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Abstract

The prediction of acid dissociation constants (pKa) is a prerequisite for predicting many other 

properties of a small molecule, such as its protein-ligand binding affinity, distribution coefficient 

(log D), membrane permeability, and solubility. The prediction of each of these properties requires 
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knowledge of the relevant protonation states and solution free energy penalties of each state. The 

SAMPL6 pKa Challenge was the first time that a separate challenge was conducted for evaluating 

pKa predictions as part of the Statistical Assessment of Modeling of Proteins and Ligands 

(SAMPL) exercises. This challenge was motivated by significant inaccuracies observed in prior 

physical property prediction challenges, such as the SAMPL5 log D Challenge, caused by 

protonation state and pKa prediction issues. The goal of the pKa challenge was to assess the 

performance of contemporary pKa prediction methods for drug-like molecules. The challenge set 

was composed of 24 small molecules that resembled fragments of kinase inhibitors, a number of 

which were multiprotic. Eleven research groups contributed blind predictions for a total of 37 pKa 

distinct prediction methods. In addition to blinded submissions, four widely used pKa prediction 

methods were included in the analysis as reference methods. Collecting both microscopic and 

macroscopic pKa predictions allowed in-depth evaluation of pKa prediction performance. This 

article highlights deficiencies of typical pKa prediction evaluation approaches when the distinction 

between microscopic and macroscopic pKas is ignored; in particular, we suggest more stringent 

evaluation criteria for microscopic and macroscopic pKa predictions guided by the available 

experimental data. Top-performing submissions for macroscopic pKa predictions achieved RMSE 

of 0.7–1.0 pKa units and included both quantum chemical and empirical approaches, where the 

total number of extra or missing macroscopic pKas predicted by these submissions were fewer 

than 8 for 24 molecules. A large number of submissions had RMSE spanning 1–3 pKa units. 

Molecules with sulfur-containing heterocycles or iodo and bromo groups were less accurately 

predicted on average considering all methods evaluated. For a subset of molecules, we utilized 

experimentally-determined microstates based on NMR to evaluate the dominant tautomer 

predictions for each macroscopic state. Prediction of dominant tautomers was a major source of 

error for microscopic pKa predictions, especially errors in charged tautomers. The degree of 

inaccuracy in pKa predictions observed in this challenge is detrimental to the protein-ligand 

binding affinity predictions due to errors in dominant protonation state predictions and the 

calculation of free energy corrections for multiple protonation states. Underestimation of ligand 

pKa by 1 unit can lead to errors in binding free energy errors up to 1.2 kcal/mol. The SAMPL6 

pKa Challenge demonstrated the need for improving pKa prediction methods for drug-like 

molecules, especially for challenging moieties and multiprotic molecules.

Keywords

SAMPL; blind prediction challenge; acid dissociation constant; pKa; small molecule; macroscopic 
pKa; microscopic pKa; macroscopic protonation state; microscopic protonation state

1 Introduction

The acid dissociation constant (Ka) describes the protonation state equilibrium of a molecule 

given pH. More commonly, we refer to pKa = − log10 Ka, its negative logarithmic form. 

Predicting pKa is a prerequisite for predicting many other properties of small molecules such 

as their protein binding affinity, distribution coefficient (log D), membrane permeability, and 

solubility. As a major aim of computer-aided drug design (CADD) is to aid in the 

assessment of pharmaceutical and physicochemical properties of virtual molecules prior to 
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synthesis to guide decision-making, accurate computational pKa predictions are required in 

order to accurately model numerous properties of interest to drug discovery programs.

Ionizable sites are found often in drug molecules and influence their pharmaceutical 

properties including target affinity, ADME/Tox, and formulation properties [1]. It has been 

reported that most drugs are ionized in the range of 60-90% at physiological pH [2]. Drug 

molecules with titratable groups can exist in many different charge and protonation states 

based on the pH of the environment. Given that experimental data of protonation states and 

pKa are often not available, we rely on predicted pKa values to determine which charge and 

protonation states the molecules populate and the relative populations of these states, so that 

we can assign the appropriate dominant protonation state(s) in fixed-state calculations or the 

appropriate solvent state weights/protonation penalty to calculations considering multiple 

states.

The pH of the human gut ranges between 1–8, and 74% of approved drugs can change 

ionization state within this physiological pH range [3]. Because of this, pKa values of drug 

molecules provide essential information about their physicochemical and pharmaceutical 

properties. A wide distribution of acidic and basic pKa values, ranging from 0 to 12, have 

been observed in approved drugs [1, 3].

Drug-like molecules present difficulties for pKa prediction compared with simple 

monoprotic molecules. Drug-like molecules are frequently multiprotic, have large 

conjugated systems, often contain heterocycles, and can tautomerize. In addition, drug-like 

molecules with significant conformational flexibility can form intramolecular hydrogen 

bonding, which can significantly shift their pKa values compared to molecules that cannot 

form intramolecular hydrogen bonds. This presents further challenges for modeling 

methods, where deficiencies in solvation models may mispredict the propensity for 

intramolecular hydrogen bond formation.

Accurately predicting pKas of drug-like molecules accurately is a prerequisite for 

computational drug discovery and design. Small molecule pKa predictions can influence 

computational protein-ligand binding affinities in multiple ways. Errors in pKa predictions 

can cause modeling the wrong charge and tautomerization states which affect hydrogen 

bonding opportunities and charge distribution within the ligand. The dominant protonation 

state and relative populations of minor states in aqueous medium is dictated by the 

molecule’s pKa values. The relative free energy of different protonation states in the aqueous 

state is a function of pH, and contributes to the overall protein-ligand affinity in the form of 

a free energy penalty for populating higher energy protonation states [4]. Any error in 

predicting the free energy of a minor aqueous protonation state of a ligand that dominates 

the complex binding free energy will directly add to the error in the predicted binding free 

energy, and selecting the incorrect dominant protonation state altogether can lead to even 

larger modeling errors. Similarly for log D predictions, an inaccurate prediction of 

protonation states and their relative free energies will be detrimental to the accuracy of 

transfer free energy predictions.
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For a monoprotic weak acid (HA) or base (B)—whose dissociation equilibria are shown in 

Equation 1—the acid dissociation constant is expressed as in Equation 2, or, commonly, in 

its negative base-10 logarithmic form as in Equation 3. The ratio of ionization states can be 

calculated with Henderson-Hasselbalch equations shown in Equation 4.

HA A− + H+ ; BH+ B + H+ (1)

Ka = [A−][H+]
[HA] ; Ka = [B][H+]

[B+]
(2)

pKa = − log10 Ka (3)

pH = pKa + log10
[A−]
[HA] ; pH = pKa + log10

[B]
[BH+]

(4)

For multiprotic molecules, the definition of pKa diverges into macroscopic pKa and 

microscopic pKa [5-7]. Macroscopic pKa describes the equilibrium dissociation constant 

between different charged states of the molecule. Each charge state can be composed of 

multiple tautomers. Macroscopic pKa is about the deprotonation of the molecule, rather than 

the location of the titratable group. A microscopic pKa describes the acid dissociation 

equilibrium between individual tautomeric states of different charges. (There is no pKa 

defined between tautomers of the same charge as they have the same number of protons and 

their relative populations are independent of pH.) The microscopic pKa determines the 

identity and distribution of tautomers within each charge state. Thus, each macroscopic 

charge state of a molecule can be composed of multiple microscopic tautomeric states. The 

microscopic pKa value defined between two microstates captures the deprotonation of a 

single titratable group with other titratable groups held in a fixed background protonation 

state. In molecules with multiple titratable groups, the protonation state of one group can 

affect the proton dissociation propensity of another functional group, therefore the same 

titratable group may have different proton affinities (microscopic pKa values) based on the 

protonation state of the rest of the molecule.

