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Abstract

Preclinical opioid research using animal models not only provides mechanistic insights into the
modulation of opioid analgesia and its associated side effects, but also validates drug candidates
for improved treatment options for opioid use disorder. Non-human primates (NHPs) have served
as a surrogate species for humans in opioid research for more than five decades. The translational
value of NHP models is supported by the documented species differences between rodents and
primates regarding their behavioral and physiological responses to opioid-related ligands and that
NHP studies have provided more concordant results with human studies. This review highlights
the utilization of NHP models in five aspects of opioid research, i.e., analgesia, abuse liability,
respiratory depression, physical dependence, and pruritus. Recent NHP studies have found that (1)
mixed mu opioid and nociceptin/orphanin FQ peptide receptor partial agonists appear to be safe,
non-addictive analgesics and (2) mu opioid receptor- and mixed opioid receptor subtype-based
medications remain the only two classes of drugs that are effective in alleviating opioid-induced
adverse effects. Given the recent advances in pharmaceutical sciences and discoveries of novel
targets, NHP studies are posed to identify the translational gap and validate therapeutic targets for
the treatment of opioid use disorder. Pharmacological studies using NHPs along with multiple
outcome measures (e.g., behavior, physiologic function, and neuroimaging) will continue to
facilitate the research and development of improved medications to curb the opioid epidemic.
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1. Introduction

Recent marked increase in misuse and abuse of prescription and illicit opioids and the
epidemic of opioid overdose mortality have unprecedentedly affected the United States
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(Brady et al., 2016; Volkow and Blanco, 2020). Although mu opioid peptide (MOP)
receptor agonists remain the most widely used analgesics, their adverse effects such as abuse
liability and respiratory arrest have contributed to escalating medical and economic burdens
in the global community (Degenhardt et al., 2014; Rudd et al., 2016). Several scientific
strategies have been initiated to develop safe and effective medications for pain and opioid
addiction, indicating an urgent and unmet need for the treatment of opioid use disorder
(Volkow and Blanco, 2020; Volkow and Collins, 2017).

Based on the International Union of Basic and Clinical Pharmacology Nomenclature
Committee, there are four opioid receptor subtypes, i.e., MOP, delta opioid peptide (DOP),
kappa opioid peptide (KOP), and nociceptin/orphanin FQ peptide (NOP) receptors, in the
opioid receptor family (Cox et al., 2015). Although the NOP receptor is considered a
subcategory of the opioid receptor family due to its atypical low affinity for the classical
endogenous opioid peptides and insensitivity to naloxone antagonism, all four receptors
share similar signal transduction pathways. These four receptors are coupled to pertussis
toxin-sensitive Gi/o proteins which inhibit adenylate cyclase and modulate the conductance
of voltage-gated calcium channels and inward rectifying potassium channels (Al-Hasani and
Bruchas, 2011). However, these receptor subtypes have different anatomical distributions in
the central nervous system. Other than shared therapeutic benefit analgesia, they exhibit
distinct functional roles in regulating physiological functions and mood (Gavioli et al., 2019;
Lutz and Kieffer, 2013; Mansour et al., 1988; Tejeda and Bonci, 2019).

This review highlights the functional profiles of opioid receptor-related ligands in non-
human primates (NHPs). In specific, we discuss species differences in pharmacological
profiles of opioid-related ligands between rodents and NHPs; and we summarize how NHP
models are used to evaluate novel experimental compounds’ functional profiles and
efficacies to modulate MOP receptor agonist-associated adverse effects including abuse
potential, respiratory depression, physical dependence, and pruritus.

2. Species differences between rodents and primates

NHPs, such as rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca
fascicularis), vervet monkeys (Chlorocebus aethiops sabaeus), marmosets (Callithrix
Jacchus), and squirrel monkeys (Saimiri sciureus), are used as essential animal models in
biomedical research due to their close genetic, physiological and behavioral similarities to
humans when compared with other commonly used rodent models (Phillips et al., 2014). In
particular, rhesus macaques play a critical role in modeling human diseases and biological
responses that are not well simulated in rodents (Liao and Zhang, 2008; Seok et al., 2013).
First whole-genome analysis of rhesus macaques revealed fundamental genetic similarities
to the human genome (Rhesus Macaque Genome et al., 2007). Recently updated macaque
reference genome assembly and annotation will advance the biomedical utility of rhesus
macaques and facilitate the development of new genetic NHP models of human diseases
(Warren et al., 2020). NHP brain and cellular imaging techniques further promote exciting
opportunities to compare brain structure and neuro-connectivity and to study the
neurobiological influence of chronic drug use for the translational impact (Izpisua Belmonte
et al., 2015; Macknik et al., 2019). For instance, magnetic resonance imaging-based
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methodologies demonstrate that a large number of human and macaque striatal voxels were
not matched to any mouse cortico-striatal circuit (e.g., mouse->human: 85% unassigned)
(Balsters et al., 2020). In addition, positron emission tomography (PET) neuroimaging in
NHPs defines in vivo biodistribution and pharmacokinetics of abused drugs and drug
interactions. The longevity and complex social behaviors of NHPs and their similar drug
metabolism to humans make PET imaging a powerful tool to conduct longitudinal
translational studies in drug abuse research (Banks et al., 2017; Howell and Murnane, 2011).
Furthermore, due to the similar functions of the hypothalamic-pituitary axis between
macaques and humans, the effects of opioid use and stress on neuroendocrine functions
could be modeled in NHPs (Fountas et al., 2018; Meyer and Hamel, 2014). For example,
KOP receptor agonists increased the levels of prolactin, adrenocorticotropic hormone and
cortisol in both NHPs and humans (Butelman et al., 2004a; Ko and Husbands, 2020; Pascoe
et al., 2008; Ur et al., 1997).

