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Abstract
Pregnancy may be the most nutritionally sensitive stage in the life cycle, and improved metabolic health during gestation and 
early postnatal life can reduce the risk of chronic disease in adulthood. Successful pregnancy requires coordinated metabolic, 
hormonal, and immunological communication. In this review, maternal–fetal metabolic communication is defined as the 
bidirectional communication of nutritional status and metabolic demand by various modes including circulating metabolites, 
endocrine molecules, and other secreted factors. Emphasis is placed on metabolites as a means of maternal–fetal commu-
nication by synthesizing findings from studies in humans, non-human primates, domestic animals, rabbits, and rodents. In 
this review, fetal, placental, and maternal metabolic adaptations are discussed in turn. (1) Fetal macronutrient needs are 
summarized in terms of the physiological adaptations in place to ensure their proper allocation. (2) Placental metabolite 
transport and maternal physiological adaptations during gestation, including changes in energy budget, are also discussed. 
(3) Maternal nutrient limitation and metabolic disorders of pregnancy serve as case studies of the dynamic nature of mater-
nal–fetal metabolic communication. The review concludes with a summary of recent research efforts to identify metabolites, 
endocrine molecules, and other secreted factors that mediate this communication, with particular emphasis on serum/plasma 
metabolomics in humans, non-human primates, and rodents. A better understanding of maternal–fetal metabolic commu-
nication in health and disease may reveal novel biomarkers and therapeutic targets for metabolic disorders of pregnancy.
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Introduction

Pregnancy may be the most nutritionally sensitive stage 
in the life cycle, which also means that nutritional inter-
ventions during pregnancy may have the greatest capacity 
to benefit maternal, fetal, and infant health. Furthermore, 
improved nutrition during gestation and early postnatal life 
may improve overall health and reduce the likelihood of 
chronic disease in adulthood [1, 2]. In this review, mater-
nal–fetal metabolic communication is defined as the bidi-
rectional communication of nutritional status and metabolic 
demand by various modes including circulating metabolites, 

endocrine molecules, and other secreted factors (Fig. 1). 
Maternal–fetal metabolic communication also involves a 
third party—the placenta—which is required for nutrient 
exchange in pregnant eutherian mammals and which has 
its own metabolic preferences. The placenta is unique in 
that it transiently provides the vital lifeline through which 
the developing fetus obtains all nutrients. While modes of 
placentation and placental anatomy vary greatly among 
eutherian mammals, this review aims to summarize findings 
from studies in different taxa including humans, non-human 
primates, domestic animals, rabbits, and rodents. Modes of 
metabolic communication that are conserved across species 
may demonstrate basic mechanisms of maternal–fetal com-
munication that may prove helpful in modeling disorders of 
human pregnancy. At the same time, understanding differ-
ences in maternal–fetal communication across species can 
also be informative. Similarities and differences in mater-
nal–fetal metabolic communication across taxa will be dis-
cussed throughout this review.

Maternal–fetal metabolic communication can occur by 
various modes (Fig. 1) that will be described; however, 
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special emphasis is placed on circulating metabolites as a 
means of maternal–fetal communication. Maternal, pla-
cental, and fetal metabolic adaptations will be discussed in 
turn. First, the basic metabolic needs of the fetus will be 
reviewed in terms of the maternal physiological adaptations 
in place to ensure the proper allocation of nutrients. Mater-
nal energy expenditure and changing metabolic demands 
over the course of gestation will also be discussed. Next, 
placental transport of key nutrients will be discussed, along 
with similarities or differences in placental transport among 
different species. Finally, maternal nutrient limitation and 
metabolic disorders of pregnancy will also be examined as 
case studies demonstrating the dynamic nature of mater-
nal–fetal metabolic communication. The review will con-
clude with a summary of recent research efforts to identify 
metabolites, endocrine molecules, and other secreted factors 

that mediate maternal–fetal metabolic communication, with 
particular emphasis on studies in humans, non-human pri-
mates, and rodents. Altogether, a better understanding of 
maternal–fetal metabolic communication in health and dis-
ease may reveal novel biomarkers and therapeutic targets for 
metabolic disorders of pregnancy.

Maternal–fetal metabolic communication: 
harmony or conflict?

Successful pregnancy and parturition requires metabolic, hor-
monal, and immunological communication between mother 
and fetus [3]. The types and intensities of signals conveyed 
vary considerably across gestation, as do the responses elic-
ited by these messages. Metabolic communication throughout 

Fig. 1   Maternal–fetal metabolic communication relies on maternal, 
placental, and fetal adaptations. Maternal–fetal metabolic commu-
nication is the bidirectional communication of nutritional status and 
metabolic demand. Circulating metabolites, endocrine molecules, cir-
culating cells, and secreted factors such as exosomes and extracellular 
vesicles can all contribute to this communication. Maternal metabolic 

adaptations include increased metabolic flexibility and building up 
maternal energy stores while providing nutrients to support placen-
tal/fetal growth and metabolism. Fetal metabolism is characterized by 
high anabolic demand, and changes in fetal metabolism during late 
gestation may prepare, or program, the offspring for early postnatal 
life
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pregnancy is essential because a growing fetus obtains all 
nutrients from (and excretes all wastes to) the mother. The 
metabolic demands of the growing fetus, communicated by 
changes in metabolite concentrations or by other secreted fac-
tors, may directly modify maternal metabolism and behavior 
[4, 5]. Fetal metabolic demand is highest during late gestation, 
which is coincident with the highest basal metabolic rate and 
energy expenditure in pregnant women and mice [6–8].

Alterations to macronutrient metabolism during pregnancy 
balance the competing interests of fetal growth and mater-
nal fecundity [9, 10]. However, the extent to which mater-
nal–fetal communication reflects coordinated adaptations 
versus conflicting interests is not well understood and is likely 
context-dependent. For example, the competing interests of the 
maternally inherited and the paternally inherited genomes have 
resulted in some genomic regions being imprinted—that is, 
transcriptionally silenced or expressed from only one allele in 
particular tissues or at particular times in development. Impor-
tantly, of the more than 100 imprinted genes that have been 
identified in mice, the majority are expressed and imprinted in 
the placenta, the hub of hormonal communication and resource 
allocation during pregnancy [11–14]. In fact, even prior to 
implantation, environmental signals can change imprinting in 
a way that alters placental development and function [15, 16]. 
The placenta is a key regulator of fetal metabolism and it is 
the site where conflicts over maternal–fetal resource allocation 
take place. Genomic imprinting has been likened to a tug-of-
war over resource allocation that would support fetal growth 
or maternal fecundity [17]. However, the distinction between 
these two seemingly opposed goals is rarely so clear-cut: Con-
sider, for example, if additional maternal investment now will 
result in more vigorous offspring that will require less maternal 
investment later, such that the mother can begin preparing for 
future offspring. In fact, imprinting can have behavioral effects 
by altering postnatal maternal care of offspring [18]. Environ-
mental factors can affect the expression of imprinted genes and 
alter nutrient availability and metabolism, but further inves-
tigations are needed to determine how metabolic state may 
communicate current environmental conditions to the genome/
transcriptome. While a great deal of metabolic communica-
tion is necessary between mother and fetus, particularly when 
nutrients are limiting, fetal demands and maternal counter-
measures are always at work to compromise for a balance that 
will suit both mother and fetus. There is both harmony and 
conflict under nearly all maternal–fetal interactions.

Physiological adaptations of eutherian 
pregnancy: placental development

Pregnancy demands a multitude of physiological adapta-
tions that affect every organ system of the mother, and the 
placenta is the epitome of these adaptations as the temporary 

organ that mediates maternal–fetal communication and 
metabolite transport. Placental hormones—including growth 
hormone, prolactin, placental lactogens, and steroid hor-
mones—mediate many of the maternal adaptations to preg-
nancy which affect multiple organ systems. A full discussion 
of these factors is beyond the scope of this review, but the 
physiological effects of placental hormones are examined in 
the comprehensive review by Napso et al. [19]. The placenta 
develops from interactions between the trophectoderm of the 
implanting blastocyst and the endometrium. In humans, the 
placenta is functionally mature by 10–12 weeks of gesta-
tion, and placental growth precedes fetal growth such that 
the placenta is larger than the fetus until 15–16 weeks (full 
term at 38 weeks) [3]. In mice, placentation begins just 
before mid-gestation, the definitive placenta is established 
at embryonic day 11, and the maximum placental volume is 
reached by day 16.5, as determined by stereology (parturi-
tion at day 19–20) [20, 21]. The size and transport capacity 
of the placenta is often indicative of fetal health and growth. 
Placental insufficiency is linked to miscarriage, intrauterine 
growth restriction (IUGR), and preeclampsia, highlighting 
healthy placental development as an essential physiological 
adaptation during pregnancy.

Interestingly, placentation has independently evolved in 
multiple distinct lineages. Even within the same taxonomic 
order, different strategies of placentation exist [22, 23]. 
Humans and rodents both have hemochorial placentae where 
maternal blood comes into direct contact with the syncy-
tiotrophoblast, which is the first barrier to maternal–fetal 
exchange [24, 25]. The specialized syncytiotrophoblast has 
a microvillous membrane in contact with the maternal blood 
and a basal membrane facing the fetal blood. Humans also 
have a villous placental organization where each chorionic 
villus is composed of (1) an epithelial layer derived from 
syncytiotrophoblast and cytotrophoblasts and (2) an inner 
vascular network (including fetal vessels) and connective 
tissue stroma derived from embryonic mesoderm [3, 20]. 
Invasive endovascular trophoblasts remodel the uterine 
spiral arteries and replace maternal endothelium such that 
maternal blood flows directly around the terminal villi [20, 
25]. This villous organization maximizes the surface area 
available for exchange. For excellent illustrations of these 
structures, the reader is directed to reviews by Rossant and 
Cross, and Silva and Serakides [20, 24].

