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Abstract

Background: The associations between ambient NO2 and diabetes and dyslipidemia have been 

controversial, and data is especially lacking in developing countries.

Objective: This study aimed to assess the associations of long-term exposure to NO2 with 

diabetes and dyslipidemia in China.
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Methods: We conducted a cross-sectional study including 13,013 participants from the China 

Health and Retirement Longitudinal Study. The annual average concentrations of NO2 were 

estimated based on land-use regression, satellite measurements, and universal kriging. We applied 

logistic regression models to evaluate the associations of NO2 with diabetes and dyslipidemia, and 

linear regression models to assess the associations with blood biomarkers.

Results: A total of 1,933 diabetes cases (14.85%) and 1,935 (14.87%) dyslipidemia cases were 

identified. Significant associations were observed between NO2 and risk of diabetes and 

dyslipidemia independent of PM2.5 and O3. For an interquartile range (IQR) increase in NO2 

(12.39 μg/m3), we observed a 13% [odds ratio (OR): 1.13; 95% confidence interval (CI): 1.01, 

1.26] increased risk of diabetes, 1.48% (95%CI: 0.51%, 2.46%) increase in glucose, 0.74% 

(95%CI: 0.19%, 1.29%) increase in glycosylated hemoglobin (HbA1c), 17% (OR: 1.17; 95% CI: 

1.05, 1.31) increased risk of dyslipidemia, 4.62% (95%CI: 2.49%, 6.79%) increase in triglyceride, 

and a decrease of 2.96% (95%CI: 2.13%, 3.79%) in high-density lipoprotein. The associations of 

NO2 with glucose disorders were stronger among smokers.

Conclusions: Our study indicated long-term exposure to NO2 might contribute to the 

development of diabetes and dyslipidemia, and the associations were potentially independent of 

O3 and PM2.5.
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Introduction

Glucose and lipid metabolism disorders are the primary risk factors for cardiovascular and 

cerebrovascular diseases, the leading cause of deaths worldwide. The prevalence of glucose 

and lipid metabolism-related diseases, including diabetes and dyslipidemia, has been rising 

rapidly, especially in developing countries (World Health Organization, 2016). It was 

estimated that the overall prevalence of diabetes and dyslipidemia were as high as 11.6% 

and 34.0%, respectively, among the Chinese adult population in 2010 (Xu et al., 2013; Pan 

et al., 2016).

Accumulating studies indicated that long-term exposure to air pollution can act as 

facilitators of glucose and lipid metabolism-related diseases (Pearson et al., 2010; Liu et al., 

2016; Wang et al., 2018; Lao et al., 2019). While most previous studies put more emphasis 

on particulate matter, air pollution is a rather complex mixture consisting of both solid 

particles and various toxic gases. NO2 is a noxious gaseous pollutant and an important 

precursor in the formation of secondary aerosols and ozone, with ubiquitous sources mainly 

from fossil fuels. Only a limited number of studies were available on the toxicity of NO2 on 

glucose and lipid metabolic diseases, and the results were mixed, with positive associations 

found in some (Cai et al., 2017; Yang et al., 2018b) but null in others (Chen et al., 2016; Eze 

et al., 2017). It is also unclear whether the associations between NO2 and health outcomes 

are independent or are rather indicators of the impact of other air pollutants. In an integrated 

science assessment for NO2 in 2016, the United States Environmental Protection Agency 

concluded that “Available studies have not distinguished an independent effect of NO2 on 
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cardiovascular diseases and diabetes.” However, recent studies demonstrated that the adverse 

health effects caused by NO2 were likely to be independent of other co-pollutants such as 

fine particulate matter (PM2.5) and ambient ozone (O3) (Wooding et al., 2019).