Evidently, species differences contributes to different results and interpretations regarding
the receptor functions and drug effects. For instance, functional outcomes of drugs targeting
serotonin system and neurobiology of serotonin receptors are markedly different between
rats and NHPs (Li et al., 2010). There is now an extensive body of literature documenting
that neuroanatomical, neurochemical, and neuropharmacological aspects of opioid and non-
opioid receptors are comparable between humans and NHPs (Bianchi et al., 2012;
Hawkinson et al., 2007; Phillips et al., 2014; Yu et al., 2019). In addition, humans and NHPs
have the same thresholds for detecting a variety of stimuli and the nervous systems
responsible for the somatosensory functions in the two species are fundamentally similar
(Courtine et al., 2007; Kenshalo et al., 1989; LaMotte and Campbell, 1978; Rozsa et al.,
1985). While rodent studies play a pivotal role in discovering novel targets as potential
therapeutics, NHP studies establish a translational bridge toward human studies.

Rhesus macaques have been used for behavioral and pharmacological studies on opioids for
more than five decades (Ding et al., 2020; Goldberg et al., 1969; Thompson and Schuster,
1964). Mounting evidence indicates that humans and NHPs have similar responses to
opioid-related ligands (Lin and Ko, 2013; Mello et al., 1993; Woods and Winger, 1987).
However, there are many examples that behavioral and physiological responses to opioid-
related ligands in rodents cannot be translated to NHPs. Herein we briefly discuss four
ligands to illustrate a translational gap.

First, a major metabolite of naltrexone, 6p-naltrexol, was demonstrated as a neutral MOP
receptor antagonist in mice (Raehal et al., 2005). Unlike classic opioid antagonist naloxone,
neutral antagonists do not alter basal MOP receptor signaling and could be used to block
MOP receptor-medicated agonist and inverse agonist actions (Connor and Traynor, 2010;
Wang et al., 2001). 6p-naltrexol did not significantly precipitate withdrawal in morphine-
dependent mice and it reduced naloxone-precipitated withdrawal signs in mice (Raehal et
al., 2005). In contrast, 6pB-naltrexol precipitated withdrawal in morphine-dependent NHPs
and it enhanced naltrexone-precipitated withdrawal symptoms in NHPs (Ko et al., 2006a).
These findings indicate that the constitutive activities of the MOP receptor are different
between rodents and primates and no neutral MOP receptor antagonist has yet been found in
primates. Second, in searching for alternatives to buprenorphine, BU72 was identified with
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high affinity and efficacy for MOP receptors and it displayed a wide window between
antinociception and respiratory depression in mice (Neilan et al., 2004). However, the
antinociceptive dose of BU72 rapidly caused respiratory depression and arrest in NHPs,
raising a safety concern that was not manifested in mice (Neilan et al., 2004). Third, while
KOP receptor agonists produce antipruritic effects across species (Cowan and Ko, 2020;
Inan and Cowan, 2020), a prototypical KOP receptor antagonist, nor-binaltorphimine,
elicited robust scratching responses in mice, indicating a tonic inhibition of itch by
endogenous KOP dynorphins (Kamei and Nagase, 2001; Kardon et al., 2014). In contrast,
nor-binaltorphimine did not elicit scratching responses in NHPs following systemic and
intrathecal administration (Ko et al., 2003; Lee et al., 2007), indicating different tonic
activities of endogenous dynorphins between rodents and primates. Fourth, a NOP receptor-
selective antagonist, J-113397, enhanced buprenorphine-induced antinociception in mice,
indicating that activation of NOP receptors counteracted MOP receptor-mediated
antinociception (Lutfy et al., 2003). However, J-113397 did not modulate buprenorphine-
induced antinociception in NHPs. Instead, NOP receptor agonists synergistically enhanced
MOP receptor agonist-induced antinociception in different NHP pain models (Cremeans et
al., 2012; Hu et al., 2010). These findings clearly indicate that NOP receptor activation has
opposite pain modulation between rodents and primates. Collectively, these examples
pinpoint a critical need of NHP models to validate the functional profiles of ligand-receptor
systems discovered in rodents and translate the therapeutic profiles of newly developed
compounds to future human studies.