Although the discoid, hemochorial placentae of humans 
and rodents have similar forms, rodent placenta lacks the 
well-defined villous structures of human placenta. Instead, 
in rodents, maternal blood bathes branching structures in a 
region called the placental labyrinth where most nutrient and 
gas exchange occurs [25, 26]. The rodent structures analo-
gous to human chorionic villi have a trichorial arrangement 
with two layers of syncytiotrophoblast in contact with fetal 
endothelium and a cytotrophoblast cell layer in contact with 
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maternal blood [20, 24]. The rodent placenta also has a junc-
tional zone which serves an endocrine function, comprised 
of spongiotrophoblasts and glycogen cells [25]. Glycogen 
cells also have the capacity to invade the maternal decidua, 
akin to human interstitial extravillous trophoblasts which 
invade uterine spiral arteries [20, 24]. The multinucleated 
giant cells of the outer layer of the rodent placenta are also 
somewhat analogous to the extravillous trophoblasts that 
invade the maternal spiral arteries in humans [24]. Despite 
subtle differences in cell types and organization, the struc-
tures of rodent and human placentae are more similar than 
certain other modes of placentation among eutherian mam-
mals. A comparison of several model organisms for the 
study of placental development and function highlights the 
advantages and limitations of using these models as they 
relate to human placentation and parturition [27].

The hemochorial placentae of humans and rodents are 
the most invasive forms of placentation, as fetal tissues are 
in direct contact with maternal blood [23]. In the endothe-
liochorial placenta, maternal blood vessels are adjacent to 
fetal tissues but separated by maternal endothelium. In the 
least invasive type of placenta, the epitheliochorial placenta, 
maternal blood and fetal tissues are separated by maternal 
endothelium, connective tissue, and epithelia, which pro-
vides considerably more membranes across which nutrients 
must be transported to reach the fetal compartment [23]. 
Species with the least invasive mode of placentation include 
sheep, which is an important consideration when compar-
ing studies of fetal sheep metabolism to other species. For 
instance, that sheep have the least invasive form of placenta-
tion while rodents and rabbits have the most invasive form 
may help explain some of the discrepancies in placental 
fatty acid transport capacity observed across species [28, 
29], which will be discussed in detail in subsequent sections.

A final point of interest about comparative placentation is 
the reproductive strategy employed by marsupials—the other 
lineage of mammals that gives birth to live young. Marsupi-
als have more anatomically simple placentae and give birth 
to young at a much earlier stage of development than euthe-
rian mammals. Lactation, therefore, plays a greater role in 
marsupial development, emulating later stages of eutherian 
in utero development [30]. Marsupials have a more com-
plex milk repertoire than eutherians, and some classes of 
genes expressed by marsupial mammary gland are shared 
with eutherian placenta and eutherian mammary gland 
while others are only shared with eutherian placenta [31]. 
Among these genes are nutrient transporters and transcrip-
tional regulators known to be important in eutherian pla-
centa which are conserved by their expression in marsupial 
mammary gland [31]. Compared to other mammals, mar-
supials may transmit similar signals of maternal-offspring 
metabolic communication, but they do so by very different 
means—namely, via milk instead of maternal circulation. 

Understanding why these signals are conserved across taxa 
may define key regulatory nodes for mammalian develop-
ment, especially in tissues like brain that undergo robust 
developmental changes. Altogether, mammals have a diverse 
array of strategies related to placental invasiveness, degree 
of maturity at parturition, and early postnatal nutritional 
approaches to ensure offspring health and manage the ener-
getic costs of pregnancy and lactation.

Additional physiological adaptations 
of pregnancy: glucose, oxygen, 
and metabolic flexibility

Canonically, glucose is the principal substrate driving fetal 
growth and energy metabolism [32]. Many maternal meta-
bolic adaptations, as summarized in Fig. 2, ensure sufficient 
glucose delivery to the fetus by rendering the mother’s tis-
sues transiently insulin resistant and by enhancing mater-
nal glucose production by 30% from early to late preg-
nancy [33]. Concomitant with this, blood flow to the uterus 
increases to 25% of cardiac output to ensure substrate and 
oxygen availability for mitochondrial oxidative metabolism 
[34]. The lumen diameter of the uterine artery expands by 
hypertrophic and hyperplastic growth of vascular smooth 
muscle cells to mediate this increased blood flow [35, 36]. 
The rate of umbilical flow of fetal blood to the placenta is 
approximately proportional to fetal weight and gestational 
age. Due to the villous organization of the human placenta, 
the total surface area available for exchange during late preg-
nancy is 10–15 m2, which is the approximate area of a typi-
cal parking space [37].

Interestingly, in polytocous species such as mice, 
there are differences in uterine blood flow rates based on 
fetal position in the uterine horn. Recent microcomputed 
tomography and in vivo magnetic resonance imaging stud-
ies have characterized uteroplacental vascular remodeling 
during mouse pregnancy [38, 39]. Each placenta is nour-
ished by branches from both the uterine artery and the 
uterine branch of the ovarian artery to enhance blood 
flow to each conceptus [40]; however, there are twofold 
lower uteroplacental blood flow rates in middle positions 
compared to ovary/cervix positions [41]. Studies from a 
crowded uterine horn mouse model demonstrate the effect 
of uteroplacental blood flow on fetal outcomes [39, 42]. 
Mice mated after a unilateral ovariectomy will gestate a 
normal-sized litter in a crowded uterine horn, in which 
there is a fourfold difference in blood flow to offspring 
from the same pregnancy [42]. Fetuses in the middle posi-
tions between the ovary and the cervix experienced the 
lowest perfusion pressure [41], and the smallest 5% of off-
spring were half the weight of the largest 5% of offspring 
from this crowded uterine horn model [42]. The smallest 
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pups exhibited dramatic catch-up growth over the first 3 
weeks of postnatal life, and by adulthood, both intrau-
terine growth-restricted male mice and macrosomic male 
mice weighed significantly more than littermates born at 
median birth weights [42]. This rodent model of postnatal 
“catch up” growth is consistent with human epidemiologi-
cal studies demonstrating that both fetal undernutrition 
and overnutrition can result in similar adverse metabolic 
outcomes in adulthood, although the mechanisms behind 
these outcomes are likely different. This will be discussed 
in further detail in “Maternal–fetal metabolic commu-
nication in nutrient stress”. Polytocous species have the 
additional challenge of meeting the metabolic demands of 
several fetuses that may be competing against one another 
for maternal resources. Each fetus may communicate dif-
ferently about metabolic demand due to genetic variations, 
uterine position effects, or other factors that may not be 
pertinent in singleton pregnancies. The maternal response 
must benefit the litter without compromising future fecun-
dity. Studying variability within the same litter in polyto-
cous species may provide insight into fetal autonomous 
responses to maternal metabolic communication.

In many species, another remarkable physiological adap-
tation of pregnancy is greater metabolic flexibility than in 
the non-pregnant state to protect fetal growth from acute 
maternal nutrient deprivation [1]. One way in which the 
pregnant woman is poised to provide this metabolic plastic-
ity is through increased adipose tissue lipolysis and re-ester-
ification, even in the fed state [43, 44]. Maternal circulat-
ing lipids (triglyceride, free fatty acids, and phospholipids) 
increase throughout gestation [37, 45] and are mobilized 
from adipose depots established during early pregnancy [44, 
46]. Circulating lipids are further elevated by fasting and 
are available for placental transport [37, 45]. Increases in 
maternal circulating lipids across gestation have also been 
observed in rats [43, 47], mice [48, 49], guinea pigs [50], 
sheep [51], and non-human primates [52]. In contrast to 
these findings, studies of pregnant rabbits [53, 54] and some 
studies of pregnant ewes [55] have demonstrated unchanged 
or lowered maternal circulating lipids across gestation. Stud-
ies in rodents suggest that fetal uptake of lipids (and cata-
bolic products such as ketone bodies) may be particularly 
important during prolonged maternal nutrient deprivation 
[32, 48]. The extent to which fetal tissues rely upon lipids 

Fig. 2   Maternal metabolic adaptations. Physiological adaptations 
during pregnancy ensure adequate nutrient delivery to the developing 
fetus. Adaptations affect whole-body metabolism of glucose, lipids, 
and amino acids. Polytocous species have the additional challenges 

of higher fetal demand relative to maternal energy budget and differ-
ences in uterine blood flow based on fetal position in the uterine horn. 
UA uterine artery
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for energy metabolism is not well understood, but the early 
postnatal switch in nutrition from glucose in utero to lipid-
rich milk suggests that late-gestation fetal tissues may have 
the capacity to utilize maternally derived lipids [56]. In this 
way, the metabolic plasticity of the mother may affect the 
fetal response to maternal nutrient deprivation.

Metabolic demands of pregnancy

Human weight increases 6 billion times over the course of 
prenatal life [57]. As such, it is understandable how dramati-
cally fetal metabolic demands must change over the course 
of gestation. Similarly, maternal energy expenditure also 
increases during gestation, but it is unclear if this increase 
is simply proportional to increased tissue mass and food 
intake [58]. Longitudinal studies of energy expenditure and 
body composition have attempted to address this to better 
understand the metabolic costs of pregnancy.

Primate reproduction is characterized by a slow rate 
of growth over a long gestation which results in a lower 
nutritional stress per unit time than what is observed in spe-
cies with faster generation times [1]. Interestingly, there is 
greater variation among mammals in birth weight than there 
is in terms of length of gestation; therefore, there are vast 
differences in rates of fetal growth across species [57]. Fetal 
growth rates are not linear but growth accelerates as gesta-
tion advances. In humans, birth occurs on the steepest part 
of the growth curve, while in rodents, for example, the great-
est rates of growth occur in the first 2 weeks of postnatal 
life [57], even though fetal rats exhibit a 25–30% increase 
in weight in the last day of gestation [59]. Due to the slow 
rate of growth of humans, the daily energy stress of human 
pregnancy relative to maternal body size is lower than for 
most other mammals [1]. Species with higher metabolic 
demands during pregnancy must meet that need through 
substantial increases in food intake, whereas humans, with 
a lower nutritional stress per unit time, may instate metabolic 
adaptations to protect fetal growth from adverse circum-
stances such as food shortages. Higher gestational metabolic 
demand is especially apparent in polytocous species, and 
placental structural remodeling and changes in endocrine 
output likely contribute to meeting the higher maternal, pla-
cental, and fetal metabolic demands during late gestation.