The associations between NO2 and blood biomarkers of glucose and lipid metabolism (e.g., 

HbA1c, cholesterol) were only investigated in a few studies and mostly in developed 

countries (Cai et al., 2017; Lucht et al., 2018). China’s rapid economic development has 

been accompanied by massive consumption of fossil fuels, resulting in high levels of air 

pollution. However, only a few single-center studies have explored the associations of long-

term exposure of NO2 with health outcome in China (Yang et al., 2018a; Yang et al., 2018b; 

Mao et al., 2020). Most of these studies used the single-pollutant model without adjustment 

for the confounding co-pollutants such as PM2.5 and O3, thus they were unable to isolate the 

independent role of NO2. Also, some previous studies relied on self-report for case 

identification of diabetes and dyslipidemia, which would inevitably be biased due to the 

poor sensitivity of self-report (Yuan et al., 2015). It was estimated that nearly 50% of 

diabetes cases failed to be diagnosed (International Diabetes Federation, 2017). Therefore, 

national studies on associations between long-term NO2 exposure and metabolic diseases are 

needed in China, where air pollution levels are high, and prevalence rates of diabetes and 

dyslipidemia have been accelerating.

In this study, we utilized data from the third wave of a nationwide project, the China Health 

and Retirement Longitudinal Study (CHARLS), to investigate the associations of long-term 

exposure to NO2 with glucose and lipid metabolic diseases and six key biomarkers.

2. Materials and Methods

2.1 Study population

CHARLS aims to collect a high quality nationally representative sample of Chinese 

residents. Using a four-staged, stratified, cluster sampling method, participants were selected 

randomly from 450 villages or neighborhoods (the smallest administrative unit in China) in 

150 counties or districts within 28 provinces (Zhao et al., 2014). Baseline information was 

collected during 2011 and 2012 through in-person interviews, and follow-up was conducted 

every two years. In this study, we used data collected in the third wave of CHARLS in 2015. 

A total of 21,095 participants completed face-to-face interviews and were encouraged to 

donate venous blood samples for blood tests. A standardized questionnaire was used to 

obtain individual information including demographics (e.g., age, sex, educational level, body 

mass index [BMI]), behavioral factors (smoking status, pack-years of smoking, and alcohol 

consumption), types of energy used for heating and cooking, and history of chronic diseases 

(e.g., diabetes and dyslipidemia) (Chen et al., 2019a). Finally, 13,013 participants who 

completed both questionnaires and blood tests were included in the current analysis.

2.2 Health data

A total of 13,013 participants donated blood samples, among which 85% (11,025) reported 

to have fasted overnight as required. Both fasting and non-fasting subjects were included in 

the current study. The transportation and storage of blood samples were strictly in 
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accordance with the protocol (Chen et al., 2019a). Boronate affinity high-performance liquid 

chromatography method was used to examine glycosylated hemoglobin (HbA1c) level. 

Standard enzymatic colorimetric methods were used to measure levels of glucose 

(Hexokinase), HDL (Direct method), LDL (Direct method), cholesterol (Oxidase method), 

and triglyceride (Oxidase method).

The primary definition of diabetes was meeting at least one of the following criteria: a 

fasting blood glucose > 126 mg/dl, a non-fasting blood glucose > 200 mg/dl, HbA1c > 6.5%, 

or using antidiabetic medications including insulin, modern medicine or traditional Chinese 

medicine (Yuan et al., 2015). These cut-off points were in accordance with the 

recommendation from the American Diabetes Association (American Diabetes Association, 

2014). Self-reported diabetes was defined as answering “Yes” to the question “Have you 

been diagnosed with diabetes or high blood sugar?”. The primary definition for dyslipidemia 

was the ratio of cholesterol to HDL ≥ 5.0 (Allison et al., 2008) or using lipid-lowering 

medications(Wang et al., 2017). Self-reported dyslipidemia was evaluated based on the 

question: “Have you ever been diagnosed with dyslipidemia?”.