3. Analgesia

3.1. NHP pain models

In order to evaluate the analgesic effects of opioids, NHP researchers commonly use the
warm water tail-withdrawal assay (Dykstra and Woods, 1986), which is similar to thermal
stimuli used in rodents (Deuis et al., 2017), for basic pharmacological explorations.
However, this assay is not highly relevant to human clinical pain, as it measures an evoked
response from a noxious stimulus, i.e., sensory dimension with minimum affective
component. In contrast, patients experience pain without overt stimulation. Clinical pain is
multi-dimensional and accompanied by affective changes and comorbidities, a phenomenon
that is not accounted for in the acute thermal nociceptive assay (Gracely et al., 1978; Mao,
2012). Nonetheless, this assay allows researchers to determine to what degree opioid-related
ligands can prolong the NHP’s tail-withdrawal latency and whether detected antinociceptive
doses produce any adverse effects. In general, following systemic administration, MOP
receptor agonists produced thermal antinociceptive effects, which were accompanied by
respiratory depression, scratching activity, and/or disruption of food-maintained operant
behavior (France et al., 1992; Ko et al., 2002b; Negus et al., 2003). KOP receptor agonists
produced antinociceptive effects at doses that induced sedation, diuresis, and discriminative
stimulus effects (i.e., dysphoria and psychotomimesis) (Butelman et al., 2001; Butelman et
al., 1993b; Dykstra et al., 1987; Ko et al., 1999b). This finding is consistent with other
studies, showing that centrally-penetrating KOP receptor agonists produced sedative and
psychotomimetic effects in humans (Pfeiffer et al., 1986; Walsh et al., 2001). DOP receptor
agonists could not produce antinociception; instead, causing convulsions in NHPs (Negus et
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al., 1998; Sukhtankar et al., 2014). NOP receptor agonists produced antinociceptive effects
at doses that did not cause respiratory depression and sedation (Ko et al., 2009; Podlesnik et
al., 2011). However, NOP receptor agonists did not consistently increase the NHP’s tail-
withdrawal latency across different groups of NHPs (Kiguchi and Ko, 2019). It is worth
noting if NHPs are not well adapted to the NHP chair and the measurement of the tail-
withdrawal responses, higher doses of opioid agonists are required to suppress NHP’s tail-
withdrawal responses. Consequently, observed antinociceptive doses of opioids are higher
than clinically used doses and do not display behavioral selectivity, i.e., antinociceptive
doses also suppress other behaviors (Cowan and Ko, 2020; Kiguchi and Ko, 2019).
Moreover, the analgesic effects of MOP, KOP, DOP, and NOP receptor agonists against
different pain modalities (e.g., mechanical and neuropathic pain) warrant further
investigation.

NHP researchers further developed other pain models to better assess the analgesic action of
opioids. For example, capsaicin evokes pain sensation by activating the transient receptor
potential vanilloid type 1, which is implicated in humans under diverse pain states (Brito et
al., 2014). Capsaicin-induced allodynia has been utilized as a pain model in humans to
evaluate and distinguish the analgesic efficacy of different classes of drugs (Eisenach et al.,
2000; Park et al., 1995). In similar contexts, capsaicin-induced thermal allodynia in NHPs
has been used to distinguish central versus peripheral sites of action (Butelman et al., 2004b;
Ko et al., 1998; 1999a; Ko and Woods, 1999) and compare the antiallodynic efficacy among
opioid and non-opioid ligands (Butelman et al., 2003; Ko et al., 2002a; Ko et al., 2000).
Furthermore, carrageenan causes inflammation via cyclooxygenase-1/2 enzyme-mediated
prostaglandin release (Dirig et al., 1998). Carrageenan-induced inflammatory pain in NHPs
lasted for more than 6 hours post-injection and it is sensitive to detect potential
antihyperalgesia of nonsteroidal anti-inflammatory drugs (NSAIDs), endogenous and
synthetic opioids (Lee and Ko, 2015; Sukhtankar et al., 2014). These chemical-induced pain
models document that opioid-related ligands are more potent in attenuating allodynia-/
hyperalgesia-like responses in NHPs and their effective doses are close to clinically used
doses (Kiguchi and Ko, 2019; Sukhtankar et al., 2014).

3.2. Strategies to enhance opioid analgesia

Pharmacological studies in NHP have identified viable strategies to develop safer opioid
analgesics and/or to produce opioid-sparing effect, i.e., decreasing exposure to classic MOP
receptor agonists. For example, NOP receptor agonists have been demonstrated to
synergistically enhance the antinociceptive effects of MOP receptor agonists without causing
respiratory depression and pruritus (Cremeans et al., 2012; Hu et al., 2010). Compounds
with mixed MOP/NOP receptor agonist activities potently produced antinociceptive effects
with fewer side effects, such as reinforcing effects (abuse potential), respiratory depression,
pruritus, physical dependence and slower tolerance development (Ding et al., 2016; Ding et
al., 2018b; Kiguchi et al., 2019). More importantly, a mixed NOP/opioid receptor agonist,
cebranopadol, produced effective analgesia in patients with acute or chronic pain and
showed reduced side effects including lower drug-liking effect, respiratory depression, and
physical dependence (Calo and Lambert, 2018; Kiguchi et al., 2020b; Tzschentke et al.,
2019). These findings exemplify that NHP studies represent a translational bridge and show
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functional similarities of ligands with mixed MOP/NOP receptor agonist activities between
NHPs and humans.