In healthy human pregnancies, the average maternal 
weight gain is 12.5 kg (28 lbs) over the course of gesta-
tion [46]. Fetal weight may account for 25% of the weight 
gained in a well-nourished human pregnancy, but up to 60% 
in suboptimal nutritional conditions [1]. Calculations of the 
human energy budget during pregnancy suggests there are 
three ways in which energy is used: (1) energy deposited as 
new tissue (conceptus, amniotic fluid, uterus, breast tissue, 
increased blood volume) (~ 20 MJ); (2) energy deposited as 

maternal and fetal fat (~ 150 MJ); and (3) energy required 
to maintain the new tissue (~ 150 MJ) [1]. There are vast 
differences in energy budgets during pregnancy depending 
on maternal and pre-pregnancy nutrition. When maternal 
resources are limited, energy deposition as fat is the meta-
bolic fate that gets re-routed. Pair-feeding of pregnant mice 
based on non-pregnant controls revealed no reduction in fetal 
body weights from pregnancies fed ad libitum; however, 
there was a significant reduction in maternal body weight, 
suggesting that maternal hyperphagia in later rodent gesta-
tion fuels adipose deposition that is particularly important 
during lactation [60]. In humans, maternal adipose deposi-
tion occurs in the first trimester, and it is these adipose stores 
that will be mobilized during late gestation to promote fetal 
fat accretion [37, 46]. Fat accounts for 16% of birth weight in 
humans, but only 1–2% in mice and rats [57]. Furthermore, 
this late-gestation increase in adiposity is unique to humans 
as most other mammals, including primates, are born lean 
[32, 56]. The higher adiposity of human newborns is pro-
posed to be important for supporting the unique metabolic 
demands of human brain development [61]. Some species, 
such as rabbits and guinea pigs, accumulate fat in their livers 
just prior to birth, and it is these hepatic stores rather than 
adipose depots that are of principal importance for early 
postnatal metabolic adaptation in these species [29, 56].

In small mammals such as rodents, fetal mass may 
account for 30% of maternal body weight, hence certain met-
abolic adaptations may, out of necessity, increase energetic 
efficiency over what is observed in human pregnancy [62]. 
In sheep, fetal body weights are 8% of maternal body weight, 
which may make them a better model for fetal growth trajec-
tories in human pregnancy [62], although there are funda-
mental differences in placental morphology between humans 
and sheep, as described above. The gold standard for assess-
ing changes in bioenergetic demand during pregnancy is to 
collect longitudinal data on metabolic rates; however, it can 
be challenging to recruit and study a sufficiently sized cohort 
since there is often considerable variation among women 
[63]. Several longitudinal studies of pregnant women have 
demonstrated increasing energy expenditure across gesta-
tion by indirect calorimetry measurements [6, 7, 64, 65]. 
Women with a normal BMI displayed a 28% increase in 
basal metabolic rate (BMR, kcal/day) and a 13% increase 
in total energy expenditure (sum of BMR, activity energy 
expenditure, and thermic effect of food) from pre-pregnancy 
to 36 weeks gestation [6]. There is considerable variability 
in total energy expenditure (TEE)—some women have a 
net negative difference in TEE across the course of preg-
nancy—and this suggests that pregnant women use a diverse 
array of strategies to meet the metabolic demands of preg-
nancy [7]. Therefore, a single recommendation for increased 
energy intake during pregnancy is likely not applicable to all 
women. A longitudinal study reported that average energy 
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intake increased 9% from pre-pregnancy to the third tri-
mester; however, some women had no increase in energy 
intake during pregnancy [7]. In addition, a study of early- 
and late-gestation pregnant women found no difference in 
postprandial energy expenditure compared to non-pregnant 
controls, suggesting that there are no significant alterations 
in efficiency of energy extraction from dietary sources [62]. 
This is consistent with the studies of pair-fed mice in which 
reducing maternal food intake was still sufficient to meet 
the biosynthetic and bioenergetic needs of the developing 
fetus [60]. While human nutrition varies greatly between and 
within populations around the world, the adaptive measures 
that protect against nutritional deficiency in utero can pro-
mote the birth of healthy human newborns in any population.

Another obstacle in studies of the energetic requirements 
of pregnancy, particularly in laboratory model organisms, 
is the challenge of accounting for fetal metabolic rate in 
a system where fetal mass may account for up to 30% of 
maternal weight. Measurements by indirect calorimetry in 
newborn mice suggest that metabolic rate relative to fetal 
body weight is likely 30% lower than the metabolic rate of 
the maternal body, such that maternal changes in energy 
expenditure account for the bulk of the increase in metabolic 
rate during pregnancy [8]. In addition, in a mouse model in 
which placentae persist after fetuses are rendered inviable 
during late gestation (gestational day 15), increased meta-
bolic rate was still observed [8]. This suggests that hormonal 
contributions from placenta, rather than fetal demand per se, 
may contribute significantly to the increase in metabolic rate 
across gestation. In rats, as in humans, energy expenditure 
was 10% higher than non-pregnant values at the peak of 
energy expenditure just prior to parturition [58]. A recent 
study in mice demonstrated a decrease in late-gestation core 
body temperature that was reversed with high-fat feeding 
[66]. Altogether, the increased basal metabolic rate dur-
ing pregnancy can be attributed to the combined effects 
of increased tissue mass, accelerated tissue synthesis, and 
increased cardiovascular, respiratory, and renal work [63].

Placental nutrient transport: carbohydrates

While an essential function of the placenta is nutrient and 
waste transport, the metabolites transferred are themselves 
a fundamental mode of maternal–fetal metabolic commu-
nication. Placental structure maximizes the surface area 
available for exchange of membrane-permeable molecules 
as well as ions and polar molecules which require trans-
porter-mediated movement across cellular membranes. The 
developing fetus is in a constant anabolic state, increasing 
biomass with substrates delivered from the mother. Canoni-
cally, glucose drives fetal growth [32]. In addition to carbo-
hydrates, amino acids and lipids are also required for fetal 

growth. While some of these molecules can be synthesized 
by the fetus, others are essential and must be supplied from 
the mother. Some of the key classes of nutrients provided 
for fetal growth will be surveyed here: carbohydrates, amino 
acids, lipids, and essential nutrients. Their transport and 
metabolic fates will be reviewed in the following sections.

Glucose and oxygen are arguably the two most impor-
tant molecules transferred from mother to fetus during 
pregnancy. Pyruvate is the end-product of glycolysis, and 
pyruvate can be converted to lactate to regenerate NAD+, 
a necessary cofactor for glycolysis. Oxygen, glucose, and 
lactate all converge at the transport and metabolism of 
pyruvate in mitochondria. Pyruvate can be catabolized or 
used for anabolic processes. While oxygen tension in utero 
is low relative to atmospheric levels, measurement of oxy-
gen consumption and lactate uptake in fetal lamb provided 
evidence that the fetus is a net consumer rather than pro-
ducer of lactate [32]. Consistent with this, fetal myocardium 
consumes a large amount of lactate in addition to glucose, 
indicating that oxidative metabolism of carbohydrate is an 
important energy source in developing heart [67, 68]. In 
addition, lactate utilization is high in neonatal brain, and 
the capacity for lactate import is higher in neonatal brain 
than in adult [69, 70]. Furthermore, recent studies revealed 
significant lactate utilization in adult tissues, suggesting that 
circulating lactate is an important oxidizable substrate in 
mammals [71, 72]. Together with genetic loss-of-function 
models in mice, these observations provide evidence for the 
importance of mitochondrial oxidative metabolism of car-
bohydrates in mammalian development [73–77]. In addition, 
mitochondrial metabolism regulates transitions between fed 
and fasted states to promote metabolic flexibility and capital-
ize on current nutrient availability while anticipating future 
nutrient limitation [78].

The predominant glucose transporter expressed in pla-
centa is GLUT1, which promotes facilitated glucose trans-
port with no co-transport or energy requirement. GLUT1 
is found on both the microvillous and basal membranes of 
the syncytiotrophoblast [79]. GLUT3 can be found in the 
vascular endothelium where it likely enhances transplacen-
tal uptake of glucose [79]. In rodents and sheep, GLUT3 
is expressed by the placenta and increases as gestation 
progresses. The expression of this high affinity glucose 
transporter may augment glucose uptake in species with 
a faster rate of in utero growth and a higher daily energy 
stress of pregnancy than humans [79]. Interestingly, pla-
cental GLUT1 expression has been found to be increased 
in gestational diabetes mellitus (GDM). Normally, there is 
more GLUT1 expression on the microvillous membrane 
than on the basal membrane, but in GDM pregnancies, 
there is increased expression of GLUT1 on the basal mem-
brane which could promote elevated glucose transport to the 
fetus [79, 80]. It is unclear whether maternal or fetal factors 
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mediate this increase in GLUT1 expression in GDM, but it 
has been suggested that fetal hyperglycemia and increased 
insulin-like growth factor 1 (IGF-1) expression could result 
in elevated glucose transporter expression [81]. Interest-
ingly, expression of the insulin receptor itself changes dur-
ing placental development. During early gestation, insulin 
receptors are expressed on the microvillous membrane of 
the syncytiotrophoblast, but at term insulin receptor expres-
sion is enriched on the endothelium [82]. This change in 
insulin receptor expression suggests a shift from maternal 
regulation of insulin-dependent processes in the placenta at 
the beginning of gestation to fetal regulation by the end of 
gestation [82]. Gestational changes in plasma glucose and 
insulin as well as altered expression of glucose transporters 
and insulin receptor are carefully balanced for fetal growth 
and maternal health: maladaptive changes may contribute to 
the pathophysiology of GDM.