Different experimental methods are sensitive to changes in the total charge or the location of 

individual protons, so they measure different definitions of pKas, as explained in more detail 

in prior work [8]. Most common pKa measurement techniques such as potentiometric and 

spectrophotometric methods measure macroscopic pKas, while NMR measurements can 

determine microscopic pKas by measuring microstate populations with respect to pH. 

Therefore, it is important to pay attention to the source and definition of pKa values in order 

to correctly interpret their meaning.

Many computational methods can predict both microscopic and macroscopic pKas. While 

experimental measurements more often provide only macroscopic pKas, microscopic pKa 

predictions are more informative for determining relevant microstates (tautomers) of a 
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molecule and their relative free energies. Predicted microstate populations can be converted 

to predicted macroscopic pKas for direct comparison with experimentally obtained 

macroscopic pKas. In this paper, we explore approaches to assess the performance of both 

macroscopic and microscopic pKa predictions, taking advantage of available experimental 

data.

Microscopic pKa predictions can be converted to macroscopic pKa predictions either directly 

with Equation 5 [9],

Ka
macro = ∑

j = 1

Ndeprot 1
∑i = 1

Nprot 1
Kijmicro

,
(5)

or through computing the macroscopic free energy of deprotonation between ionization 

states with charges N and N − 1 via Boltzmann-weighted sum of the relative free energy of 

microstates (Gi) as in Equations 6 and 7 [10].

ΔGN − 1, N = RT ln
∑i e

−Gi ∕ RTδNi, N − 1

∑i e
−Gi ∕ RTδNi, N

(6)

pKa = pH − ΔGN − 1, N
RT ln 10 (7)

In Equation 6 ΔGN−1,N is the effective macroscopic protonation free energy. δNi,N−1 is equal 

to unity when the microstate i has a total charge of N − 1 and zero otherwise. RT is the ideal 

gas constant times the absolute temperature.

1.1 Motivation for a blind pKa challenge

SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) is a series of 

annual computational prediction challenges for the computational chemistry community. 

The goal of the SAMPL community is to evaluate the current performance of computational 

models and to bring the attention of the quantitative biomolecular modeling field on 

problems that limit the accuracy of protein-ligand binding models. SAMPL Challenges aim 

to enable computer-aided drug discovery to make sustained progress toward higher accuracy 

by focusing the community on critical challenges that isolate one accuracy-limiting problem 

at a time. By conducting a series of blind challenges—which often feature the computation 

of specific physical properties critical for protein-ligand modeling—and encouraging rapid 

sharing of lessons learned, SAMPL aims to accelerate progress toward quantitative accuracy 

in modeling.

SAMPL Challenges that focus on physical properties have assessed intermolecular binding 

models of various protein-ligand and host-guest systems, as well as the prediction of 

hydration free energies and distribution coefficients to date. These blind challenges motivate 

improvements in computational methods by revealing unexpected sources of error, 

Işık et al. Page 5

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identifying features of methods that perform well or poorly, and enabling the participants to 

share information after each successive challenge. Previous SAMPL Challenges have 

focused on the limitations of force field accuracy, finite sampling, solvation modeling 

defects, and tautomer/protonation state predictions on protein-ligand binding predictions.

During the SAMPL5 log D Challenge, the performance of models in predicting 

cyclohexane-water log D was worse than expected—accuracy suffered when protonation 

states and tautomers were not taken into account [11, 12]. Many participants simply 

submitted log P predictions as if they were equivalent to log D, and many were not prepared 

to account for the contributions of different ionization states to the distribution coefficient in 

their models. Challenge results highlighted that log P predictions were not an accurate 

approximation of log D without capturing protonation state effects. The calculations were 

improved by including free energy penalty of the neutral state which relies on obtaining an 

accurate pKa prediction [11]. With the goal of deconvoluting the different sources of error 

contributing to the large errors observed in the SAMPL5 log D Challenge, we organized 

separate pKa and log P challenges in SAMPL6 [8, 13, 14]. For this iteration of the SAMPL 

challenge, we isolated the problem of predicting aqueous protonation states and associated 

pKa values.

This is the first time a blind pKa prediction challenge has been fielded as part of SAMPL. In 

this challenge, we aimed to assess the performance of current pKa prediction methods for 

drug-like molecules, investigate potential causes of inaccurate pKa estimates, and determine 

how the current level of accuracy of these models might impact the ability to make 

quantitative predictions of protein-ligand binding affinities.

1.2 Approaches to predict small molecule pKas

There are a large variety of pKa prediction methods developed for the prediction of aqueous 

pKas of small molecules. Broadly, we can divide pKa predictions as knowledge-based 

empirical methods and physical methods. Empirical methods include the following 

categories: Database Lookup (DL) [15], Linear Free Energy Relationship (LFER) [16-18], 

Quantitative Structure-Property Relationship (QSPR) [19-22], and Machine Learning (ML) 

approaches [23, 24]. DL methods rely on the principle that structurally similar compounds 

have similar pKa values and utilize an experimental database of complete structures or 

fragments. The pKa value of the most similar database entry is reported as the predicted pKa 

of the query molecule. In the QSPR approach, the pKa values are predicted as a function of 

various quantitative molecular descriptors, and the parameters of the function are trained on 

experimental datasets. A function in the form of multiple linear regression is common, 

although more complex forms can also be used such as the artificial neural networks in ML 

methods. The LFER approach is the oldest pKa prediction strategy. They use Hammett-Taft 

type equations to predict pKa based on classification of the molecule to a parent class 

(associated with a base pKa value) and two parameters that describe how the base pKa value 

must be modified given its substituents. Physical modeling of pKa predictions requires 

Quantum Mechanics (QM) models. QM methods are often utilized together with linear 

empirical corrections (LEC) that are designed to rescale and unbias QM predictions for 

better accuracy. Classical molecular mechanics-based pKa prediction methods are not 
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feasible as deprotonation is a covalent bond breaking event that can only be captured by 

QM. Constant-pH molecular dynamics methods can calculate pKa shifts in large 

biomolecular systems where there is low degree of coupling between protonation sites and 

linear summation of protonation energies can be assumed [25]. However, this approach can 

not generally be applied to small organic molecule due to the high degree of coupling 

between protonation sites [26-28].