Another strategy is to combine cannabinoid-related compounds with opioid analgesics. A
series of NHP pharmacological studies demonstrates that cannabinoid receptor agonists,
such as CP 55,940, WIN 55,212, and A9-tetrahydrocannabinol, enhanced the antinociceptive
effects of MOP receptor agonists (Li et al., 2008; Maguire and France, 2014; Maguire et al.,
2013). Importantly, these cannabinoid receptor agonists did not increase the respiratory
depressant, discriminative stimulus, and reinforcing effects of MOP receptor agonists (Li et
al., 2012; Maguire and France, 2018; Maguire et al., 2013; Weed et al., 2018). These
findings support the notion that cannabinoid receptor agonists may produce opioid-sparing
effects, i.e., to dispense opioid medications at lower doses, in humans (Abrams et al., 2011,
Cooper et al., 2018; Lynch and Clark, 2003).

3.3. Limitations and opportunities of NHP analgesic studies

The development of chronic or neuropathic pain models in NHPs using surgical procedures
is limited by ethical issues. Nonetheless, behavioral pharmacological studies in NHPs allow
researcher to identify which ligand-receptor systems are involved in pain processing and
how they are different from or similar to findings in rodents. NHP analgesic studies have
used reflex-based assays for decades. Recently, an operant-based nociceptive assay has been
developed in squirrel monkeys (Kangas and Bergman, 2014). This advance provides a
valuable means to study how different classes of analgesics can restore the disruptive effects
of nociceptive stimuli, rather than suppression of evoked nociceptive behavior. NHP
investigators also found that neuroinflammation and dysregulation of multiple ligand-
receptor systems involved in pain modulation appear to be permanent in the spinal cord of
naturally occurring type 2 diabetic NHPs (Ding et al., 2018a; Kiguchi et al., 2017). This
NHP disease model not only opens new avenues to study the functional roles of pain and
neuroinflammation mediators, but also offers a valuable opportunity to explore potential
treatments for diabetic neuropathy. Furthermore, rodent studies incorporating NHP data can
enhance the translational relevance. For instance, nivolumab, a programmed cell death
protein-1 (PD-1) inhibitor, attenuated morphine-induced antinociception in mice and NHPs,
indicating that PD-1 regulates MOP receptor signaling in nociceptive neurons and anti-PD-1
immunotherapy may diminish opioid analgesia (Wang et al., 2020a). Through the assay
improvement and studying neural substrates of NHPs under different states, NHP studies
integrating multiple outcome measures will facilitate the research and development of
innovative analgesics.

4. Abuse liability

Prescription and illicit opioids, primarily MOP receptor agonists, produce euphoria and are
widely abused in our society. In the past few decades, the intravenous drug self-
administration procedure is considered a gold standard to evaluate a drug’s abuse liability
(i.e., reinforcing effect and strength) and potential medications for substance use disorders
(Ator and Griffiths, 2003; Mello and Negus, 1996). In particular, NHP studies, not rodent
models, have provided more concordant results with both human laboratory studies and
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clinical trials; and a series of empirical data supports the continued use of NHPs in drug
abuse research (Banks et al., 2017; Ling et al., 2016; Wee et al., 2012; Weerts et al., 2007).
Early NHP studies have demonstrated that MOP, not DOP, KOP, or NOP, receptor agonists
produced reinforcing effects (Ko et al., 2009; Nakao et al., 2016; Negus et al., 1994). As
KOP receptor activation decreases dopamine release in the nucleus accumbens (Spanagel et
al., 1992), KOP receptor agonists are expected to counteract the reinforcing effects of abused
drugs. However, KOP receptor agonists decreased self-administration of both drug and non-
drug reinforcers in NHPs, indicating lack of functional selectivity (Cosgrove and Carroll,
2002; Mello and Negus, 1998).

Several treatment strategies have been initiated to tackle opioid abuse. First, anti-opioid
immunopharmacotherapies have emerged as potential therapeutics for opioid use disorder.
For example, fentanyl vaccines blunted the reinforcing effects of fentanyl in rats (Townsend
et al., 2019). While fentanyl vaccines have great potential to prevent fentanyl from reaching
the brain, it is not clear how NHPs would self-administer different MOP receptor agonists
following fentanyl vaccine administration. It is challenging for a specific vaccine to protect
individuals from experiencing reinforcing effects derived from abused opioids with diverse
chemical structures or taking a much larger amount. Second, the development of G protein-
biased MOP receptor agonists has emerged to mitigate MOP receptor-mediated adverse
effects (Azzam et al., 2019). For example, a novel G protein-signalling biased MOP receptor
agonist PZM21 produced antinociceptive effects without rewarding effects in mice (Manglik
et al., 2016). However, PZM21 produced oxycodone-like reinforcing effects and strength in
NHPs (Ding et al., 2020). Biased opioids may offer other advantages, but current studies in
NHPs indicate they are not posed to be non-addictive analgesics.