It is unclear exactly how glucose is made available for 
transport across the basal membrane of the syncytiotropho-
blast since hexokinase will readily phosphorylate glucose 
transported across the maternal microvillous membrane. 
There are a few reports of glucose-6-phosphatase expres-
sion in the endoplasmic reticulum of the syncytiotropho-
blast, and that may represent one path by which glucose 
can be transferred to the fetal side [83, 84]. Some reports 
even provide evidence for glucose production by the pla-
centa, but the capacity for and regulation of this potential 
source of increased glucose production during late gesta-
tion is not well understood and would still require glucose-
6-phosphatase [84, 85]. In one study, women undergoing 
elective cesarean delivery at term (after a 10 h fast) were 
administered deuterated glucose, and the label was found 
to be diluted in the umbilical vein with no further dilution 
in the umbilical artery, suggesting a uteroplacental source 
of this glucose rather than a fetal contribution [85]. Gly-
cogen stores are another potential source of glucose avail-
able for placental use or transport to the fetus. While gly-
cogen stores have been observed in multiple cell types in 
human and rodent placentae, the functions of these stores 
and their role in normal physiology and pathogenesis are 
poorly understood and may vary across gestation [86, 87]. 
Fetal liver glycogen could be another important source for 
endogenous glucose availability during a time of nutritional 
challenge. Glycogen stores accumulate during the last weeks 
before birth in humans and are critical for the first hours 
of postnatal life when hormonal signals such as glucagon 
promote glucose mobilization from these glycogen stores 
before the neonate consumes any milk [56, 57]. In this way, 
both placenta and fetal liver participate in ensuring glucose 
availability in late gestational life.

The placenta not only transports glucose to the fetus but 
it also catabolizes glucose, and recent studies challenge the 
widely held notion that fetal metabolism relies heavily on 

glycolysis. Umbilical uptake of oxygen and glucose was 
found to be 45% and 75% lower, respectively, than the total 
uterine uptake in sheep, suggesting significant glucose oxi-
dation by the placenta [88]. In an ovine model of impaired 
placental growth, oxidative metabolism of glucose by pla-
centa was impaired, but lactate efflux to the umbilical vein 
was increased and fetal lactate consumption increased as 
a result [89]. In late gestation, maternal gluconeogenesis 
is elevated to ensure adequate glucose supply to the fetal 
compartment, and lactate is an important gluconeogenic 
substrate. However, only 40–50% of lactate was used for 
gluconeogenesis in late-gestation pregnant rats, as compared 
to 70–80% in non-pregnant rats, suggesting that fetal utiliza-
tion of lactate may account for the difference [59]. Studies 
in fetal lamb confirm that lactate concentrations are higher 
in fetal umbilical vein than in fetal artery, again consistent 
with the fetus being a net consumer of lactate [90]. Recent 
magnetic resonance imaging studies using hyperpolarized 
[1-13C]pyruvate administered to late-gestation pregnant rats 
resulted in clear placental localization of signal as well as 
evidence of conversion to [1-13C]lactate and [1-13C]alanine 
in maternal organs and in placenta. Importantly, the inten-
sity of the [1-13C]lactate signal from placenta was lower in 
a rat model of preeclampsia, and this reduction in signal is 
not due to changes in placental perfusion but rather likely 
represents impaired placental metabolism of pyruvate [91]. 
Together, these observations challenge the dogma that in 
utero development is characterized by low oxygen tension 
and is not conducive to mitochondrial oxidative metabo-
lism. While this may be true during early development, once 
placental exchange function is developed and fetoplacen-
tal mitochondrial biogenesis accelerates [73, 92], the fetus 
and placenta are poised to utilize oxidative metabolism for 
energy production and anabolism. Mitochondrial content 
increases in fetal tissues during development. In the pla-
centa, zonal and age-related differences in mitochondrial 
oxidative metabolic function have been characterized and 
are sensitive to environmental cues such as oxygen concen-
tration [92]. Nutrient availability likely also regulates mito-
chondrial function in the conceptus. In this way, maternal 
provision of nutrients may promote development of the fetal 
pathways necessary to utilize these nutrients [93, 94].

The process by which fetal, neonatal, and adolescent tis-
sues develop the enzymatic functions of adult tissues has 
been termed “enzymic differentiation” [93], and metabolic 
and hormonal signals (for example, glucocorticoids) likely 
contribute to this differentiation [95, 96] (Fig. 3). The capac-
ity for gluconeogenesis is acquired in the early postnatal 
period after glucagon stimulus, but the postnatal gluco-
genic response likely represents a point along a continuum 
of developing this capacity. Supporting this, in a non-human 
primate model, premature baboons had reduced endogenous 
glucose production compared with controls born at term 
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[97]. Furthermore, in a non-human primate model of mater-
nal obesity by western diet, fetal liver gluconeogenesis was 
activated early [98], suggesting that signals that normally 
promote healthy liver enzyme development were activated 
prematurely, with consequences for fetal health.

Placental nutrient transport: amino acids

Amino acids can be utilized for protein synthesis and bio-
mass accumulation as well as for energy production and syn-
thesis of other metabolites. In contrast to glucose utilization 
by placenta, similar rates of uterine and umbilical uptake of 
amino acids were measured in sheep, suggesting that amino 
acids are preferentially transferred to the late-gestation 
fetus [88]. In humans, fetal umbilical vein concentrations 
of amino acids were higher than maternal circulating levels 
[99], and late-gestation fetal rat plasma amino acids were 
elevated compared to maternal plasma [100]. In addition, 
maternal circulating levels of certain amino acids decrease 
over the course of gestation [101, 102]. A thorough catalog 
of placental amino acid transporters is beyond the scope 
of this survey, but the reader is directed to these excellent 
reviews [26, 103–107] and a comprehensive model of inte-
grated placental amino acid transport (since some amino 
acids are accumulated against a concentration gradient and 

others are used in concert with exchangers/antiporters that 
will swap one amino acid for another across a membrane) 
[108]. Impaired placental amino acid transport has been 
observed in intrauterine growth restriction (IUGR), and there 
was decreased activation of the key signaling hub in cellular 
metabolism and growth called mTOR (mammalian target 
of rapamycin) in IUGR placentae, indicative of impaired 
nutrient sensing relative to healthy placentae [109]. Hyper-
polarized 13C magnetic resonance imaging has been used to 
visualize [1-13C]alanine and 13C-urea in vivo in rat placenta. 
Urea was demonstrated to cross the placenta and reach fetal 
liver, although the physiologically relevant direction of urea 
transport is from fetus to placenta as a waste product [91]. A 
similar imaging approach in pregnant women could possibly 
be used to test for placental dysfunction that is characteristic 
of complications such as IUGR and preeclampsia.

Crosstalk between glucose and amino acid metabolism 
can promote the synthesis of non-essential amino acids from 
intermediates from glycolysis and the tricarboxylic acid 
(TCA) cycle. In addition, certain amino acids can contrib-
ute to gluconeogenesis. Although the contribution of fetal 
liver gluconeogenesis in vivo is unknown, fetal rat liver from 
severely fasted dams demonstrated increased activity of glu-
coneogenic enzymes and increased conversion of gluconeo-
genic substrates to glucose by tissue explants [100] and in 
response to glucagon administration in vivo [110]. Increased 
hepatic amino acid uptake was associated with increased 
fetal hepatic glucose output in insulin-induced maternal 
hypoglycemia in sheep [111]. A uteroplacental source of 
glucose during fasting in late-term pregnant women has 
also been suggested based on umbilical vein and artery 
blood glucose measurements [85]. The enhanced gluconeo-
genic potential prior to birth provides evidence for a strong 
demand for glucose to fuel energy production at the cost of 
promoting growth because fetal weight was decreased with 
prolonged maternal fasting in rats [100]. A protein-restricted 
diet in pregnant non-human primates did not alter offspring 
growth, but postnatal bone development was negatively 
affected by prenatal protein restriction, demonstrating that 
amino acid availability affects multiple organ systems [112]. 
Amino acid availability and pro-growth hormonal signals 
regulate fetal growth, and crosstalk with other metabolic 
pathways can affect oxidative metabolism.