2.3 Air pollution data

The annual average concentrations of NO2 in 2015 at the participants’ residential addresses 

were estimated using a national empirical model. Details on the exposure model has been 

described elsewhere (Xu et al., 2019). Briefly, this model was built incorporating land-use 

and meteorological data, ground-level NO2 concentrations from China’s regulatory 

monitors, and satellite-based measurements of NO2, at 1 km× 1 km spatial resolution. The 

model showed good predictive power with a 10-fold CV R2 of 0.78. We obtained the 

concentrations of PM2.5 and O3 in 2015 at a spatial resolution of 0·1° × 0·1° (approximately 

11 km x 11 km at the equator) fro m the Global Burden of Disease project. The annual 

average concentrations of PM2.5 were estimated by combining satellite-based aerosol optical 

depth (AOD) data and simulations from chemical transport models, and the predictions were 

calibrated with ground-level monitoring data (Shaddick et al., 2018). The concentrations of 

O3 were estimated using the global chemical transport models and corrected with ground 

measurements (Shaddick et al., 2018). The concentrations of NO2, PM2.5, and O3 in the 

grids were assigned to the participants if their residential addresses fell into the 

corresponding grids.

2.4 Statistical analysis

We used multivariable logistic regression models to examine the associations between NO2 

and diabetes/dyslipidemia and multivariable linear regression models to investigate the 

associations between NO2 and glucose levels (glucose and HbA1c) and lipid levels (HDL, 

LDL, cholesterol, and triglyceride). All biomarkers were log transformed to improve the 

normality before statistical analysis. We established four models to explore these 

associations. Model 1 adjusted for age, sex, educational level (low, ≤ 5years; medium, 6–9 

years; high, >9 years), body mass index (BMI, <18.5 kg/m2,18.5 – 24.9 kg/m2, ≥ 25 kg/m2), 

smoking status (current smokers, ex-smoker and non-smoker), pack-years for current 

smokers (pack per day multiplied by years of smoking), frequency of alcohol consumption 

(never, < 1 / month, > 1 / month), energy types for cooking and heating (clean, central 
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heating, solar energy, electricity natural gas; unclean, coal or biomass). We additionally 

adjusted for ambient O3 (model 2), PM2.5 (model 3), or both (model 4, the primary model). 

There was no significant collinearity among the three air pollutants according to the variance 

inflation factor, so they could be simultaneously adjusted in the models.

In order to evaluate potential effect modifiers, we conducted stratification analyses by age 

(21–64 years and ≥65 years), sex (male and female), BMI (<18.5 kg/m2,18.5 – 24.9 kg/m2, 

≥ 25 kg/m2), smoking status (current or former smokers, never smokers), and alcohol 

consumption (ever/never). The statistical significance of the potential effect modifier was 

tested by calculating the 95% CIs of the effect differences between strata using the following 

formula (Q1 − Q2) ± 1.96 Se1
2 + Se2

2, where Q1 and Q2 were the estimates in each strata and 

Se1 and Se2 were the corresponding standard errors (Schenker and Gentleman, 2001; Payton 

et al., 2003). P values for the potential effect modifiers were calculated based on 95% CIs 

(Altman and Bland, 2011).

We did sensitivity analyses by repeating the above analyses using self-reported diabetes and 

dyslipidemia. We also did sensitivity analyses by excluding diabetes cases defined only by 

non-fasting glucose to test the stability of the associations.

The effect estimates were presented per interquartile range (IQR) increase in NO2. We 

reported odds ratios (ORs) and 95%CIs for logistic regression models and percent changes 

(95%CI) for all biomarkers. All statistical tests were two-sided, and a p-value less than 0.05 

was considered statistically significant.

3. Results

3.1 Descriptive statistics

Location of the CHARLS study sites distributed in 450 villages or neighborhoods (the 

smallest administrative unit in China) in 150 counties or districts within 28 provinces 

(Figure 1). Baseline characteristics, the prevalence of diabetes and dyslipidemia, mean 

concentrations of biomarkers, and air pollutants were summarized in Table 1. A total of 

13,013 subjects were included in the current analysis. The mean age was 61.88 years, 