Third, compounds with mixed opioid actions may retain analgesia with reduced side effects.
For example, by decreasing the dopaminergic activity, NOP receptor activation is known to
reduce the rewarding effects of abused drugs in rodents (Ciccocioppo et al., 2019; Toll et al.,
2016). Buprenorphine is a MOP receptor partial agonist with binding affinity at KOP and
DOP receptors (Lewis, 1985; Spagnolo et al., 2008). As a buprenorphine analog, BU08028
shows buprenorphine-like MOP receptor efficacy with additional affinity and efficacy at
NOP receptors (Cami-Kobeci et al., 2011). BU08028 displayed lower reinforcing strength
than buprenorphine in NHPs (Ding et al., 2016). Other mixed MOP/NOP receptor partial
agonists (AT-121 and BU10038) or full agonist (cebranopadol) in different chemical
structures also produced antinociception with decreased reinforcing strength (Ding et al.,
2018b; Kiguchi et al., 2019; Kiguchi and Ko, 2019). More importantly, AT-121 was further
tested to show its effectiveness to attenuate oxycodone-, not food-, induced reinforcing
effects in NHPs (Ding et al., 2018b). These findings support the notion that compounds with
mixed MOP/NOP receptor partial agonist activities have relatively lower abuse potential and
can be used to attenuate opioid abuse-related effects (Kiguchi et al., 2020b; Lin and Ko,
2013). In a similar approach, given that MOP and KOP receptors have opposite modulation
of dopaminergic neurons (Spanagel et al., 1992), mixed MOP/KOP receptor agonists are
worth to be investigated in NHP models. In particular, mixtures of KOP receptor agonists
(nalfurafine and salvinorin A) with oxycodone showed reduced self-administration in NHPs
(Zamarripa et al., 2020). It is important to develop compounds with mixed MOP/KOP
receptor agonists in different efficacies at MOP versus KOP receptors (Bidlack and Knapp,

Exp Neurol. Author manuscript; available in PMC 2022 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ding and Ko

Page 8

2013; Greedy et al., 2013) and investigate their functional efficacy, selectivity, and
tolerability in NHP models.

Finally, MOP receptor antagonist-based compounds have been proven to be a potential
treatment option based on studies in NHPs. For instance, BU10119 with mixed MOP/KOP
receptor antagonist activities showed therapeutic potential for the treatment of
neuropsychiatric disorders (Almatroudi et al., 2018). BU10119 was recently demonstrated to
not only block MOP receptor agonist-induced reinforcing effects, but also attenuate heroin-
primed reinstatement of extinguished responding in NHPs, indicating of relapse prevention
(Maguire et al., 2020a). The limitation of BU10119 could be its naltrexone-like property to
elicit withdrawal signs in morphine-dependent NHPs (Maguire et al., 2020a). Another
compound is methocinnamox, which was initially characterized as a pseudo-irreversible
MOP receptor antagonist with a long duration of action in mice (Broadbear et al., 2000). A
single dose of methocinnamox selectively blocked the reinforcing effects of MOP receptor
agonists for several days without changing the NHP’s physiological functions (Maguire et
al., 2019). More importantly, repeated administration (i.e., once per 12 days for five
injections) of methocinnamox significantly decreased fentanyl self-administration for more
than two months in NHPs (Maguire et al., 2020b). These exciting findings indicate that
methocinnamox could be a safe, effective, and long-acting treatment option for opioid use
disorder. Other than four treatment strategies mentioned above, there are other targets and
approaches (France et al., 2020; Rasmussen et al., 2019) that have not yet been evaluated in
NHP models. Preclinical studies using NHPs will continue to facilitate the research and
development of effective medications for opioid use disorder.