Placental nutrient transport: lipids

Lipids are an important class of molecules for cellular bio-
synthesis, biomass accretion, energy production, and signal-
ing purposes during fetal development. The fetus is capable 
of de novo lipogenesis from precursors derived from the 
TCA cycle. Due to the predominance of glucose as a meta-
bolic substrate in utero, much of the carbon available for 

Fig. 3   Enzymic differentiation is the process by which fetal, neona-
tal, and adolescent tissues develop the enzymatic functions of adult 
tissues [93]. Shown here is a schematic representation of the transi-
tion from fetal to early postnatal metabolism. Mitochondrial content, 
represented in red, increases in brain, heart, and liver over this period 
of development. As an example, the capacity for gluconeogenesis is 
represented in blue and increases during late fetal development with 
a robust increase after birth (due to postnatal metabolic and hormonal 
signals). In utero nutritional stress, communicated via maternal circu-
lating factors, may cause the fetal portion of the curve to be activated 
prematurely and shifted left, as shown by the dashed blue line. Both 
fetal under- and overnutrition have been posited to prime fetal liver 
metabolism for the postnatal transition [48, 98]. A similar trend could 
be shown for other metabolic processes that increase postnatally, such 
as fatty acid oxidation in the heart
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lipogenesis likely derives from glucose. In mouse, whole-
body deletion of acetyl-CoA carboxylase 1 is embryonic 
lethal by day 8.5, and whole-body deletion of fatty acid syn-
thase results in pre-implantation embryonic lethality [113, 
114]. Remarkably, mice with liver-specific deletion of these 
essential enzymes in lipogenesis develop normally and are 
not phenotypic when dietary fat is available, suggesting that, 
even in utero, liver fatty acid synthesis is not essential under 
normal dietary conditions [115, 116]. De novo lipogenesis 
has been measured in fetal rat by the incorporation of 3H2O 
into the lipid fraction. From embryonic day 17 to 20 in rats, 
there was a threefold increase in fatty acid synthesis; how-
ever, this study failed to provide fetal tissue-specific resolu-
tion as to where these lipids were accumulating, although it 
was reported that fetal liver triglyceride content accounted 
for 20% of total fetal triglyceride content [117]. The same 
study also compared exogenous uptake of [14C]oleate, but 
the relative contributions of lipogenesis vs lipid uptake to 
total tissue lipid accretion cannot be determined from these 
labeling experiments. Glucose-derived lipogenesis is likely 
of greater significance in species with limited fatty acid 
transport across the placenta, such as species with epithelio-
chorial placentae like sheep and cows. Although the relative 
contribution of de novo synthesized lipid vs placental uptake 
of lipid is not well established, the importance of lipid accre-
tion during late gestation cannot be contested. Human fetal 
liver accumulates 51 mg fatty acid per week from 22 weeks 
of gestation to term [118]. Much of this lipid is maternally 
derived from maternal adipose depots that are mobilized in 
late gestation [44, 46]. The way maternal lipids are made 
available for placental/fetal uptake may communicate mater-
nal nutritional status and may affect fetal utilization [119]. 
The availability of lipids important for fetal development is 
further discussed in “Essential Nutrients”.

While some studies have suggested that rates of placen-
tal transfer of lipids (particularly in species with epithelio-
chorial placentae) are quite low, it is important to consider 
that cumulative lipid transfer and accumulation in fetal tis-
sues may be highly significant even if rates of transfer are 
slow. During late gestation, maternal non-esterified fatty 
acid (NEFA) concentrations are elevated, but circulating 
triglyceride (TG) levels are increased even more dramati-
cally, such that levels are 250% higher than levels in non-
pregnant women [37]. These concentrations are more than 
twofold higher than the postprandial peak in TG after a 
high-fat meal. It is largely accepted that maternal circulat-
ing triglycerides do not cross the placenta intact, yet the 
acyl content of TG is available for fetal accumulation [5]. 
In humans, for example, a TG emulsion administered to 
pregnant women near term was able to cross the placenta as 
evidenced by increased fetal arterio-venous lipid concentra-
tions and by the observation that fetal circulating NEFA and 
TG fatty acid composition resembled the composition of 

the TG emulsion that was administered to the mother [120]. 
Despite this, some discrepancies in placental fatty acid trans-
port capacity have been observed across species. In sheep, 
fetal blood concentrations of both free fatty acids and ketone 
bodies remain low relative to maternal concentrations, even 
upon maternal nutrient deprivation [32]. Consistent with 
this, radiolabeled palmitate was found to be transported 
poorly across the sheep placenta; however, circulating free 
fatty acid levels in newborn sheep were rapidly increased 
from 10 to 80% of maternal levels within an hour after birth 
[28]. In rabbits, on the other hand, maternal fasting nearly 
doubled fetal fat storage in both adipose and liver [29]. In 
this regard, the most invasive (hemochorial) placenta, as in 
humans, rodents, and rabbits, may allow for greatest lipid 
transport from mother to fetus. A potentially confounding 
factor is digestive differences between species with highly 
invasive vs less invasive modes of placentation. For instance, 
ruminants like sheep and cattle have the least invasive pla-
centae and a greater dependence on gut-derived short-chain 
fatty acids. Species with the most invasive (hemochorial) 
placentae that exhibit higher capacity for long-chain fatty 
acid transport also tend to exhibit faster rates of prenatal 
brain growth and higher ratios of brain mass to body mass 
in both neonates and adult animals [22]. In humans, for 
example, the brain of a newborn weighs 25% the weight 
of an adult brain, but the body weighs only 5% of the adult 
body weight [57]. A study of brain–body allometry across 
eutherian mammals demonstrated patterns of faster prena-
tal brain growth and slower prenatal body growth among 
species with more invasive forms of placentation [22]. This 
suggests that, in these species, nutrients essential for brain 
growth and development (such as essential fatty acids) are 
made more readily available to the fetus earlier in life. Spe-
cies with less invasive placentation may primarily provide 
these nutrients postnatally via milk. Different modes of pla-
centation may reflect life history traits such as nutrition and 
offspring brain development at birth. The brain is an ener-
getically expensive tissue, both in terms of development and 
maintenance [69, 121, 122], and the brain is characterized 
by a unique lipid composition [123]. It is of no surprise that 
placentation strategies may affect nutrient availability for 
important developmental processes that vary among species. 
A more mechanistic understanding of how species-specific 
differences in nutrient transport affect these life history traits 
remains to be determined.

Non-esterified fatty acid (NEFA) availability for the 
conceptus can be from mobilization of maternal adipose 
depots or from local TG hydrolysis by maternal or placen-
tal lipases. The human placental microvillous membrane is 
capable of binding lipoproteins that transport triglyceride 
and other esterified lipids [124, 125] and the placenta has 
lipase activity to liberate NEFA from triglyceride [126, 127]. 
Indeed, studies from guinea pig indicate that more of the 
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NEFA available to placenta is derived from maternal TG 
than from circulating NEFA [128]. Increased lipase activity 
has been measured from placentae from diabetic pregnancies 
and the higher availability of maternal lipids may be associ-
ated with the increased fetal weight gain that is characteris-
tic of gestational diabetes [126]. Placental lipases may have 
increased selectivity to release long-chain poly-unsaturated 
fatty acids from triglyceride because lipoprotein lipases pref-
erentially hydrolyze the sn-2 position which is more likely to 
be unsaturated [37]. Different placental cell types may also 
contribute to making fatty acids available for uptake. For 
example, placental macrophages express high levels of lipo-
protein lipase, and endothelial cell expression of endothelial 
lipase may contribute significantly to hydrolysis of maternal 
lipoproteins throughout gestation [129].

After fatty acids have been liberated from maternal TG at 
the microvillous membrane, they are available for placental 
transport and metabolism. Placental fatty acid binding pro-
teins (FABPs) and fatty acid transport protein (FAT/CD36) 
may facilitate fatty acid transport down a concentration gra-
dient [129]. In humans, the concentration of NEFA in mater-
nal blood is about threefold higher than in fetal blood at 
term, but fetal blood has a higher concentration of albumin 
and a lower NEFA/albumin molar ratio than maternal blood 
[37, 130]. In this way, the fetus can exert a steeper effective 
concentration gradient to increase fetal fatty acid uptake 
which is particularly important during late gestation when 
fetal fat accretion is greatest in humans. The fatty acid trans-
port proteins FATP1 (SLC27A1) and FATP4 (SLC27A4), 
two members of the very long-chain acyl-CoA synthetase 
family, are also expressed in placenta [129] and may help 
shuttle acyl groups to particular metabolic fates within the 
placenta [131–134]. Acyl-CoA thioesterases, which hydro-
lyze acyl-CoAs to free fatty acids and free coenzyme A in 
several cellular compartments, could conceivably play a role 
in making fatty acids available for transport as a free acid. 
One report has detected long-chain acyl-CoA thioesterase 
activity in BeWo human placental choriocarcinoma cells, 
and treatment of cells with particular fatty acids resulted in 
increased thioesterase activity and enhanced expression of 
PPARγ target genes [135]. Another way acyl groups could 
be transported across the placenta is as acylcarnitine spe-
cies. Transacylation of long-chain acyl-CoAs to acylcarni-
tines is essential for long-chain fatty acid transport into the 
mitochondrial matrix for β-oxidation. The organic cation/
carnitine transporter Octn2 is expressed in placenta [136], 
and carnitine levels in cord blood are higher than in mater-
nal blood [137]. Blood acylcarnitine profiling of newborns 
is a common diagnostic approach to screen for metabolic 
deficiencies at birth [138].

It has been speculated that NEFA transported into pla-
centa are likely esterified to placental TG, and fetal TG lev-
els correlate with placental TG content (rather than with 

maternal circulating lipid concentrations) [117]. Placen-
tal TG is comprised of that which has been taken up from 
maternal lipoproteins (VLDL) and also from placental TG 
synthesis. Studies of rat placenta demonstrated that NEFA 
could be esterified in a concentration-dependent manner 
[139]. Placental TG content increased with progressing 
gestation, and a severe 48 h fast in rats also dramatically 
increased placental TG levels. Radiolabeled oleate was read-
ily incorporated into TG, diacylglycerol, and cholesterol 
esters. There was no difference in the capacity for oleate 
esterification in placentae from fed vs fasted rat dams, sug-
gesting that the capacity for esterification cannot account 
for the difference in TG content and that the availability of 
maternal circulating lipids may be a more important regula-
tor of placental TG content [139]. A recent computational-
experimental approach used human placental ex vivo per-
fusions to model fatty acid uptake and transfer to the fetus 
[140]. Placental uptake of fatty acids was largely depend-
ent on placental metabolism of fatty acids rather than on 
microvillous membrane transport. The idea here is that when 
membrane transport capacity is high, the transmembrane 
gradient becomes small and the rate-determining factor 
becomes metabolism of the molecules of interest. Rates of 
fatty acid delivery to the fetal compartment were determined 
by placental metabolic pools and basal membrane transport 
[140]. In this way, placental lipid stores may accommodate 
on-going fetal lipid metabolic demand by making nutrients 
available independent of maternal dietary availability. Fur-
ther studies are needed to characterize the metabolic fates of 
placental fatty acids to better understand how these pools of 
lipids affect transport and whether fatty acid β-oxidation pro-
vides energy for placental nutrient transport. The observa-
tion that the placenta may serve as a metabolic pool for fatty 
acid delivery to the fetus is in agreement with the observa-
tion that glucose transport is also best understood in terms 
of a three-pool model where maternal, placental, and fetal 
metabolism are all taken into consideration [141].