2 Methods

2.1 Design and logistics of the SAMPL6 pKa Challenge

The SAMPL6 pKa Challenge was conducted as a blind prediction challenge and focused on 

predicting aqueous pKa values of 24 small molecules not previously reported in the 

literature. The challenge set was composed of molecules that resemble fragments of kinase 

inhibitors. Heterocycles that are frequently found in FDA-approved kinase inhibitors were 

represented in this set. The compound selection process was described in depth in the prior 

publication reporting SAMPL6 pKa Challenge experimental data collection [8]. The 

distribution of molecular weights, experimental pKa values, number of rotatable bonds, and 

heteroatom to carbon ratio are depicted in Fig. 1. The challenge molecule set was composed 

of 17 small molecules with limited flexibility (less than 5 non-terminal rotatable bonds) and 

7 molecules with 5–10 non-terminal rotatable bonds. The distribution of experimental pKa 

values was roughly uniform between 2–12. 2D representations of all compounds are 

provided in Fig. 5. Drug-like molecules are often larger and more complex than the ones 

used in this study. We limited the size and the number of rotatable bonds of compounds to 

create molecule set of intermediate difficulty.

The dataset composition and experimental details—without the identity of the small 

molecules—were announced approximately one month before the challenge start date. 

Experimental macroscopic pKa measurements were collected using a spectrophotometric 

method with the Sirius T3 (Sirius Analytical), at room temperature, in ionic strength-

adjusted water with 0.15 M KCl [8]. The instructions for participation and the identity of the 

challenge molecules were released on the challenge start date (October 25, 2017). A table of 

molecule IDs (in the form of SM##) and their canonical isomeric SMILES was provided as 

input. Blind prediction submissions were accepted until January 22, 2018.

Following the conclusion of the blind challenge, the experimental data was made public on 

January 23, 2018. The SAMPL organizers and participants gathered at the Second Joint 

D3R/SAMPL Workshop at UC San Diego, La Jolla, CA on February 22–23, 2018 to share 

results. The workshop aimed to create an opportunity for participants to discuss the results, 

evaluate methodological choices by comparing the performance of different methods, and 

share lessons learned from the challenge. Participants reported their results and their own 

evaluations in a special issue of the Journal of Computer-Aided Molecular Design [29].

While designing this first pKa prediction challenge, we did not know the optimal format to 

capture pKa predictions of participants. We wanted to capture all necessary information that 

will aid the evaluation of pKa predictions at the submission stage. Our strategy was to 

directly evaluate macroscopic pKa predictions comparing them to experimental macroscopic 

Işık et al. Page 7

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pKa values and to use collected microscopic pKa prediction data for more in-depth 

diagnostics of method performance. Therefore, we asked participants to submit their 

predictions in three different submission types:

• Type I: microscopic pKa values and related microstate pairs

• Type II: fractional microstate populations as a function of pH in 0.1 pH 

increments

• Type III: macroscopic pKa values

For each submission type, a machine-readable submission file template was specified. For 

type I submissions, participants were asked to report the microstate ID of the protonated 

state, the microstate ID of deprotonated state, the microscopic pKa, and the predicted 

microscopic pKa standard error of the mean (SEM). The method of microstate enumeration 

and why it was needed are discussed further in Section 2.2 "Enumeration of Microstates". 

The SEM aims to capture the statistical uncertainty of the prediction method. Microstate IDs 

were preassigned identifiers for each microstate in the form of SM##_micro###. For type II 

submissions, the submission format included a table that started with a microstate ID 

column and a set of columns reporting the natural logarithm of fractional microstate 

population values of each predicted microstate for 0.1 pH increments between pH 2 and 12. 

For type III submissions participants were asked to report molecule ID, macroscopic pKa, 

and macroscopic pKa SEM.

We required participants to submit predictions for all fields for each prediction, but it was 

not mandatory to submit predictions for all the molecules or all three submission types. 

Although we accepted submissions with partial sets of molecules, it would have been a 

better choice to require predictions for all the molecules for a better comparison of overall 

method performance. The submission files also included fields for naming the method, 

listing the software utilized, and a free text section to describe the methodology used in 

detail.

Participants were allowed to submit predictions for multiple methods as long as they created 

separate submission files. While anonymous participation was allowed, all participants opted 

to make their submissions public. Blind submissions were assigned a unique 5-digit 

alphanumeric submission ID, which will be used throughout this paper. Unique IDs were 

also assigned when multiple submissions exist for different submissions types of the same 

method such as microscopic pKa (type I) and macroscopic pKa (type III). These submission 

IDs were also reported in the evaluation papers of participants to allow cross-referencing. 

Submission IDs, participant-provided method names, and method categories are presented in 

Table 1. In many cases, multiple types of submissions (type I, II, and III) of the same 

method were provided by participants as challenge instructions requested. Although each 

prediction set was assigned a separate submission ID, we matched the submissions that 

originated from the same method according to the reports of the participants for cases where 

multiple sets of predictions came from a given method. Submission IDs for both 

macroscopic (type III) and microscopic (type I) pKa predictions for each method are shown 

in Table 1.
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2.2 Enumeration of microstates

To capture both the pKa value and titrating proton position for microscopic pKa predictions, 

we needed microscopic pKa values to be reported together with a pair of microstates which 

describe the protonated and deprotonated states corresponding to each microscopic 

transition. String representations of molecules such as canonical SMILES with explicit 

hydrogens can be written, however, there can be inconsistencies between the interpretation 

of canonical SMILES written by different software and algorithms. To avoid complications 

while reading microstate structure files from different sources, we decided that the safest 

route was pre-enumerating all possible microstates of challenge compounds, assigning 

microstate IDs to each in the form of SM##_micro###, and requiring participants to report 

microscopic pKa values along with microstate pairs specified by the provided microstates 

IDs.

We created initial sets of microstates with Schrödinger Epik [30] and OpenEye QUACPAC 

[31] and took the union of results. Microstates with Epik were generated using Schrödinger 

Suite v2016-4, running Epik to enumerate all tautomers within 20 pKa units of pH 7. For 

enumerating microstates with OpenEye QUACPAC, we had to first enumerate formal 

charges and for each charge enumerate all possible tautomers using the settings of maximum 

tautomer count 200, level 5, with carbonyl hybridization set to False. Then we created a 

union of all enumerated states written as canonical isomeric SMILES generated by OpenEye 

OEChem [32]. Even though resonance structures correspond to different canonical isomeric 

SMILES, they are not different microstates, therefore it was necessary to remove resonance 

structures that were replicates of the same tautomer. To detect equivalent resonance 

structures, we converted canonical isomeric SMILES to InChI hashes with explicit and fixed 

hydrogen layer. Structures that describe the same tautomer but different resonance states 

lead to explicit hydrogen InChI hashes that are identical, allowing replicates to be removed. 

The Jupyter Notebook used for the enumeration of microstates is provided in Supplementary 

Information.

We provided microstate ID tables with canonical SMILES and 2D depictions to aid 

participants in matching predicted structures to microstate IDs. A canonical SMILES 

representation was selected over canonical isomeric SMILES, because resonance and 

geometric isomerism do not lead to different microstates according to our working 

microstate definition. The only exception was for molecule SM20, which should be 

consistently modeled as the E-isomer.