5. Respiratory depression

Opioid-induced respiratory depression is one of the most concerning complications in pain
treatment with opioid analgesics and overdose in persons with opioid use disorder.
Researchers have established different NHP models to study opioid receptor mechanisms
underlying respiratory depression and test strategies to ameliorate the respiratory depressant
effects of opioids. Previous model used head plethysmograph to measure respiratory
endpoints in restrained, conscious NHPs (Butelman et al., 1993a; Butelman et al., 2001;
France et al., 1992). Recently, implantation of telemetry device has made it practical to
measure real-time respiratory parameters in freely moving NHPs (Ding et al., 2016).
Utilization of these NHP models demonstrated that MOP receptor, but not KOP, DOP or
NOP receptors, is the main contributor to opioid-induced respiratory depression (France et
al., 1994; Ko et al., 2009; Negus et al., 1994). A single injection of fentanyl at 2-fold of its
antinociceptive dose in NHPs produced a rapid and severe decrease in respiration rate, which
was reversed by a MOP receptor antagonist naltrexone (Ding et al., 2016). This observation
in NHPs recapitulates the rapid onset and severity of fentanyl overdose in humans (Grell et
al., 1970; Kuczynska et al., 2018). In contrast, in the same NHP telemetry model, novel
compounds with mixed opioid partial agonist actions did not compromise respiratory
functions (Ding et al., 2016; Ding et al., 2018b; Kiguchi et al., 2019). Therefore, NHPs
provide a valuable tool to distinguish clinically used opioids and new investigational
compounds in their impacts on the respiration system. More importantly, it allows
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researchers to validate strategies to prevent or reverse respiratory depression, which can be
translated to human studies.

One strategy to mitigate respiratory depression is to develop novel opioid agonists with
reduced liability of respiratory depression. Mixed MOP/NOP receptor partial agonists
showed potent antinociceptive effects without inducing respiratory depression (Ding et al.,
2016; Ding et al., 2018b; Kiguchi et al., 2019). A mixed NOP/opioid receptor full agonist,
cebranopadol, did not affect NHP’s respiratory function at a dose 3 times higher than its
antinociceptive dose, which is consistent with observations in human studies (Dahan et al.,
2017; Kiguchi and Ko, 2019). These findings support the research strategy to develop
MOP/NOP receptor agonists as innovative analgesics with improved safety profile in
humans. The other strategy is to develop new agents that can prevent or reverse opioid-
induced respiratory depression. Although the opioid receptor antagonist naloxone is a quick-
acting antidote for opioid overdose, its short duration of action limits it clinical utility. A
recent NHP study demonstrates that a novel opioid antagonist methocinnamox effectively
attenuated and reversed the respiratory depressant effects of heroin (Gerak et al., 2019). The
striking advantage of methocinnamox is its long duration of action which lasts for a few
days. It is important to further compare the duration of protection against opioid-induced
respiratory depression between methocinnamox and a slow release formulation of naltrexone
(Vivitrol). Nevertheless, these recent NHP findings have encouraging implications about
methocinnamox being able to provide sustained protection from opioid overdose.

Direct activation of TREK1 potassium channel downstream of the MOP receptor induced
antinociception but not opioid-induced respiratory depression in rodents (Busserolles et al.,
2020). It would be interesting to further investigate whether TREK1 activators produce
similar effects in NHPs. Several other pharmaceutical agents, such as serotonin receptor
agonist, nicotinic receptor agonist, monoclonal antibodies with high affinities for opioids,
have been studied in rodents to show potential effectiveness in reducing opioid-induced
respiratory depression (Baehr et al., 2020; Ren et al., 2015; 2020). However, their side effect
profiles and lack of thorough studies of efficacies hinder the therapeutic use of these agents
(Dahan et al., 2018). Future studies of these newly developed compounds and other
countermeasures for opioid toxicity (France et al., 2020) in NHPs will provide functional
evidence of their potential utilities in humans.

6. Physical dependence

Physical dependence on opioids tends to perpetuate compulsive drug use and is considered
an important component of opioid use disorder (Brady, 1991; Kosten and Baxter, 2019). It is
responsible for the emergence of spontaneous withdrawal upon abrupt discontinuation of
opioids or rapid dose reduction (Pergolizzi et al., 2020; Volkow and McLellan, 2016). In
addition, following acute or repeated exposure to MOP agonists, humans and NHPs quickly
develop physical dependence which is revealed by emergence of withdrawal signs after
administration of an opioid receptor antagonist (Azolosa et al., 1994; Heishman et al., 1990;
Ko et al., 2006a). The neurobiological mechanism underlying opioid physical dependence
and withdrawal could be the binding to opioid receptors in the locus coeruleus. Acute effects
of opioids lead to the decreased level of cyclic adenosine monophosphate (CAMP) and
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reduced release of norepinephrine. Upon spontaneous or precipitated withdrawal, the cAMP
level and neuronal firing rates in the locus coeruleus increase dramatically above normal
levels, causing excessive release of norepinephrine and severe opioid withdrawal symptoms
(Cao et al., 2010; Kosten and George, 2002; Rasmussen et al., 1990).

NHP models have been established to quantitate opioid withdrawal signs and investigate
how different strategies could modulate opioid withdrawal. In early studies, withdrawal
signs designated as lying down, avoiding contact, vocalizing, crawling, holding abdomen,
salivation, and tremors were noted in NHPs receiving chronic administration of morphine
(Aceto et al., 1998; Beardsley et al., 2004; Martin and Eades, 1964). Recently, NHPs
implanted with telemetry device were established to study antagonist-precipitated
withdrawal (Ding et al., 2016; Kiguchi et al., 2019). Naltrexone quickly increased
respiratory rate, minute volume, heart rate, and blood pressure in morphine-treated NHPs,
validating that respiratory and cardiovascular parameters are reliable and quantitative
indicators of antagonist-precipitated withdrawal. In addition, suppression of food-maintained
operant responding was established as additional quantitative measure of precipitated
withdrawal signs along with changes in physiological parameters and behavioral signs
(Maguire et al., 2020a).

