical databases. Specifically, patient data in
one information system can only rarely be transferred
to another to expedite patient care. This, despite de-
cades of research and development of clinical record
systems.

This marked contrast is deceptive. The HGP has ben-
efited from the elegant simplicity of the genetic code.
In essence, at the level of primary structure, the ge-
netic information coded by any organism is simply a
sequence of characters drawn from a very limited al-
phabet. Consequently, there are only a very few items
that GenBank requires be submitted for an entry to be
a valid (and useful) component of its database. The
clinical care of human beings is far more complex,
requiring at the minimum a detailed record of the his-
tory of multiple clinical interventions and outcomes,
relevant life history, and clinical measurements that
span several modalities, from serum chemistry to
brain imaging. It is not surprising that the data model
required to capture all this information is extremely
complex, as is evidenced by the Health Level 7 Ref-
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erence Information Model.8,9 It is a remarkable tribute
to the persistence of the individuals involved in these
standardization efforts, that they have been able to
arrive at a reasonably adequate standardized repre-
sentation of not only the many descriptors but much
of the process and business of clinical care.

As the HGP moves from the acquisition of raw ge-
nomics data to the biological function of the discov-
ered genes and their clinical importance, the bioinfor-
matics community will have to address very similar
complexities. That is, the clinical annotation of ge-
nomic data sets, particularly for human beings, will
essentially provide the equivalent, if not identical,
challenge of the creation of a comprehensive medical
record.

Even prior to encompassing the entirety of clinical an-
notation, the genomics community has faltered in de-
veloping shared and standardized data models where
the simplicity of the genome no longer dominates. For
example, there are several competing technologies for
the massively parallel measurement of gene expres-
sion using microarrays. Some of these arrays use two
probes per gene and are constructed using robotic
spotting techniques. Others are constructed with oli-
gonucleotides using photolithographic techniques.10

Although all these techniques measure gene expres-
sion, a widely adopted standard to represent the re-
sults across all microarray technologies has yet to
emerge. The GATC11 proposal, for example, is a pos-
sible candidate for such a data model, but its usage is
currently spotty and controversial. To clinical infor-
maticians, this will be all too reminiscent of the chal-
lenge of creating a shared data model for laboratory
results.

Standardized Vocabularies

The lack of widely accepted standardized vocabu-
laries for clinical care has greatly hampered the de-
velopment of automated decision support tools and
clinical research databases. The impossibility of guar-
anteeing that a serum sodium or systolic blood pres-
sure has the same code or term throughout our hos-
pital system is troublesome. Fortunately, several
efforts in the private and public realm (e.g., LOINC12)
are addressing this issue. The National Library of
Medicine has invested large resources to enable these
different vocabularies to be interoperable, at least at a
basic level.13

The same problems are not unknown in bioinformat-
ics. Even at this early stage of the HGP, DNA se-
quences that were previously not known to be part of
the same gene have different names and are joined in

only some databases (with varying levels of confi-
dence).

As the HGP ventures into diverse areas of bioscience
(as well as into the clinical area), vocabulary issues
are also important. Indeed, the lack of a standardized
vocabulary already arises in genomics as well, in an-
notations. For example, despite the fact that the basic
data element of GenBank is the sequence (which has
an easily standardized representation), there are di-
verse annotations that are very nonstandardized right
now.

Errors

A recent report by the Institute of Medicine14 high-
lights the immense mortality and morbidity due to
medical errors. Clinical informaticians (e.g., Bates et
al.15 and Kuperman et al.,16,17) have been instrumental
in demonstrating how automated systems can be used
to reduce this error rate. These industrial processing
and quality improvement techniques are not without
relevance to the HGP. It is well known that the mouse
genome database has been contaminated with entries
of the rat genome and that the specification of 59 to
39 polarity of a gene sequence has been found to be
inverted.18–20 And these are only some of the known
errors in a very large effort.

These sources of error can be reduced, as they have
in many industries, by the application of increased
process automation and automated interception of
human error before it becomes consequential. The ar-
chitectures of clinical order entry systems, designed
for complex clinical enterprises to prevent erroneous
and dangerous clinical behavior, can inform the de-
sign of genome sequencing and expression profiling
processes to prevent the kind of errors we are already
finding in genomic databases.

Noise

It is well known that the noise in clinical measure-
ments leads to erroneous decision making. The arche-
typal example is in the intensive care unit, where mul-
tiple physiologic monitors each has its own alarm
module. Because of the noisy nature of the biological
signals that are monitored, the alarms are ignored or
switched off because of their high false-positive rate.21

The noisy nature of the monitored signals thus has a
significant impact on the provision of care and the
decision-making ability of care providers who are
working under conditions of uncertainty and data
overload.