During the course of the SAMPL6 Challenge, participants identified new microstates that 

were not present in the initial list that we provided. Despite combining enumerated charge 

states and tautomers generated by both Epik and OpenEye QUACPAC, to our surprise, the 

microstate lists were still incomplete. Based on participant requests for new microstates, we 

iteratively had to update the list of microstates and assign new microstate IDs. Every time 

we received a request, we shared the updated microstate ID lists with all challenge 

participants. Some participants updated their pKa prediction by including the newly added 

microstates in their calculations. In the future, developing a better algorithm that can 

enumerate all possible microstates (not just the ones with significant populations) would be 
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very beneficial for anticipating microstates that may be predicted by pKa prediction 

methods.

A microscopic pKa definition was provided in challenge instructions for clarity as follows: 

Physically meaningful microscopic pKas are defined between microstate pairs that can 

interconvert by single protonation/deprotonation event of only one titrable group. So, 

microstate pairs should have total charge (absolute) difference of 1 and only one heavy atom 

that differs in the number of associated hydrogens, regardless of resonance state or 

geometric isomerism. All geometric isomer and resonance structure pairs that have the same 

number of hydrogens bound to equivalent heavy atoms are grouped into the same microstate. 

Pairs of resonance structures and geometric isomers (cis/trans, stereo) are not considered as 

different microstates, as long as there is no change in the number of hydrogens bound to 

each heavy atom. Transitions where there are shifts in the position of protons coupled to 

changes in the number of protons were also not considered as microscopic pKa values [26]. 

Since we wanted participants to report only microscopic pKas that describe single 

deprotonation events (in contrast to transitions between microstates that are different in 

terms of two or more titratable protons), we have also provided a pre-enumerated list of 

allowed microstate pairs.

Provided microstate ID and microstate pair lists were intended to be used for reporting 

microstate IDs and to aid parsing of submissions. The enumerated lists of microstates were 

not created with the intent to guide computational predictions. This was clearly stated in the 

challenge instructions. However, we noticed that some participants still used the microstate 

lists as an input for their pKa predictions as we received complaints from participants that 

due to our updates to microstate lists they needed to repeat their calculations. This would not 

have been an issue if participants used pKa prediction protocols that did not rely on an 

external pre-enumerated list of microstates as an input. None of the participants reported this 

dependency in their method descriptions explicitly, so it was also not obvious how 

participants were using the provided states in their predictions. We could not identify which 

submissions used these enumerated microstate lists as input for predictions and which have 

followed the challenge instructions and relied only on their prediction method to generate 

microstates.

2.3 Evaluation approaches

Since the experimental data for the challenge was mainly composed of macroscopic pKa 

values of both monoprotic and multiprotic compounds, evaluation of macroscopic and 

microscopic pKa predictions was not straightforward. For a subset of 8 molecules, the 

dominant microstate sequence could be inferred from NMR experiments. For the rest of the 

molecules, the only experimental information available was the macroscopic pKa value. The 

experimental data—in the form of macroscopic pKa values—did not provide any 

information on which group(s) are being titrated, the microscopic pKa values, the identity of 

the associated macrostates (which total charge), or microstates (which tautomers). Also, 

experimental data did not provide any information about the charge state of protonated and 

deprotonated species associated with each macroscopic pKa. Typically charges of states 

associated with experimental pKa values are assigned based on pKa predictions, not 
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experimental evidence, but we did not utilize such computational charge assignment. For a 

fair performance comparison between methods, we avoided relying on any particular pKa 

prediction to assist the interpretation of the experimental reference data. This choice 

complicated the pKa prediction analysis, especially regarding how to pair experimental and 

predicted pKa values for error analysis. We adopted various evaluation strategies guided by 

the experimental data. To compare macroscopic pKa predictions to experimental values, we 

had to utilize numerical matching algorithms before we could calculate performance 

statistics. For the subset of molecules with experimental data about microstates, we used 

microstate-based matching. These matching methods are described in more detail in the next 

section.

Three types of submissions were collected during the SAMPL6 pKa Challenge. We have 

only utilized the type I (microscopic pKa value and microstate IDs) and the type III 

(macroscopic pKa value) predictions in this article. Type I submissions contained the same 

prediction information as the type II submissions which reported the fractional population of 

microstates with respect to pH. We collected type II submissions in order to capture relative 

populations of microstates, not realizing they were redundant. The microscopic pKa 

predictions collected in type I submissions capture all the information necessary to calculate 

type II submissions. Therefore, we did not use type II submissions for challenge evaluation. 

In theory, type III (macroscopic pKa) predictions can also be calculated from type I 

submissions, but collecting type III submissions allowed the participation of pKa prediction 

methods that directly predict macroscopic pKa values without considering microspeciation 

and methods that apply special empirical corrections for macroscopic pKa predictions.

2.3.1 Matching algorithms for pairing predicted and experimental pKa values
—Macroscopic pKa predictions can be calculated from microscopic pKa values for direct 

comparison to experimental macroscopic pKa values. One major question must be answered 

to allow this comparison: How should we match predicted macroscopic pKa values to 

experimental macroscopic pKa values when there could multiple pKa values reported for a 

given molecule? For example, experiments on SM18 showed three macroscopic pKas, but 

prediction of xvxzd method reported two macroscopic pKa values. There were also 

examples of the opposite situation with more predicted pKa values than experimentally 

determined macroscopic pKas: One experimental pKa was measured for SM02, but two 

macroscopic pKa values were predicted by xvxzd method. The experimental and predicted 

values must be paired before any prediction error can be calculated, even though there was 

not any experimental information regarding underlying tautomer and charge states.

Knowing the charges of macrostates would have guided the pairing between experimental 

and predicted macroscopic pKa values, however, not all experimental pKa measurements can 

determine determine the charge of protonation states. The potentiometric pKa measurements 

just captures the relative charge change between macrostates, but not the absolute value of 

the charge. Thus, our experimental data did not provide any information that would indicate 

the titration site, the overall charge, or the tautomer composition of macrostate pairs that are 

associated with each measured macroscopic pKa that can guide the matching between 

predicted and experimental pKa values.

Işık et al. Page 11

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For evaluating macroscopic pKa predictions taking the experimental data as reference, 

Fraczkiewicz [23] delineated recommendations for fair comparative analysis of 

computational pKa predictions. They recommended that, in the absence of any experimental 

information that would aid in matching, experimental and computational pKa values should 

be matched preserving the order of pKa values and minimizing the sum of absolute errors.

We picked the Hungarian matching algorithm [33, 34] to match experimental and predicted 

macroscopic pKa values with a squared error cost function as suggested by Kiril Lanevskij 

via personal communication. The algorithm is available in the SciPy package 

(scipy.optimize.linear_sum_assignment) [35]. This matching algorithm provides optimum 

global assignment that minimizes the linear sum of squared errors of all pairwise matches. 

We selected the squared error cost function instead of the absolute error cost function to 

avoid misordered matches, For instance, for a molecule with experimental pKa values of 4 

and 6, and predicted pKa values of 7 and 8, Hungarian matching with absolute error cost 

function would match 6 to 7 and 4 to 9. Hungarian matching with squared error cost would 

match 4 to 7 and 6 to 9, preserving the increasing pKa value order between experimental and 

predicted values. A weakness of this approach would be failing to match the experimental 

value of 6 to predicted value of 7 if that was the correct match based on underlying 

macrostates. But the underlying pair of states were unknown to us both because the 

experimental data did not determine which charge states the transitions were happening 

between and also because we did not collect the pair of macrostates associated with each 

pKa predictions in submissions. Requiring this information for macroscopic pKa predictions 

in future SAMPL challenges would allow for better comparison between predictions, even if 

experimental assignment of charges is not possible. There is no perfect solution to the 

numerical pKa assignment problem, but we tried to determine the fairest way to penalize 

predictions based on their numerical deviation from the experimental values.