The NHP model has demonstrated its value in distinguishing various opioid full agonists
versus partial agonists in their potentials to produce physical dependence. For example,
neither the NOP receptor agonists nor mixed MOP/NOP receptor partial agonists produced
physical dependence (Ding et al., 2016; Ding et al., 2018b; Kiguchi et al., 2019). These
results support the notion that unlike MOP receptor agonists, NOP-related agonists have less
liability to develop physical dependence following the same period of repeated exposure.
Given that physical dependence is one of the major concerns associated with the use of
opioid analgesics (Saxon, 2013; Schuckit, 2016; Volkow and Blanco, 2020), the
development of mixed MOP/NOP receptor partial agonists is a viable approach to curb the
opioid epidemic.

Another strategy for combating opioid withdrawal is to offer effective treatment options for
suppressing withdrawal symptoms. In the clinic, opioid withdrawal is often managed by the
utility of buprenorphine, a MOP receptor partial agonist (Gowing et al., 2017; Kosten and
Baxter, 2019; Schuckit, 2016). Numerous clinical studies have documented that
buprenorphine treatment can significantly reduce craving and relapse risk and suppress
opioid withdrawal (Gowing et al., 2017; Kakko et al., 2019; Reimer et al., 2020). However,
buprenorphine can acutely produce euphoric effects and mild-to-moderate physical
dependence with prolonged use or precipitate withdrawal in individuals dependent on a
higher efficacy MOP agonist; and it has the additional risk of diversion and misuse or abuse
of medication (Eissenberg et al., 1996; Johanson et al., 2012; Lavonas et al., 2014; Saxon,
2013). Given the improved functional profiles of mixed MOP/NOP receptor partial agonists
displayed in NHPs, it is important to determine and compare the effectiveness and potency
of buprenorphine with those of BU08028 and AT-121 in alleviating opioid withdrawal in
NHP models described above. Positive outcomes from such studies will open a new avenue
of treatment for managing opioid withdrawal.
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Besides the involvement of neurons in the underlying mechanisms of opioid withdrawal,
interactions between glial cells and neurons are proposed to play an important role as well
(Burma et al., 2017b). The microglial pannexin-1 channel was identified as a therapeutic
target for opioid withdrawal in rodents. Pannexin-1-blocking peptide or the clinically used
nonselective pannexin-1 channel blocker mefloquine or probenecid reduced the severity of
opioid withdrawal without compromising antinociceptive effects (Burma et al., 2017a).
Preclinical studies of pannexin-1 channel blockers in NHPs will shed light on their potential
effectiveness in treating opioid dependence.

7. Pruritus

Pruritus (itch sensation) is a common side effect of spinal opioids often experienced by
obstetric and postoperative patients. This problem significantly compromises the value of
spinal opioid analgesics in providing pain relief (Ganesh and Maxwell, 2007). The
neurobiological mechanisms of opioid-induced pruritus are not fully understood. Studies in
laboratory animals and humans demonstrate that opioid-induced pruritus is mainly mediated
by MOP receptors (Ko, 2015). While MOP receptors are expressed in both inhibitory and
excitatory interneurons in the mouse spinal dorsal horn, a recent study demonstrates that
intrathecal morphine elicited itch via MOP receptors on spinal inhibitory interneurons
(Wang et al., 2020b).

To prevent or treat spinal opioid-induced itch, a variety of pharmacological agents have been
evaluated in both preclinical animal models and clinical studies. In NHPs, intrathecal
morphine simultaneously induced antinociception and robust scratching responses (Ko and
Naughton, 2000). Unlike morphine, intrathecal administration of KOP, DOP, and NOP
receptor agonists all produced antinociception without scratching responses, indicating that
the MOP receptor, not other opioid receptor subtypes, mainly mediates spinal opioid-
induced itch (Ko, 2014; Ko et al., 2006b). In addition, spinally elicited scratching response
in NHPs is a valid in vivo endpoint for determining the efficacy of MOP receptor activation.
For example, MOP receptor agonists with different intrinsic efficacy, such as DAMGO
versus morphineg, elicited different magnitudes of scratching activities (Ko et al., 2004). It is
important to note that intrathecal morphine produces long-lasting itch sensation and pain
relief for hours in humans and NHPs (Ko and Naughton, 2000; Palmer et al., 1999).
However, intrathecal morphine only elicited mild and transient scratching lasting for 10-15
min or vehicle-like responses in rodents (Liu et al., 2011; Sukhtankar and Ko, 2013). Such
drastic species differences between rodents and primates support the translational value of
NHP models for the exploration and validation of drugs without itch sensation and drugs
that can potentially treat spinal opioid-induced itch (Cowan and Ko, 2020; Ko, 2015).