46.04% were men, and the mean BMI was 23.95 kg/m2. A total of 1,933 (14.85%) diabetes 

cases and 1,935 (14.87%) dyslipidemia cases were identified using the primary outcome 

definitions. The average levels of glucose, HbA1c, HDL, LDL, cholesterol, and triglyceride 

were 103.6 mg/dl, 5.98%, 51.21 mg/dl, 102.22 mg/dl, 183.94 mg/dl, and 143.20 mg/dl, 

respectively. Strong correlations were observed between LDL and cholesterol (r=0.87) as 

well as between glucose and HbA1c (r=0.70). The remaining correlations among the 

biomarkers were weak (Table S1). The demographic characteristics of the excluded 

population were similar to those of the included population (Table S2). The annual average 

concentrations of NO2 varied greatly among participants from 6.77 μg/m3 to 58.41 μg/m3, 

with a mean of 24 μg/m3 (IQR, 12.39 μg/m3). The average of the annual mean 

concentrations of PM2.5 and O3 at residential addresses were 57.32 μg/m3 and 68.27 μg/m3, 

respectively. There were moderate to high correlations among air pollutants (r = 0.72 for 

NO2 and PM2.5, r = 0.56 for NO2 and O3, r= 0.71 for PM2.5 and O3) (Table S3).
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3.2 Regression results

Table 2 presents the associations between NO2 exposure and diabetes and dyslipidemia. We 

found significant positive associations of NO2 concentration and diabetes, blood glucose, 

and HbA1c in all models. The associations remained after adjustment of O3, while were 

attenuated but remained statistically significant after adjustment of PM2.5. In model 4, an 

IQR increase in NO2 was associated with a 13% increase in risk of diabetes (OR=1.13, 

95%CI: 1.01, 1.26), a 1.48% (95%CI: 0.51%, 2.46%) increment in glucose, and a 0.74% 

(95%CI: 0.19%, 1.29%) elevation in HbA1c. Higher NO2 exposure was also associated with 

increased risk of dyslipidemia, increased concentrating of triglyceride, and decreased 

concentration of HDL. Each IQR increase in NO2 was associated with a 17% (OR 1.17, 

95%CI, 1.05, 1.31) increased risk of dyslipidemia, a 4.62% (95%CI: 2.49%, 6.79%) increase 

in triglyceride and a 2.96% (95%CI: 2.13%, 3.79%) decrease in HDL (model 4). No 

associations were observed between NO2 exposure and LDL or cholesterol after full 

adjustment.

Results of stratified analyses were shown in Table 3 and Table 4. For dyslipidemia or related 

biomarkers, we did not find any significant modifying effects based on current stratified 

analysis. However, we found the associations between NO2 and glucose disorders were 

significantly stronger among smokers (Table 3)

When using self-report for definitions, the prevalence of diabetes was appreciably lower 

(9.00%) than that using the primary definition (14.85%). The sensitivity of self-reported 

diabetes was 49%, and the specificity was 81%. While the prevalence of dyslipidemia 

remained similar, the sensitivity and specificity of self-reported dyslipidemia were 62% and 

63%, respectively. The associations between NO2 and both self-reported diabetes and self-

reported dyslipidemia remained significant (Table S4). After excluding diabetes cases that 

were diagnosed only by non-fasting glucose, the association remained stable. An IQR 

increase in NO2 was associated with a 13% increase in risk of diabetes (OR=1.13, 95%CI: 

1.01, 1.26) (Table S4).

4. Discussion

In this nationwide cross-sectional study, we found that exposure to NO2 air pollution was 

significantly associated with diabetes and dyslipidemia independent of other co-pollutants 

(PM2.5 and O3). The associations were consistent when using different definitions of 

diabetes and dyslipidemia. The associations between NO2 and risks of diabetes and glucose 

biomarkers were stronger among ever smokers compared to never smokers. To our 

knowledge, this is the largest nationwide study to explore the associations between long-

term exposure of NO2 and glucose and lipids levels in developing countries.