For the analysis of microscopic pKa predictions we adopted a different matching approach. 

For the eight molecules for which we had the requisite data for this analysis, we utilized the 

dominant microstate sequence inferred from NMR experiments to match computational 

predictions and experimental pKa values. We will refer to this assignment method as 

microstate matching, where the experimental pKa value is matched to the computational 

microscopic pKa value which was reported for the dominant microstate pair observed for 

each transition. We have compared the results of Hungarian matching and microstate 

matching.

Inevitably, the choice of matching algorithms to assign experimental and predicted values 

has an impact on the computed performance statistics. We believe the Hungarian algorithm 

for numerical matching of unassigned pKa values and microstate-based matching when 

experimental microstates are known were the best choices, providing the most unbiased 

matching without introducing assumptions outside of the experimental data.

2.3.2 Statistical metrics for submission performance—A variety of accuracy and 

correlation statistics were considered for analyzing and comparing the performance of 

prediction methods submitted to the SAMPL6 pKa Challenge. Calculated performance 

statistics of predictions were provided to participants before the workshop. Details of the 
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analysis and scripts are maintained on the SAMPL6 GitHub Repository (described in 

Section 5).

Error metrics: There are six error metrics reported for the numerical error of the pKa 

values: the root-mean-squared error (RMSE), mean absolute error (MAE), mean error (ME), 

coefficient of determination (R2), linear regression slope (m), and Kendall’s Rank 

Correlation Coefficient (τ). Uncertainty in each performance statistic was calculated as 95% 

confidence intervals estimated by non-parametric bootstrapping (sampling with 

replacement) over predictions with 10 000 bootstrap samples. Calculated errors statistics of 

all methods can be found in Table S2 for macroscopic pKa predictions and Tables S4 and S4 

for microscopic pKa predictions.

Assessing macrostate predictions: In addition to assessing the numerical error in predicted 

pKa values, we also evaluated predictions in terms of their ability to capture the correct 

macrostates (ionization states) and microstates (tautomers of each ionization state) to the 

extent possible from the available experimental data. For macroscopic pKas, the 

spectrophotometric experiments do not directly report on the identity of the ionization states. 

However, the number of ionization states indicates the number of macroscopic pKas that 

exists between the experimental range of 2.0–12.0. For instance, SM14 has two 

experimental pKas and therefore three different charge states observed between pH 2.0 and 

12.0. If a prediction reported 4 macroscopic pKas, it is clear that this method predicted an 

extra ionization state. With this perspective, we reported the number of unmatched 

experimental pKas (the number of missing pKa predictions, i.e., missing ionization states) 

and the number of unmatched predicted pKas (the number of extra pKa predictions, i.e., 

extra ionization states) after Hungarian matching. The latter count was restricted to only 

predictions with pKa values between 2 and 12 because that was the range of the 

experimental method. Errors in extra or missing pKa prediction errors highlight failure to 

predict the correct number of ionization states within a pH range.

Assessing microstate predictions: For the evaluation of microscopic pKa predictions, 

taking advantage of the available dominant microstate sequence data for a subset of 8 

compounds, we calculated the dominant microstate prediction accuracy which is the ratio of 

correct dominant tautomer predictions for each charge state divided by the total number of 

dominant tautomer predictions. Dominant microstate prediction accuracy was calculated 

over all experimentally detected ionization states of each molecule which were part of this 

analysis. In order to extract the sequence of dominant microstates from the microscopic pKa 

predictions sets, we calculated the relative free energy of microstates selecting a neutral 

tautomer and pH 0 as reference following Equation 8. Calculation of relative microstate free 

energies was explained in more detail in a previous publication [26].

The relative free energy of a state with respect to reference state B at pH 0.0 (arbitrary pH 

value selected as reference) can be calculated as follows:

ΔGAB = ΔmAB RT ln 10 (pH − pKa) (8)
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ΔmAB is equal to the number protons in state A minus that in state B. R and T indicate the 

molar gas constant and temperature, respectively. By calculating relative free energies of all 

predicted microstates with respect to the same reference state and pH, we were able to 

determine the sequence of predicted dominant microstates. The dominant tautomer of each 

charge state was determined as the microstate with the lowest free energy in the subset of 

predicted microstates of each ionization state. This approach is feasible because the relative 

free energy of tautomers of the same ionization state is independent of pH and therefore the 

choice of reference pH is arbitrary.

Identifying consistently top-performing methods: We created a shortlist of top-

performing methods for macroscopic and microscopic pKa predictions. The top macroscopic 

pKa predictions were selected if they ranked in the top 10 consistently according to two error 

metrics (RMSE, MAE) and two correlation metrics (R-Squared, and Kendall’s Tau), while 

also having fewer than eight missing or extra macroscopic pKas for the entire molecule set 

(eight macrostate errors correspond to macrostate prediction mistake in roughly one third of 

the 24 compounds). These methods are presented in Table 2. A separate list of top-

performing methods was constructed for microscopic pKa with the following criteria: 

ranking in the top 10 methods when ranked by accuracy statistics (RMSE and MAE) and 

perfect dominant microstate prediction accuracy. These methods are presented in Table 3.

Determining challenging molecules: In addition to comparing the performance of methods, 

we also wanted to compare pKa prediction performance for each molecule to determine 

which molecules were the most challenging for pKa predictions considering all the methods 

in the challenge. For this purpose, we plotted prediction error distributions of each molecule 

calculated over all prediction methods. We also calculated MAE for each molecule over all 

prediction sets as well as for predictions from each method category separately.

2.4 Reference calculations

Including a null model is helpful in comparative performance analysis of predictive methods 

to establish what the performance statistics look like for a baseline method for the specific 

dataset. Null models or null predictions employ a simple prediction model which is not 

expected to be particularly successful, but it provides a simple point of comparison for more 

sophisticated methods. The expectation or goal is for more sophisticated or costly prediction 

methods to outperform the predictions from a null model, otherwise the simpler null model 

would be preferable. In SAMPL6 pKa Challenge there were two blind submissions using 

database lookup methods that were submitted to serve as null predictions. These methods, 

with submission IDs 5nm4j and 5nm4j both used OpenEye pKa-Prospector database to find 

the most similar molecule to query molecule and simply reported its pKa as the predicted 

value. Database lookup methods with a rich experimental database do present a challenging 

null model to beat, however, due to the accuracy level needed from pKa predictions for 

computer-aided drug design we believe such methods provide an appropriate performance 

baseline that physical and empirical pKa prediction methods should strive to outperform.