Indeed, NHP studies have identified mixed MOP/NOP receptor agonists as a new class of
analgesics without eliciting itch sensation (Kiguchi et al., 2020a). With regard to alleviating
spinal-opioid induced itch, both opioid ligands and non-opioid ligands have been
investigated for their effectiveness in NHPs (Ko, 2015). MOP antagonists equally blocked
intrathecal morphine-induced itch scratching and antinociception (Ko and Naughton, 2000).
It supports the clinical findings that MOP receptor antagonists are not ideal drugs for
treating pruritus in obstetric patients (Dominguez and Habib, 2013; Ganesh and Maxwell,
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2007). Compared with MOP antagonists, a mixed MOP/KOP receptor partial agonist,
butorphanol, is effective in alleviating MOP agonist-induced itch without reversing analgesia
in NHPs (Lee et al., 2007). These observations are in line with clinical studies demonstrating
that mixed MOP/KOP receptor partial agonists could decrease incidence of pruritus without
other side effects (Dominguez and Habib, 2013; Waxler et al., 2005). Furthermore, KOP
receptor agonists, at non-sedating doses, can attenuate intrathecal morphine-induced
scratching without affecting antinociception (Ko and Husbands, 2009; Ko et al., 2003).
These findings facilitated the development of a KOP receptor agonist, nalfurafine, as an
antipruritic. Clinical trials have reported that nalfurafine is a safe and effective antipruritic in
hemodialysis patients suffering from uremic pruritus (Kumagai et al., 2012; Kumagai et al.,
2010).

On the other hand, non-opioid ligands, such as serotonin 5-HT3 receptor antagonist
(ondansetron), antihistamines, and NASIDs failed to attenuate intrathecal morphine-induced
scratching in NHPs (Ko, 2015; Ko et al., 2004). These results to certain degree recapitulate
the varied effectiveness of ondansetron and the ineffectiveness of antihistamines and
NSAIDs in relieving spinal opioid-induced itch in clinical studies (Ko, 2015). Collectively,
these pharmacological studies suggest that NHPs could serve as a surrogate species for
humans in preclinical studies to identify effective treatments for spinal opioid-induced itch.

Furthermore, NHPs could also prove useful in studying the neurobiological mechanisms
underlying spinal opioid-induced itch. In mice, intrathecal morphine-induced scratching was
inhibited by co-administration with a gastrin-releasing peptide receptor (GRPR) antagonist
(Liu et al., 2011). However, in NHPs, the GRPR antagonist could not attenuate spinal MOP
agonist-elicited scratching activities (Lee and Ko, 2015). Recently, Wang et al demonstrated
that intrathecal administration of neuropeptide Y suppressed morphine-induced itch in mice
(Wang et al., 2020b). It will be interesting to examine whether neuropeptide Y plays a
functional role in morphine-induced itch in NHPs as well. Rodent studies continue to
provide mechanistic insights to the neurocircuitry for modulating itch (Kardon et al., 2014;
Liu et al., 2011; Wang et al., 2020b). Future NHP studies can further define the functional
profile of discovered ligand-receptor systems in sensory processing and determine if these
targets modulate spinal opioid-induced itch in primates.

8. Conclusions

Similarities between NHPs and humans and species differences between rodents and NHPs
in functional profiles of opioid-related pharmacological agents support the translational
value of NHPs in opioid research (Banks et al., 2017; Kiguchi and Ko, 2019; Lin and Ko,
2013). Research in NHPs has led to the development of novel analgesic compounds that
display improved side-effect profiles when compared with opioids currently used in the
clinic. Furthermore, NHPs have served as a surrogate species to examine the therapeutic
potentials of experimental compounds in the treatment of opioid use disorder. Figure 1
summarizes the main adverse effects of MOP receptor agonists discussed in this review and
strategies to ameliorate such effects. Mixed MOP/NOP receptor partial agonists are being
developed as safe, non-addictive analgesics (Kiguchi et al., 2020a). NHP studies have found
that MOP receptor- or mixed opioid receptor subtype-based meditations, but not non-opioid
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ligands, show effectiveness in reducing opioid-induced adverse effects (Gerak et al., 2019;
Kiguchi et al., 2020b; Maguire et al., 2020b). With recent advances in medicinal chemistry,
there are other targets and treatment strategies (France et al., 2020; Rasmussen et al., 2019)
which are worth investigating in NHP models. Behavioral pharmacological studies using
NHPs will continue to facilitate the research and development of effective medications to
address the challenges from the opioid crisis (Molkow and Collins, 2017).
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Simplified scheme to summarize the functional profiles of two classes of opioid-related
agonists based on human and/or non-human primate studies. + symbols represent the
adverse effects associated with MOP receptor agonists. Dashed lines indicate reduced or
lack of adverse effects associated with mixed MOP/NOP receptor partial agonists. ¢ symbols
represent that the adverse effect can be ameliorated by a specific category of
pharmacological agents.
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