The association between ambient NO2 exposure and diabetes has been investigated in 

several epidemiological studies (Andersen et al., 2012; Yang et al., 2018b; Yang et al., 

2020). A recent meta-analysis including 11 studies primarily from developed countries 

reported that the OR of diabetes was 1.07 (95%CI: 1.04, 1.11) per 10 μg/m3 increment in 

NO2 exposure (Yang et al., 2020). In line with these results, our study in China also 

suggested a significantly positive association between NO2 and diabetes with a comparable 
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effect size (OR=1.13, 95%CI: 1.01, 1.26, per an IQR (12.39 μg/m3) increment of NO2). 

Fasting glucose and HbA1c are both important biomarkers of glucose-homeostasis and are 

used for diabetes diagnosis. However, very few studies have assessed the associations of 

NO2 with blood glucose and HbA1c, and the results were inconsistent. Consistent with our 

results, Chuang et al., found elevated fasting glucose and HbA1c were positively associated 

with long-term exposure to NO2 in an analysis among 1,023 elderly subjects in Taiwan 

(Chuang et al., 2011). Similarly, in a cross-sectional study including 15,477 adults from 

mainland China, Yang et al., observed NO2 was associated with a higher concentration of 

plasma glucose (Yang et al., 2018b). In contrast, a study including 7,108 observations in 

Germany found no association between NO2 and blood glucose or HbA1c (Lucht et al., 

2018). The inconsistency of these results might be attributable to differences in geographic 

locations, study populations, and exposure levels. The associations of NO2 with diabetes and 

glucose metabolism appear to be biologically plausible. Preliminary evidence from 

toxicological studies and some epidemiological studies suggested that long-term exposure to 

NO2 was positively associated with low-grade systemic inflammation (including adipose 

tissue inflammation) and oxidative stress (Li et al., 2011; Riedl et al., 2012). These effects 

can further lead to impaired insulin signaling, which plays a key role in glucose homeostasis 

(Sun et al., 2009; Chen et al., 2016).

Dyslipidemia plays a key role in the development of cardiovascular diseases (Brunham et al., 

2008). The positive associations we observed between NO2 exposure and dyslipidemia were 

largely consistent with previous studies, though mixed findings existed. The Chinese Health 

Study of 33 Communities found that long-term NO2 exposure was associated with risk of 

hypercholesterolemia, higher cholesterol and triglyceride levels, and lower HDL-C level 

(Yang et al., 2018a). Consistent results were also reported from the Korean Community 

Health Survey (Shin et al., 2019). A pooled study of 144,082 European participants reported 

that NO2 was significantly associated with elevated triglycerides and HDL cholesterol, but 

not with total cholesterol (Cai et al., 2017). Another study among 1,023 Mexican Americans 

reported no associations between NO2 exposure and any lipids concentration (Chen et al., 

2016). The geographic differences, varying health status of participants, and variables 

included in statistical models complicated the comparison across studies. The biological 

mechanism underlying these associations remains unclear. One possible explanation is that 

systemic inflammation and oxidative stress induced by inhaled NO2 might trigger lipid 

oxidation and impair lipid metabolism (Chen et al., 2019b).

In this study, we observed that associations between NO2 and glucose disorders appeared to 

be stronger among smokers than non-smokers, which were consistent with the findings from 

an Italian study (Orioli et al., 2018). On the contrary, another study in Denmark that 

investigated the modification effect of smoking status reported stronger associations among 

non-smokers (Andersen et al., 2012). Smoking and air pollution were both identified as 

important risk factors for diabetes and shared similar biological pathways triggering glucose 

metabolic disorder, such as systemic inflammation and oxidative stress. Some studies also 

suggested preexisting subclinical inflammation might enhance the diabetogenic effects of air 

pollution (Kramer et al., 2010). These findings, along with our results, supported that 

smokers, who had chronic low-level inflammation, might be more susceptible to NO2.
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Few epidemiological studies explored whether the associations of NO2 with diabetes or 

dyslipidemia were independent of other co-pollutants. A study conducted in Northwest 

China among 3,912 type-2 diabetes patients found that the associations between NO2 and 

triglyceride disappeared after adjustment of PM2.5 and sulfur dioxide, while the associations 

with HDL and LDL remained statistically significant (Wang et al., 2018). In the current 

study, adjustment for O3 did not materially change the associations between NO2 and 

glucose and lipid indicators. The associations with glucose disorders weakened after 

adjustment for PM2.5 but remained statistically significant even in three-pollutants models. 