We also included additional reference calculations in the comparative analysis to provide 

more perspective. Some widely used methods by academia and industry were missing from 

Işık et al. Page 14

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the blind challenge submission. Therefore, we included those methods as reference 

calculations: Schrödinger/Epik (nb007, nb008, nb010), Schrödinger/Jaguar (nb011, nb013), 

Chemaxon/Chemicalize (nb015), and Molecular Discovery/MoKa (nb016, nb017). Epik and 

Jaguar pKa predictions were collected by Bas Rustenburg, Chemicalize predictions by 

Mehtap Isik, and MoKa predictions by Thomas Fox. All were done after the challenge 

deadline avoiding any alterations to their respective standard procedures and any guidance 

from experimental data. Experimental data was publicly available before these calculations 

were complete, therefore reference calculations were not formally considered as blind 

submissions.

All figures and statistics tables in this manuscript include reference calculations. As the 

reference calculations were not formal submissions, these were omitted from formal ranking 

in the challenge, but we present plots in this article which show them for easy comparison. 

These are labeled with submission IDs of the form nb### to clearly indicate non-blind 

reference calculations.

3 Results and Discussion

Participation in the SAMPL6 pKa Challenge was high with 11 research groups contributing 

pKa prediction sets for 37 methods. A large variety of pKa prediction methods were 

represented in the SAMPL6 Challenge. We categorized these submissions into four method 

classes: database lookup (DL), linear free energy relationship (LFER), quantitative structure-

property relationship or machine learning (QSPR/ML), and quantum mechanics (QM). 

Quantum mechanics models were subcategorized into QM methods with and without linear 

empirical correction (LEC), and combined quantum mechanics and molecular mechanics 

(QM + MM). Table 1 presents method names, submission IDs, method categories, and also 

references for each approach. Integral equation-based approaches (e.g.EC-RISM) were also 

evaluated under the Physical (QM) category. There were 2 DL, 4 LFER, and 5 QSPR/ML 

methods represented in the challenge, including the reference calculations. The majority of 

QM calculations include linear empirical corrections (22 methods in QM + LEC category), 

and only 5 QM methods were submitted without any empirical corrections. There were 4 

methods that used a mixed physical modeling approach of QM + MM.

The following sections present a detailed performance evaluation of blind submissions and 

reference prediction methods for macroscopic and microscopic pKa predictions. 

Performance statistics of all the methods can be found in Tables S2 and S4. Methods are 

referred to by their submission ID’s which are provided in Table 1.

3.1 Analysis of macroscopic pKa predictions

The performance of macroscopic pKa predictions was analyzed by comparison to 

experimental pKa values collected by the spectrophotometric method via numerical 

matching following the Hungarian method. Overall pKa prediction performance was worse 

than we hoped. Fig. 2 shows RMSE calculated for each prediction method represented by 

their submission IDs. Other performance statistics are depicted in Fig. 3. In both figures, 

method categories are indicated by the color of the error bars. The statistics depicted in these 

figures can be found in Table S2. Prediction error ranged between 0.7 to 3.2 pKa units in 
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terms of RMSE, while an RMSE between 2-3 log units was observed for the majority of 

methods (20 out of 38 methods). Only five methods achieved RMSE less than 1 pKa unit. 

One is QM method with COSMO-RS approach for solvation and linear empirical correction 

(xvxzd (DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS] + RRHO(GFN-

xTB[GBSA]) + Gsolv(COSMO-RS[TZVPD]) and linear fit)), and the remaining four are 

empirical prediction methods of LFER (xmyhm (ACD/pKa Classic), nb007 (Schrödinger/

Epik Scan)) and QSPR/ML categories (gyuhx (Simulations Plus), nb017 (MoKa)). These 

five methods with RMSE less than 1 pKa unit are also the methods that have the lowest 

MAE. xmyhm and xvxzd were the only two methods for which the upper 95% confidence 

interval of RMSE was lower than 1 pKa unit.

In terms of correlation statistics, many methods have good performance, although the 

ranking of methods changes according to R2 and Kendall’s Tau. Therefore, many methods 

are indistinguishable from one another, considering the uncertainty of the correlation 

statistics. 32 out of 38 methods have R and Kendall’s Tau higher than 0.7 and 0.6, 

respectively. 8 methods have R2 higher than 0.9 and 6 methods have Kendall’s Tau higher 

than 0.8. The overlap of these two sets are the following: gyuhx (Simulations Plus), xvxzd 
(DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS] + RRHO(GFN-xTB[GBSA]) 

+ Gsolv(COSMO-RS[TZVPD]) and linear fit), xmyhm (ACD/pKa Classic), ryzue 
(Adiabatic scheme with single point correction: MD/M06-2X//6-311++G(d,p)//M06-2X/

6-31+G(d) for bases and SMD/M06-2X//6-311++G(d,p)//M06-2X/6-31G(d) for acids + 

thermal corrections), and 5byn6 (Adiabatic scheme: thermodynamic cycle that uses gas 

phase optimized structures for gas phase free energy and solution phase geometries for 

solvent phase free energy. SMD/M06-2X/6-31+G(d) for bases and SMD/M06-2X/6-31G(d) 

for acids + thermal corrections). It is worth noting that ryzue and 5byn6 are QM predictions 

without any empirical correction. Their high correlation and rank correlation coefficient 

scores signal that with an empirical correction their accuracy based performance could 

improve. Indeed, the participants have shown that this is the case in their own challenge 

analysis paper and achieved RMSE of 0.73 pKa units after the challenge [41].

Null prediction methods based on database lookup (5nm4j and pwn3m) had similar 

performance, with an RMSE of roughly 2.5 pKa units, an MAE of 1.5 pKa units, R2 of 0.2, 

and Kendall’s Tau of 0.3. Many methods were observed to have a prediction performance 

advantage over the null predictions shown in light blue in Fig. 2 and Fig. 3 considering all 

the performance metrics as a whole. In terms of correlation statistics, the null methods are 

the worst performers, except for 0hxtm. From the perspective of accuracy-based statistics 

(RMSE and MAE), only the top 10 methods were observed to have significantly lower 

errors than the null methods considering the uncertainty of error metrics expressed as 95% 

confidence intervals.

The distribution of macroscopic pKa prediction signed errors observed in each submission 

was plotted in Fig. 7A as ridge plots using the Hungarian matching scheme. 2ii2g, f0gew, 
np64b, p0jba, and yc70m tended to overestimate, while 5byn6, ryzue, and w4iyd tended to 

underestimate macroscopic pKa values.
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Four submissions in the QM+LEC category used the COSMO-RS implicit solvation model. 