Similar noise considerations arise in genomics. For ex-
ample, with gene microarrays, we can measure the



514 KOHANE, The Imperative to Collaborate

expression of tens of thousands of genes at a time.
There are several sources of noise in these measure-
ments: within a microarray, across microarrays, and
from the intrinsic variability of the biological systems
being measured. Yet in 1999, several reports, which
appeared in scientific journals of the first rank, in-
cluded changes in expression so small as to be indis-
tinguishable from noise. Such changes are, in essence,
a false-positive result. These false positives are poten-
tially extremely costly. A biological researcher might
decide to invest several months investigating a gene’s
regulation because a microarray experiment showed
it to be increased or decreased under a particular set
of conditions.

In clinical informatics there is a rich literature of the
techniques that can be used to identify false positives
and reduce noise (e.g., filtering, signal fusion22–26).
Many of these techniques are transferable to the ge-
nomic domain.

Privacy

In 1997, the Institute of Medicine27 reported significant
lacunae in both technology and policy in protecting
confidential patient data. Among the problems of
greatest concern that were emphasized by this report
were the relatively unrestricted access by third parties
to these data for secondary uses and the inadequacy
of the anonymization process (in both practice and
theory28,29). Subsequently, the clinical informatics com-
munity has developed several model confidentiality
policies30 and cryptographic identification systems.31

As the fruits of the HGP are translated first into clin-
ical research protocols and then into clinical practice,
personally identifiable genomic data will find their
way into some form of information system. The chal-
lenges posed to the security and privacy of such data
will dwarf any encountered to date with conventional
clinical data. The reasons are twofold: First, genomic
information is likely to be much more predictive of
current and future health status than most clinical
measurements. Second, with very few exceptions, an
individual’s genome is uniquely identifying. This
identifiability is much more reliable, persistent, and
specific than typically cited identifiers, including a
person’s name, social security number, date of birth,
and address.

At the very least, the architects of information systems
storing genetic data should learn from all the mistakes
of and designs developed for the security architec-
tures and privacy policies of conventional clinical in-
formation systems. Conversely, the extreme concerns
posed by the storage of personal genetic data is likely
to generate new policies and security architectures

that will enhance the confidentiality of clinical infor-
mation systems. Moreover, when personal genetic
data becomes incorporated into routine medical prac-
tice, the safeguards for the confidentiality of the med-
ical record will be crucial to the confidentiality of the
genetic data referenced there.

Costs of Acquiring Data

‘‘Getting the data in’’ has often been cited32 by au-
thorities in clinical informatics as being among the
most difficult challenges in successfully deploying
clinical information systems. In particular, the costs of
acquiring detailed and structured data from the clin-
ical care process have been daunting. Voice and hand-
writing recognition information systems have not
been broadly adopted, because of a variety of perfor-
mance and usability issues. The cost and practicability
issues will continue to present obstacles to clinical in-
formation system utility and deployment until better
solutions are arrived at. In contrast, the HGP has man-
aged to achieve significant economies of scale in se-
quencing technology. Gene microarrays alone have
dropped in cost by a factor of two in just the last year.

Here again, once genomic investigators attempt to
bridge the gulf from purely genomic data sets to phe-
notypically (i.e., clinically) annotated data sets, they
will be confronted with the same challenges of clini-
cally oriented, codified data acquisition. The questions
of which user interfaces are the most cost efficient,
reliable, and generalizable to multiple clinical do-
mains are among the implementation and design
challenges that they will face. Although they have yet
to arrive at definitively successful answers, clinical in-
formaticians have already completed several decades
worth of engineering and ethnographic studies33 ad-
dressing the very same questions.

Extracting Knowledge from Data

The first rough draft of the human genome was re-
ported to have been completed in May of this year.34

It is likely that a complete, high-quality human DNA
reference sequence will be available by 2003. Yet the
function of the vast majority of the genes in the hu-
man genome will be unknown. The minority of genes
with documented function are likely to have many
more functions and interactions that are unknown.

Consequently, one of the primary applications of in-
formation technologies in genomics is the application
of machine learning techniques to determine how
genes are functionally interdependent and how these
interdependencies are reflected in the biological and
clinical behavior of the system in which they oper-
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ate.3,35 Many of these machine learning techniques
were previously applied to the task of extracting
knowledge from clinical databases, and some were
even developed first in the clinical domain.36–44 To be
sure, the genomic era has challenged these machine
learning techniques to the extreme, because of the
high dimensionality of data sets (e.g., tens of
thousands of measurements per experiment) and the
relatively few cases and experiments from which in-
vestigators are attempting to glean knowledge.

Summary

Without being exhaustive, this brief review suggests
the multiple points of commonality between the ge-
nomic and clinical strands of the biomedical infor-
matics research agenda. It also suggests that the train-
ing of investigators in informatics should include a set
of core competencies that at least cover these common
points. In this fashion, the joint research agenda might
be well served to the mutual benefit of biomedical
science and clinical care. The Stanford Medical Infor-
matics educational program, described in this issue,
illustrates this benefit.

ISAAC S. KOHANE, MD, PHD
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