The capacity for and role of fatty acid oxidation in the 
placenta is not well understood. Human placenta was found 
to express the necessary enzymatic machinery for mitochon-
drial β-oxidation [142, 143]. Oleate oxidation by placental 
explants has been observed—although at lower rates than 
oleate esterification into neutral lipids—and was moderately 
increased with gestational age [139]. This study, however, 
cannot account for differences in fatty acid utilization among 
placental cell types, which may account for some of the dif-
ferences in fatty acid oxidation vs esterification. To this end, 
isolated trophoblasts can oxidize fatty acids as a significant 
metabolic fuel, but the contribution of other cell types is less 
well understood [142]. Broadly, placental metabolism can 
affect nutrient availability by sequestering nutrients from 
the mother, by storing nutrients for subsequent delivery to 
the fetus, or by providing new or bio-transformed substrates 
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for fetal nutrition that were produced as a result of placen-
tal metabolism (in the case of fatty acids, the production 
and transport of acylcarnitines or ketone bodies as possi-
ble metabolites for transport) (Fig. 4). In this way, placen-
tal lipid metabolism can modify maternal–fetal metabolic 
communication.

Placental nutrient transport: essential 
nutrients

The transport and availability of metabolites that cannot 
be synthesized in the fetal compartment represents another 
important mode of maternal–fetal metabolic communica-
tion. The essential fatty acids [required for the synthesis of 
long-chain polyunsaturated fatty acids (PUFAs)] and the 
branched-chain amino acids (BCAAs: valine, leucine, and 
isoleucine) are included in this category and are required 
for biosynthetic processes. In a baboon model of maternal 
nutrient restriction, fetal plasma BCAAs were decreased 
and expression of placental amino acid transporters was 
also decreased [144]. Over the course of gestation, mater-
nal plasma concentrations of BCAAs decrease, likely due to 
increased placental uptake [102]. Interestingly, the decrease 
in maternal plasma BCAAs occurs concomitantly with the 
increased peripheral insulin resistance that occurs during 
pregnancy, which is opposite of numerous studies linking 
elevated serum BCAAs and insulin resistance in the meta-
bolic syndrome [145–148]. The uncoupling of elevated 
BCAAs and insulin resistance during pregnancy could be 
an important part of understanding the pathology of insulin 
resistance. Moreover, therapies to alter BCAA levels dur-
ing pregnancy could be beneficial in gestational diabetes or 
fetal growth restriction. In a preliminary study, overweight 

pregnant women receiving micronutrient supplementation 
in early pregnancy had lower BCAA levels compared to 
control overweight pregnant women not receiving the sup-
plement [149]. While birthweight outcomes or measures of 
maternal glucose homeostasis are not available from this 
trial, the study demonstrates the utility of nutritional supple-
mentation to affect macronutrient uptake in ways that may 
promote healthy fetal growth and birth outcomes. Interest-
ingly, feeding rodents a low-protein diet during gestation 
has been associated with lower maternal plasma PUFA lev-
els and lower fetal brain PUFA content in phospholipids, 
suggesting that macronutrient crosstalk can alter nutrient 
availability [150].

There is no evidence for enrichment of essential fatty 
acids in maternal plasma across gestation. Despite large 
increases in the amount of circulating triglyceride, only 
slight increases in total circulating NEFA and phospholip-
ids are observed across gestation with no robust changes in 
acyl composition in any lipid class [37, 102]. Long-chain 
polyunsaturated fatty acids (LCPUFAs) can be derived 
from the essential fatty acids linoleic acid (LA, 18:2 n-6) 
and α-linolenic acid (ALA, 18:3 n-3), but during pregnancy, 
LCPUFAs may become conditionally essential if dietary 
intake and biotransformation cannot keep pace with fetal 
demand [37]. Arachidonic acid (20:4 n-6), eicosapentaenoic 
acid (20:5 n-3), and docosahexaenoic acid (DHA) (22:6 n-
3) are the metabolically most important LCPUFAs, and the 
very presence of these essential fatty acids in fetal tissues 
stands as evidence for fetal uptake and accumulation [37]. 
Intra-amniotic administration of isotopically labeled LA and 
ALA to fetal rats resulted in significant label incorporation 
into fetal liver and brain lipids, including in the form of 
DHA which implies fetal biosynthesis of PUFAs [151]. In 
the human fetus, lipid deposition increases exponentially 
with gestational age until it reaches the maximal rate of 
accretion of 7 g/day just before term [57], and DHA require-
ments triple from 100 to 300 mg/day from mid to late gesta-
tion [37]. One method of bioaccumulation of these lipids is 
the conversion of NEFA into phospholipids within the fetal 
liver to trap select fatty acids and accumulate them from the 
circulation [152]. Similarly, other tissues, most notably adi-
pose, may serve as a pool for these lipids. While PUFAs are 
particularly important for mammalian brain development, 
remarkably, 16-fold more DHA is stored in fetal adipose 
tissue than is deposited in fetal brain, and this accumulation 
of DHA in adipose is specific to fetal adipose tissue and is 
not reflective of maternal adipose tissue DHA content [37].

The placenta also likely plays a major role in the selec-
tive uptake of PUFAs. Administration of 13C-labeled fatty 
acids to pregnant women just prior to cesarean delivery 
revealed that placenta preferentially accumulated DHA 
relative to other labeled fatty acids (palmitate, oleate, and 
linoleate) at the concentrations tested [130]. Furthermore, 

Fig. 4     Placental metabolism affects maternal–fetal metabolic com-
munication. The placenta is not a passive conduit for nutrient and 
waste transfer. Placental metabolism can sequester nutrients from the 
mother, store nutrients for subsequent delivery to the fetus, or pro-
vide new or bio-transformed substrates for fetal nutrition. Examples 
are provided of lipids metabolized by the placenta in these ways. Fas 
fatty acids
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[13C]DHA was esterified in similar proportions in cord 
blood NEFA, phospholipids, and triglyceride, while other 
tracers were primarily retained as NEFA or incorporated 
into TG [130]. These studies provide evidence for selective 
channeling of individual fatty acids into different placental 
pools and eventually into the fetal circulation. One way that 
DHA has been shown to cross membranes is via MFSD2a, 
the recently characterized lysophospholipid transporter that 
facilitates DHA accumulation in the developing brain [153, 
154]. Without this transporter, mice exhibit microcephaly, 
impaired blood–brain barrier function, neuronal cell loss, 
and cognitive deficits [153, 154]. Placental expression of 
MFSD2a, the lysophosphatidylcholine-DHA transporter, 
was found to be decreased in women with gestational dia-
betes, and low levels of the DHA transporter were found to 
correlate with low levels of DHA in cord serum total lipids, 
although these levels still exceeded maternal circulating lev-
els [155].

Placental elongation/desaturation of fatty acids is one 
way that fetal levels of LCPUFAs could be accumulated 
over maternal levels; however, there is little evidence of 
this activity in placenta [156]. Fetal and neonatal liver 
microsomes have the capacity to elongate and desaturate 
fatty acids [156, 157]. In addition, isotopic labeling studies 
in human infants administered labeled linoleic (18:2 n-6) 
and linolenic (18:3 n-3) acid resulted in labeled PUFAs in 
plasma fatty acids and phospholipids [152, 158]. Mice lack-
ing Elovl2, a PUFA elongase, were used to characterize the 
maternal provision of and neonatal requirements for DHA 
[159]. These mice exhibit a systemic deficiency in DHA, 
including a 90% suppression in serum DHA concentra-
tions that can be rescued by dietary DHA supplementation. 
Importantly, neonatal heterozygous mice reared by DHA-
deficient null dams were able to compensate via neonatal 
synthesis of DHA, although the exact timing of when this 
capacity is established is not fully known [159]. Altogether, 
these examples demonstrate that there are multiple mecha-
nisms in place to ensure adequate fetal uptake or neonatal 
synthesis of essential fatty acids required for mammalian 
brain development. Maternal, placental, and fetal adapta-
tions work in concert to ensure adequate supply of essential 
nutrients.

Maternal–fetal metabolic communication 
in nutrient stress

Human pregnancy is characterized by greater metabolic 
flexibility than in the non-pregnant state to protect fetal 
growth from maternal nutrient deprivation [1]. The elevated 
levels of circulating lipid metabolites in fasting pregnant 
women combined with an earlier than normal shift from 
glucose to fat utilization by maternal tissues has been 

termed “accelerated starvation” [5, 160]. The acceleration 
is so dramatic that overnight fasting (14–18 h) in normal 
late term pregnancy leads to serum metabolite concentra-
tions that rival the effects of 2–3 days of starvation in non-
pregnant individuals [160, 161]. The features of the acceler-
ated starvation response include increased fat mobilization 
from adipose, exaggerated ketone production, decreased 
blood glucose despite enhanced gluconeogenic capac-
ity, and increased maternal muscle catabolism (reviewed 
in [5]) (Fig. 5a). Increased maternal utilization of lipids 
as metabolic fuel spares glucose and amino acids for fetal 
uptake [161]. Maternal hormones certainly play a role in 
these adaptations, but the accelerated fasting response is 
most apparent during late gestation when the conceptus is 
large enough to challenge maternal energy reserves. Fetal 
metabolic demand and fetal signals likely contribute to the 
maternal accelerated fasting response, especially during late 
gestation. Both lean and obese women (who gained similar 
amounts of weight from pre-conception) exhibited the hall-
marks of the accelerated fasting response—reduced blood 
glucose and elevated free fatty acids and ketone bodies—on 
the same magnitude and timescale [161]. This finding is 
suggestive of fetoplacental signals directing the accelerated 
fasting response rather than maternal signals which may dif-
fer between lean and obese women. Late gestation is also 
characterized by “facilitated anabolism” which describes the 
aggregate changes in maternal circulating metabolites that 
promote fetal growth. The interaction between accelerated 
fasting and “facilitated anabolism” results in a pattern of 
dynamic metabolic oscillations in maternal fuel utilization 
between fed and fasted states during late term pregnancy—
all to meet immediate maternal and fetal metabolic needs 
and to anticipate future nutrient depletion [5] (Fig. 5b).