While three of these achieved the lowest RMSE among QM-based methods (xvxzd, yqkga, 

and 8xt50) [46], one of them showed the highest RMSE (0hxtm (COSMOtherm_FINE17)) 

among all SAMPL6 Challenge macroscopic pKa predictions. All four methods used 

COSMO-RS/FINE17 to compute solvation free energies. The major difference between the 

three low-RMSE methods and 0hxtm seems to be the protocol for determining relevant 

conformations for each microstate. xvxzd, yqkga, and 8xt50 used a semi-empirical tight 

binding (GFN-xTB) method and GBSA continuum solvation model for geometry 

optimization, followed by high level single-point energy calculations with a solvation free 

energy correction (COSMO-RS(FINE17/TZVPD)) and rigid rotor harmonic oscillator 

(RRHO[GFN-xTB(GBSA]) correction. yqkga, and 8xt50 selected conformations for each 

microstate with the Relevant Solution Conformer Sampling and Selection (ReSCoSS) 

workflow [46]. The conformations were clustered according to shape, and the lowest energy 

conformations from each cluster (according to BP86/TZVP/COSMO single point energies in 

any of the 10 different COSMO-RS solvents) were considered as relevant conformers. The 

yqkga method further filtered out conformers that have less than 5% Boltzmann weights at 

the DSD-BLYP-D3/def2-TZVPD + RRHO(GFNxTB) + COSMO-RS(fine) level. The xvxzd 
method used an MF–MD–GC//GFN-xTB workflow and energy thresholds of 6 kcal/mol and 

10 kcal/mol, for conformer and microstate selection. On the other hand, the conformational 

ensemble captured for each microstate seems to be more limited for the 0hxtm method, 

judging by the method description provided in the submission file (this participant did not 

publish an analysis of the results that they obtained for SAMPL6). The 0hxtm method 

reported that relevant conformations were computed with the COSMOconf 4.2 workflow 

which produced multiple relevant conformers for only the neutral states of SM18 and SM22. 

In contrast to xvxzd, yqkga, and 8xt50, the 0hxtm method also did not include a RRHO 

correction. Participants who submitted the three low-RMSE methods report that capturing 

the chemical ensemble for each molecule including conformers and tautomers and high-

level QM calculations led to more successful macroscopic pKa prediction results and RRHO 

correction provided a minor improvement [46]. Comparing these results to other QM 

approaches in the SAMPL Challenge also points to the advantage of the COSMO-RS 

solvation approach compared to other implicit solvent models.

In addition to the statistics related to the pKa value, we also analyzed missing or extra pKa 

predictions. Analysis of the pKa values with accuracy- and correlation-based error metrics 

was only possible after the matching of predicted macroscopic pKa values to experimental 

pKa values through Hungarian matching, although this approach masks pKa prediction 

issues in the form of extra or missing macroscopic pKa predictions. To capture this class of 

prediction errors, we reported the number of unmatched experimental pKas (missing pKa 

predictions) and the number of unmatched predicted pKas (extra pKa predictions) after 

Hungarian matching for each method. Both missing and extra pKa prediction counts were 

only considered for the pH range of 2–12, which corresponds to the limits of the 

experimental assay. The lower subplot of Fig. 2 shows the total count of unmatched 

experimental or predicted pKa values for all the molecules in each prediction set. The order 

of submission IDs in the x-axis follows the RMSD based ranking so that the performance of 

each method from both pKa value accuracy and the number of pKas can be viewed together. 
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The omission or inclusion of extra macroscopic pKa predictions is a critical error because 

inaccuracy in predicting the correct number of macroscopic transitions shows that methods 

are failing to predict the correct set of charge states, i.e., failing to predict the correct number 

of ionization states that can be observed between the specified pH range.

In the analysis of these challenge results, extra macroscopic pKa predictions were found to 

be more common than missing pKa predictions. In pKa prediction evaluations, the accuracy 

of predicted ionization states within a pH range is usually neglected. When predictions are 

only evaluated for the accuracy of the pKa value with numerical matching algorithms, a 

larger number of predicted pKas lead to greater underestimation of prediction errors. 

Therefore, it is not surprising that methods are biased to predict extra pKa values. The 

SAMPL6 pKa Challenge experimental data consists of 31 macroscopic pKas in total, 

measured for 24 molecules (6 molecules in the set have multiple pKas). Within the 10 

methods with the lowest RMSE, only the xvxzd method predicts too few pKa values (2 

unmatched out of 31 experimental pKas). All other methods that rank in the top 10 by 

RMSE have extra predicted pKas ranging from 1 to 13. Two prediction sets without any 

extra pKa predictions and low RMSE are 8xt50 (ReSCoSS conformations // DSD-BLYP-D3 

reranking // COSMOtherm pKa) and nb015 (ChemAxon/Chemicalize).

3.1.1 Consistently well-performing methods for macroscopic pKa prediction
—Methods ranked differently when ordered by different error metrics, although there were a 

couple of methods that consistently ranked in the top fraction. By using combinatorial 

criteria that take multiple statistical metrics and unmatched pKa counts into account, we 

identified a shortlist of consistently well-performing methods for macroscopic pKa 

predictions, shown in Table 2. The criteria for selection were the overall ranking in Top 10 

according to RMSE, MAE, R2, and Kendall’s Tau and also having a combined unmatched 

pKa (extra and missing pKas) count less than 8 (a third of the number of compounds). We 

ranked methods in ascending order for RMSE and MAE and in descending order for R2, and 

Kendall’s Tau to determine methods. Then, we took the intersection set of Top 10 methods 

according to each statistic to determine the consistently-well performing methods. This 

resulted in a list of four methods that are consistently well-performing across all criteria.

Consistently well-performing methods for macroscopic pKa prediction included methods 

from all categories. Two methods in the QM+LEC category were xvxzd (DSD-BLYP-

D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS] + RRHO(GFN-xTB[GBSA]) + 

Gsolv(COSMO-RS[TZVPD]) and linear fit) and (8xt50) (ReSCoSS conformations // DSD-

BLYP-D3 reranking // COSMOtherm pKa) and both used COSMO-RS. Empirical pKa 

predictions with top performance were both proprietary software. From QSPR and LFER 

categories, gyuhx (Simulations Plus) and xmymhm (ACD/pKa Classic) were consistently 

well-performing methods. The Simulation Plus pKa prediction method consisted of 10 

artificial neural network ensembles trained on 16,000 compounds for 10 classes of ionizable 

atoms, with the ionization class of each atom determined using an assigned atom type and 

local molecular environment [48]. The ACD/pKa Classic method was trained on 17,000 

compounds, uses Hammett-type equations, and captures effects related to tautomeric 

equilibria, covalent hydration, resonance effects, and α, β-unsaturated systems [38].
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Figure 4 plots predicted vs. experimental macroscopic pKa predictions of four consistently 

well-performing methods, a representative average method, and the null method(5nm4j). We 

selected the method with the highest RMSE below the median of all methods as the 

representative method with average performance: 2ii2g (EC-RISM/MP2/cc-pVTZ-P2-q-

noThiols-2par).

3.1.2 Which chemical properties are driving macroscopic pKa prediction 
failures?—In addition to comparing the performance of methods that participated in the 

SAMPL6 Challenge, we also wanted to analyze macroscopic pKa predictions from the 

perspective of challenge molecules and determine whether particular compounds suffer from 

larger inaccuracy in pKa predictions. The goal of this analysis is to provide insight on which 

molecular properties or moieties might be causing larger pKa prediction errors. In Fig. 5, 2D 

depictions of the challenge molecules are presented with MAE calculated for their 

macroscopic pKa predictions over all methods, based on Hungarian match. For multiprotic 

molecules, the MAE was averaged over all the pKa values. For the analysis of pKa 

prediction accuracy observed for each molecule, MAE is a more appropriate statistical value 

than RMSE for following global trends, as it is less sensitive to outliers than the RMSE.

A comparison of the prediction accuracy of individual molecules is shown in Fig. 6. In Fig. 