The results in this study supported that the associations of NO2 with glucose and lipid 

metabolism could be potentially independent of O3 or PM2.5.

Some limitations of this study should be noted. First, exposure misclassification was likely 

as we obtained the exposure of NO2 from a prediction model rather than personal 

monitoring, and indoor environment air pollution was not considered. Second, although our 

study adjusted for multiple individual-level confounders, residual confounding from 

unmeasured factors such as physical activity, noise, and other traffic-related pollutants, could 

not be ruled out. Finally, this study was based on a cross-sectional design, thus it was not 

possible to determine temporal precedence or to establish causality. Future studies with 

prospective cohort study design and full adjustment of co-pollutants would be valuable to 

verify the associations between NO2 and glucose and lipid metabolic diseases.

Conclusion

Our study suggests that long-term exposure to NO2 air pollution was significantly associated 

with glucose and lipids metabolic diseases in China, and the associations were potentially 

independent of O3 and PM2.5. The associations of NO2 with diabetes and glucose 

biomarkers were stronger among smokers. Our findings have important public health 

implications for the prevention of diabetes and dyslipidemia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Long-term exposure to NO2 was associated with diabetes and dyslipidemia.

• Associations of NO2 with blood glucose and lipid were independent of O3 

and PM2.5.

• The associations between NO2 and glucose disorders were stronger among 

smokers.
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Figure 1 : 
Locations of the study sites in the CHARLS project.
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Table 1.

Baseline characteristics of the study participants.

Characteristics Value

Age (year, mean ± SD) 61.88 ± 10.02

Sex N (%)

 Female 7021 (53.96)

 Male 5991 (46.04)

Educational level N (%)

 Low 2927 (27.40)

 Medium 4418 (41.36)

 High 3336 (31.23)

BMI (kg/m2, mean ± SD) 23.94 ± 3.74

Smoking status N (%)

 Never 7758 (59.68)

 Former 1746 (13.43)

 Current 3496 (26.89)

Pack-years of cigarette for current smokers 32.73 ± 10.02

Drinking frequency N (%)

 Never 8481 (65.26)

 <1/month 1134 (8.73)

 >1/month 3380 (26.01)

Type of energy N (%)

 Clean (central heating, solar energy, electricity, natural gas) 6657 (51.42)

 Unclean (coal or biomass) 6290 (48.58)

Diabetes

 Prevalence of diabetes (%) 1933 (14.85)

 Glucose (mg/dL mean ± SD) 103.6 ± 35.4

 HbA1c (%, mean ± SD) 5.98 ± 0.99

Dyslipidemia

 Prevalence of dyslipidemia (%) 1935 (14.87)

 HDL (mg/dL mean ± SD) 51.21 ± 11.58

 LDL (mg/dL mean ± SD) 102.22 ± 29.01

 Cholesterol (mg/dL mean ± SD) 183.94 ± 36.62

 Triglyceride (mg/dL mean ± SD) 143.20 ± 91.30

Exposure to air pollutants

 NO2 (μg/m3, mean (IQR)) 24.00 (17.84 – 30.22)

 PM2.5 (μg/m3, mean (IQR)) 57.32 (40.31 – 71.78)

 O3 (μg/m3, mean (IQR)) 68.27 (60.30 – 74.41)

Abbreviations: SD, standard deviation; BMI, Body mass index; HbA1c, glycosylated hemoglobin, %; HDL, high density lipoprotein; LDL, low 
density lipoprotein; IQR, interquartile range (P75–P25); NO2, nitrogen dioxide; PM2.5, particulate matter with an aerodynamic diameter less than 

or equal to 2.5 μm; O3, ozone
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