Impaired fetal growth may be indicative of fetal metabolic 
deficiency, placental aberrations, maternal undernutrition, or 
impaired maternal nutrient partitioning. Nutrient depriva-
tion during pregnancy has been studied in human popula-
tions experiencing famine [162, 163] or electing to fast dur-
ing Ramadan [164–166]. Findings from these populations 
suggest that nutrient limitation may affect the nature and 
severity of maternal effects and postnatal outcomes differ-
ently during early vs late gestation. For instance, intermit-
tent fasting during Ramadan reduced abdominal visceral fat 
thickness in pregnant women from 12 to 27 weeks gestation 
but was not associated with any discernable differences in 
fetal outcomes [165]. In another study, women who observed 
the Ramadan fast during the second or third trimester had 
significantly less maternal weight gain than others who did 
not fast [166]. Children born to mothers who fasted in the 
first trimester had lower birth weights than children born to 
mothers who fasted in the second or third trimesters [164]. 
Moreover, elevated cortisol levels were measured in women 
who fasted, and this could contribute to the maternal and 
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fetal differences in weight gain [167]. Related to this, placen-
tal expression of 11β-hydroxysteroid dehydrogenase, which 
normally serves to protect the fetus from maternal gluco-
corticoids, is down-regulated by maternal undernutrition, 
especially low-protein diets [168].

The nature of nutrient deprivation experienced by popula-
tions faced with food shortages and famine is entirely dif-
ferent from elective fasting. From patients who endured the 
Dutch famine of 1944–1945, prenatal famine exposure dur-
ing early gestation led to slightly heavier and larger babies 
than controls not exposed to famine with increased rates of 
obesity and elevated risk of cardiovascular disease in adult-
hood [162]. Famine exposure during mid or late gestation 
was associated with lower birth weights and was correlated 
with impaired glucose tolerance in adulthood [162]. Low 
birth weight, especially when small for placental size, is 
strongly associated with the risk for cardiovascular disease 
later in life [81]. Early nutrient deprivation and the associ-
ated “catch-up” growth upon transitioning back to adequate 
nutrition may be particularly detrimental [169]. The Great 
Chinese Famine of 1959–1961 affected a larger population 
for a longer length of time than other widely studied food 
shortages of the twentieth century; as a result, studies of 
this population have the statistical power to reveal more 

subtle effects of nutritional deficiency. For example, women 
who were exposed to famine as fetuses have a higher risk 
of metabolic syndrome (obesity, hyperlipidemia, hyperten-
sion, and/or dysglycemia) than women who were exposed 
postnatally, and that risk is higher than for men regardless 
of whether they were exposed to famine prenatally or post-
natally [170]. Another famine cohort from the Nigerian 
civil war (1967–1970) also associated fetal-infant exposure 
to famine with increased risk of hypertension and impaired 
glucose tolerance as adults [171]. The effects of fetal under-
nutrition among this sub-Saharan cohort were even more 
pronounced and emerged at earlier ages than European 
cohorts. The hypothesis of “early programming of disease” 
posits that many chronic adult diseases—including immune 
diseases, neuropsychiatric disorders, and other conditions 
that are not overtly “metabolic”—are in part determined by 
fetal and infant nutrition [1, 172]. The timing and duration 
of undernutrition during early development greatly affect 
chronic disease risk and manifestation. Animal models of 
intrauterine growth restriction in rats, rabbits, and sheep 
confirm that the timing and duration of maternal perturba-
tions greatly affects fetal and neonatal outcomes [173–175]. 
Metabolites, hormones, and other secreted factors and adap-
tations to the presence of these signals likely play a role in 

Fig. 5   The accelerated fasting response during pregnancy. a Fasting 
in normal late term pregnancy leads to robust increases in circulat-
ing lipids and exaggerated ketone body production [161], shown 
here as representative plasma concentrations in response to fasting 
during late gestation in red (black dashed line is non-pregnant con-
trol). Additional features of the accelerated fasting (or accelerated 
starvation) response include increased fat mobilization from adipose, 
decreased blood glucose despite enhanced gluconeogenic potential, 

and increased maternal muscle catabolism. Increased maternal uti-
lization of lipids spares glucose and amino acids for fetal uptake. b 
Late gestation is also characterized by “facilitated anabolism” which 
describes aggregate changes in maternal circulating factors that pro-
mote fetal growth. Accelerated fasting and facilitated anabolism 
result in a pattern of dynamic metabolic oscillations in maternal fuel 
utilization between fed and fasted states in late gestation [5]. NEFAs 
non-esterified fatty acids
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prenatal metabolic programming in ways that contribute to 
chronic adult diseases.

Fetoplacental response to nutrient stress

As the key interface for regulation of nutrient availability 
during pregnancy, how the placenta responds to maternal 
nutrient deprivation has the potential to greatly alter fetal 
outcomes. Ultimately, placental adaptations to the maternal 
environment will impact offspring physiology and postnatal 
health, as reviewed elsewhere [176]. The placental response 
could include structural or organizational changes that alter 
placental metabolism, hormonal communication, or trans-
porter expression and activity. Chronic undernutrition dur-
ing mouse pregnancy has been shown to result in these kinds 
of structural and functional adaptations in placental pheno-
type [177]. In the case of more acute nutrient deprivation, 
the timing of placental sensing and responding to maternal 
nutrient deprivation could occur before the fetus experi-
ences nutrient limitation, at the same time as the fetus, or 
in response to fetal signals of metabolic demand not being 
met. The placental response to late-gestation fasting includes 
triglyceride accumulation, consistent with the elevation in 
maternal circulating lipid concentrations upon fasting [48, 
139]. Studies in late-gestation pregnant rats demonstrated 
that placental incorporation of radiolabeled triglyceride 
preceded fetal incorporation of the radiolabeled lipid [117]. 
In addition, placental glycogen stores were decreased 40% 
by prolonged maternal fasting [178]. Select glycolytic, lipo-
genic, and gluconeogenic enzyme activities were measured 
in maternal liver, fetal liver, and placenta in fed or fasted 
rats. While maternal liver enzyme activities were dramati-
cally altered by fasting, fetal liver enzyme activities were 
only modestly changed, and placental enzyme activities were 
unaffected [178]. Gestational age was found to be a better 
predictor of placental enzymatic activity than regulation by 
nutritional or hormonal influences, at least in the context 
of these in vitro assays that test the enzymatic capacity of 
a tissue.

During maternal starvation, or during an insulin-sup-
pressed state such as streptozotocin-induced diabetes, fetal 
tissues were found to accumulate lipid in concert with ele-
vated maternal serum triglyceride concentrations, which 
rose twofold in this rat model of diabetes during pregnancy 
[117]. A rabbit model of late-gestation maternal fasting 
demonstrated a similar dramatic increase in fetal lipid 
uptake and accumulation [29]. Moreover, the fetal capacity 
for lipid accumulation in rats increased over the course of 
gestation, tripling from day 17 to day 20 of gestation [117]. 
The accumulation of maternally derived lipids by the fetus 
may represent an adaptive mechanism to protect against fur-
ther nutrient deprivation in utero and to prepare the fetus for 

the possibility of nutrient deficiency after parturition. Fatty 
acid oxidation by the fetal liver may provide energy for glu-
coneogenesis as it does in the adult fasting liver. The fetus 
can respond to maternal fasting, and the method of response 
may greatly alter neonatal outcomes when maternal–fetal 
metabolic communication is interrupted at parturition.

Maternal–fetal metabolic 
miscommunication

The previous examples demonstrate how maternal–fetal met-
abolic communication can dynamically respond to chang-
ing nutrient status, but it raises the question: What happens 
when metabolic communication is disrupted or metabolic/
hormonal signals misinterpreted? Here, some metabolic dis-
orders of pregnancy are described with particular attention 
to the miscommunication driving or resulting from these 
conditions.

Some pathologies of pregnancy develop as a result of a 
mismatch between fetal demands, maternal response, and 
maternal capacity to meet these needs. Gestational diabetes 
mellitus (GDM) is the most common metabolic abnormal-
ity during pregnancy, affecting 5–9% of pregnant women 
in the US [179]. Complications of GDM include increased 
birth weight (macrosomia) and predisposition of the mother 
to develop type 2 diabetes in the future [180]. Pregnancy 
has been described as a diabetogenic challenge where the 
increased glucose demand for fetal growth and development 
means changes in maternal metabolism to support and sus-
tain this high glucose demand while maintaining maternal 
euglycemia [5]. In addition, GDM, like type 2 diabetes mel-
litus, has been described as a “disorder of total fuel metabo-
lism” since all major classes of insulin-dependent substrates 
are affected: overnight fasted plasma glucose, NEFA, and 
TG are higher in patients with gestational diabetes than in 
unaffected pregnant women [5]. The combined increases of 
these nutrients likely contribute to the elevated risk of mac-
rosomia in GDM pregnancies. Several adaptive responses 
to pregnancy contribute to the development of gestational 
diabetes, and many of these responses are likely mediated by 
hormonal (mis)communication. First, pregnancy is charac-
terized by elevated insulin secretion and decreased periph-
eral insulin sensitivity. There was a 50–60% decrease in 
insulin-mediated glucose disposal in lean women from pre-
gravid to late gestation [33, 181]. Pregnant women are tested 
for GDM with an oral glucose tolerance test at 24–28 weeks 
gestation, and a patient is diagnosed with GDM if her blood 
glucose is elevated after fasting or glucose challenge [180]. 
Elevated insulin concentrations are not part of the diagnostic 
criteria, but fasting plasma insulin of women with GDM 
during late gestation was 250% the levels of late-gestation 
weight-matched non-diabetic pregnant controls [182]. 
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Women with GDM also demonstrated a twofold increase 
in fasting plasma insulin levels in late gestation relative to 
pre-gravid measurements [182]. A second adaptation of 
pregnancy that is dysregulated in GDM is the increase in 
gluconeogenic capacity. Isotopic labeling studies in pregnant 
women have demonstrated a 30% increase in total gluconeo-
genesis from early to late pregnancy (11–34 weeks gesta-
tion) [33]. Absolute rates of glucose infusion to maintain 
euglycemia were 22% lower in late-gestation GDM preg-
nancies relative to lean, weight-matched, and non-diabetic 
pregnant controls [181]. One explanation of GDM is that 
placental hormones that promote maternal liver glucone-
ogenesis outpace the ability of maternal insulin secretion 
(and sensitivity) to maintain euglycemia. Some studies have 
implicated placental growth hormone or placental lactogen 
as molecules which could contribute to the development and 
progression of GDM [4, 183]. Placental lactogen increases 
pancreatic beta cell proliferation during pregnancy, but it 
remains to be determined if the increase in insulin secre-
tion is what induces insulin resistance during gestation [4]. 
Placental growth hormone may contribute to increased pla-
cental GLUT1 expression and fetal hyperglycemia. Diabe-
togenic contributions for prolactin, cortisol, and glucagon 
have also been described [184]. Patients with GDM may 
manage their condition with diet and physical activity or 
with insulin treatment if deemed necessary. Monogenic 
diabetes or “mature onset diabetes of the young” (MODY), 
although rare and representing only 1–2% of diabetes cases 
worldwide, presents some additional challenges during preg-
nancy. The treatment plan for pregnant diabetics may depend 
on maternal response to treatment, fetal genotype, and the 
placental transfer of certain classes of drugs (sulfonylureas). 
The treatment plan may change during gestation depending 
on fetal growth rates and maternal glycemic control [185]. 
Glycemic control is an important metabolic adaptation dur-
ing pregnancy that, when dysregulated, may result in ges-
tational diabetes.

Maternal liver is one of the main tissues regulating the 
metabolic effects of fasting during late gestation, includ-
ing gluconeogenic potential and maternal lipid availability. 
Several liver disorders may present during the second half 
of gestation including preeclampsia; hemolysis, elevated 
liver enzymes, and low platelet count (HELLP); intrahepatic 
cholestasis of pregnancy; and the rare but life-threatening 
acute fatty liver of pregnancy (AFLP) [186]. AFLP is char-
acterized by liver failure and microvesicular steatosis, and 
there is a strong genetic connection to fetal fatty acid oxida-
tion defects, most notably long-chain 3-hydroxyacyl-CoA 
dehydrogenase (LCHAD) deficiency [186]. Lcad−/− mice 
were born at lower than expected Mendelian ratios suggest-
ing frequent gestational loss and an important role for fetal 
fatty acid oxidation [187]. Impaired fetal fatty acid degra-
dation generates metabolic signals that also impair lipid 

handling by the mother. These complications of pregnancy 
demonstrate the intricate nature of maternal–fetal metabolic 
communication, particularly during late gestation when 
fetal energy demands are highest and the maternal energy 
economy may be most vulnerable. Nevertheless, clinical and 
nutritional interventions can help women with genetically 
diagnosed metabolic disorders have uneventful pregnancies 
and healthy babies [188–191].

Frontiers in defining maternal–fetal 
metabolic communication

Innovative investigations into maternal–fetal metabolic, 
hormonal, and immunological communication can define 
factors for gestational success in ways that inform interven-
tions to promote healthy pregnancies. The use of genetic ani-
mal models and biochemical approaches to obtain a greater 
mechanistic understanding of maternal–fetal metabolic com-
munication may improve treatments for common conditions 
such as gestational diabetes [179] as well as rare disorders 
with a genetic component [186]. In mouse models, baseline 
transcriptome analyses of maternal tissues across gestation 
provided insight into tissue-specific physiological adapta-
tions of pregnancy that cannot be studied in women [192]. 
In addition, cross-fostering experiments in animal models 
can provide insight into metabolic adaptations during early 
postnatal life and how maternal contributions affect postna-
tal outcomes [193].

To study metabolites as mediators of maternal–fetal com-
munication, advances in isotopic labeling approaches in vivo 
[91, 194, 195] and imaging technologies will advance the 
field [196–200]. Targeted and unbiased metabolomics analy-
ses of maternal and fetal plasma may help in the identifica-
tion of novel biomarkers and metabolites mediating mater-
nal–fetal metabolic communication in health and disease 
(Table 1). In women undergoing caesarean delivery, the 
four-vessel method of sampling from the arteries and veins 
on either side of the placenta can provide a wealth of infor-
mation about maternal and fetal metabolite gradients and 
placental function [201]. Advances in systems biology and 
longitudinal studies of human pregnancy across large popu-
lations with data about neonatal outcomes will also prove 
instrumental in future investigations into maternal–fetal 
metabolic communication. Large clinical trials such as the 
Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) 
study [202–210] and the Pregnancy Outcome Prediction 
study [211] have provided a wealth of data about maternal 
and newborn metabolic health and birth outcomes. Prot-
eomic characterization of maternal plasma has also enabled 
biomarker discovery with predictive power [212–214]. A 
longitudinal proteomics study of maternal plasma charac-
terized 1125 proteins, of which 10% changed in abundance 
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with gestational age, and nine proteins increased more than 
fivefold from 8 to 37 weeks [215]. Expanding these longitu-
dinal studies to include patients with pregnancy complica-
tions has the potential to inform new diagnostic markers and 
therapeutic targets. Together, systems biology approaches to 
maternal–fetal health may inform mechanistic research and 
may enable personalized clinical interventions for pregnant 
women [216].

A relatively new and growing field of investigation 
in maternal–fetal communication includes the study of 
exosomes, which are membrane-bound extracellular vesi-
cles that contain cytoplasmic components of the cells from 
which they were released [217–219]. Trophoblasts secrete 
exosomes containing placenta-specific microRNAs into the 
maternal circulation [220], and a select class of trophoblast 
microRNAs can be detected in maternal blood as early as 
2 weeks after implantation [221]. Placental exosomes may 
play an important role in placental development and syn-
cytiotrophoblast fusion [222], and exosomes derived from 
maternal adipose tissue could mediate cross-tissue commu-
nication between the placenta and maternal tissues [223]. 
Experimental delivery of exosomes will guide hypothesis-
driven research in exosome biology during gestation [224, 
225]. Exosomes may also be a way of delivering placental 
cargo to the fetus; exosomes from umbilical cord mesen-
chymal stem cells have been detected in umbilical blood 
[226], and a recent study has characterized exosomes con-
taining a class of placenta-enriched microRNAs in human 
fetal plasma (umbilical cord venous blood) [227]. Postna-
tally, milk exosomes may contribute to neonatal nutrition 
and immunity [228]. Altogether, exosomes and their cargo 
may provide an additional means of communication between 
mother and offspring.

In addition to cell-derived extracellular vesicles, circulat-
ing cells may also be a means of maternal–fetal communica-
tion. Longitudinal transcriptomic and proteomic studies of 
immune cell changes during pregnancy have defined key 
immunological events [229, 230]. Single circulating tropho-
blast testing could be a valuable prenatal diagnostic tool 
[231]. In addition, sequencing cell-free circulating DNA or 
RNA could become important clinical platforms to screen 
for fetal genetic anomalies, to assess placental development, 
or to determine gestational age [232–234]. The presence of 
fetal or placental cells in the maternal circulation suggests 
that there could be biological consequences related to the 
presence of these cells. Indeed, fetal cells can repair injured 
maternal heart, and placenta-derived cells can be adminis-
tered to non-pregnant mice to promote cardiovascular repair 
in the context of myocardial injury [235, 236]. The bidi-
rectional exchange of maternal and fetal cells that persist 
unrejected in tissues postnatally results in microchimerism 
[237–239]. The presence of fetal cells in tissues that partici-
pate in maternal resource allocation, for instance, could alter 

nutrient partitioning and could affect intergenerational coop-
eration and conflict, to put it in terms of evolutionary biol-
ogy [238]. Microchimerism may also contribute to health 
and disease in later life, and the effects of microchimerism 
on autoimmune disease and cancer are under investigation 
[237, 238]. The expanded immune tolerance from exposure 
to fetal microchimeric cells can also promote reproductive 
fitness by improving the outcomes of future pregnancies 
[239]. In this way, circulating maternal and fetal cells and 
the presence of genetically foreign cells in maternal and off-
spring tissues can contribute to maternal–fetal communica-
tion about nutrient partitioning and metabolism.

Conclusions

Maternal–fetal metabolic communication is dynamic to meet 
fetal metabolic demand upon changes in maternal nutrient 
status. This review has broadly summarized fetal macronu-
trient need and maternal metabolic adaptations during gesta-
tion. The types of signals that participate in maternal–fetal 
dialogue have been described, and future studies of these 
factors will begin to address the following questions: What is 
the fetal response to maternal nutrient deprivation or overnu-
trition? How is the metabolic state sensed, and which metab-
olites, endocrine molecules, and other signals contribute to 
metabolic communication between mother and fetus? And 
what is the role of the placenta in both sensing and adapting 
to this affront to fetal metabolism? A greater understand-
ing of maternal–fetal metabolic communication in health 
and disease can inform diagnostic biomarkers for metabolic 
disorders of pregnancy as well as personalized clinical and 
nutritional interventions to promote healthy pregnancies, 
healthy offspring, and healthy populations.
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