6A, the MAE for each molecule is shown considering all blind predictions and reference 

calculations. A cluster of molecules marked orange and red have higher than average MAE. 

Molecules marked red (SM06, SM21, and SM22) are the only compounds in the SAMPL6 

dataset with bromo or iodo groups and they suffered a macroscopic pKa prediction error in 

the range of 1.7–2.0 pKa units in terms of MAE. Molecules marked orange (SM03, SM10, 

SM18, SM19, and SM20) have sulfur-containing heterocycles, and all these molecules 

except SM18 have MAE larger than 1.6 pKa units. Despite containing a thiazole group, 

SM18 has a low prediction MAE. SM18 is the only compound with three experimental pKa 

values, and we suspect the presence of multiple experimental pKa values could have a 

masking effect on the errors captured by the MAE when the Hungarian matching scheme is 

used due to more potential pairing choices that may artificially lower the error.

We separately analyzed the MAE of each molecule for empirical (LFER and QSPR/ML) and 

QM-based physical methods (QM, QM+LEC, and QM+MM) to gain additional insight into 

prediction errors. Fig. 6B shows that the difficulty of predicting pKa values of the same 

subset of molecules was a trend conserved in the performance of physical methods. For QM-

based methods, sulfur-containing heterocycles, amides proximal to aromatic heterocycles, 

and compounds with iodo and bromo substitutions have lower pKa prediction accuracy.

The SAMPL6 pKa set consists of only 24 small molecules and lacks multiple examples of 

many moieties, limiting our ability to determine with statistical significance which chemical 

substructures cause greater errors in pKa predictions. Still, the trends observed in this 

challenge point to molecules with iodo-, bromo-, and sulfur-containing heterocycles as 

having systematically larger prediction errors in macroscopic pKa value. We hope that 

reporting this observation will lead to the improvement of methods for similar compounds 

with such moieties.
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We have also looked for correlation with molecular descriptors for finding other potential 

explanations as to why macroscopic pKa prediction errors were larger for certain molecules. 

While testing the correlation between errors and many molecular descriptors, it is important 

to account for the possibility of spurious correlations. We haven’t observed any statistically 

significant correlation between numerical pKa predictions and the descriptors we have 

tested. First, having more experimental pKa values (Fig. 6A) did not seem to be associated 

with poorer pKa prediction performance. Still, we need to keep in mind that multiprotic 

compounds were sparsely represented in the SAMPL6 set (5 molecules with 2 macroscopic 

pKa values and one with 3 macroscopic pKa). Second, we checked the following other 

descriptors: presence of an amide group, molecular weight, heavy atom count, rotatable 

bond count, heteroatom count, heteroatom-to-carbon ratio, ring system count, maximum 

ring size, and the number of microstates (as enumerated for the challenge). Correlation plots 

and R2 values can be seen in Fig. S2.

We had suspected that pKa prediction methods may perform better for moderate values (4–

10) than extreme values as molecules with extreme pKa values are less likely to change 

ionization states close to physiological pH. To test this we look at the distribution of absolute 

errors calculated for all molecules and challenge predictions binned by experimental pKa 

value 2 pKa unit increments. As can be seen in Fig. S3B, the value of true macroscopic pKa 

values was not a factor affecting the prediction error seen in SAMPL6 Challenge.

Fig. 7B is helpful to answer the question "Are there molecules with consistently 

overestimated or underestimated pKa values?". This ridge plots show the error distribution of 

each experimental pKa. SM02_pKa1, SM04_pKa1, SM14_pKa1, and SM21_pKa1 were 

underestimated, predicting lower protein affinity by more than 1 pKa unit by majority of the 

prediction methods. SM03_pKa1, SM06_pKa2, SM19_pKa1, and SM20_pKa1 were 

overestimated by the majority of the prediction methods by more than 1 pKa unit. 

SM03_pKa1, SM06_pKa2, SM10_pKa1, SM19_pKa1, and SM22_pKa1 have the highest 

spread of errors and were less accurately predicted overall.

3.2 Analysis of microscopic pKa predictions using microstates determined by NMR for 8 
molecules

The most common approach for analyzing microscopic pKa prediction accuracy has been to 

compare it to experimental macroscopic pKa data, assuming experimental pKa values 

describe titrations of distinguishable sites and, therefore, correspond to microscopic pKas. 

But this typical approach fails to evaluate methods at the microscopic level.

Analysis of microscopic pKa predictions for the SAMPL6 Challenge was not 

straightforward due to the lack of experimental data with microscopic resolution of the 

titratable sites and their associated microscopic pKas. For 24 molecules, macroscopic pKa 

values were determined with the spectrophotometric method. For 18 molecules, a single 

macroscopic titration was observed, and for 6 molecules multiple experimental pKa values 

were observed and characterized. For 18 molecules with a single experimental pKa, it is 

probable that the molecules are monoprotic and, therefore, macroscopic pKa value is equal 

to the microscopic pKa. There is, however, no direct experimental evidence supporting this 

hypothesis aside from the support from computational predictions, such as the predictions by 
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ACD/pKa Classic. There is always the possibility that the macroscopic pKa observed is the 

result of two different titrations overlapping closely with respect to pH if any charge state 

has more than one tautomer. We did not want to bias the blind challenge analysis with any 

prediction method. Therefore, we believe analyzing the microscopic pKa predictions via 

Hungarian matching to experimental values with the assumption that the 18 molecules have 

a single titratable site is not the best approach. Instead, an analysis at the level of 

macroscopic pKa values is much more appropriate when a numerical matching scheme is the 

only option to evaluate predictions using macroscopic experimental data.

For a subset of eight molecules, dominant microstates were inferred from NMR 

experiments. Six of these molecules were monoprotic and two were multiprotic. This dataset 

was extremely useful for guiding the assignment between experimental and predicted pKa 

values based on microstates. In this section, we present the performance evaluations of 

microscopic pKa predictions for only the 8 compounds with experimentally-determined 

dominant microstates.

3.2.1 Microstate-based matching revealed errors masked by pKa value-based 
matching between experimental and predicted pKas—Comparing microscopic pKa 

predictions directly to macroscopic experimental pKa values with numerical matching can 

lead to underestimation of errors. To demonstrate how numerical matching often masks pKa 

prediction errors, we compared the performance analysis done by Hungarian matching to 

that from microstate-based matching for 8 molecules presented in Fig. 8A. RMSE calculated 

for microscopic pKa predictions matched to experimental values via Hungarian matching is 

shown in Fig. 8B, while Fig. 8C shows RMSE calculated via microstate-based matching. 

The Hungarian matching incorrectly leads to significantly (and artificially) lower RMSE 

compared to microstate-based matching. The reason is that the Hungarian matching assigns 

experimental pKa values to predicted pKa values only based on the closeness of the 

numerical values, without consideration of the relative population of microstates and 

microstate identities. Because of this, a microscopic pKa value that describes a transition 

between very low population microstates (high energy tautomers) can be assigned to the 

experimental pKa if it has the closest pKa value. This is not helpful because, in reality, the 

microscopic pKa values that influence the observable macroscopic pKa the most are the ones 

with higher microstate populations (transitions between low energy tautomers).

The number of unmatched predicted microscopic pKas is shown in the lower bar plots of 

Fig. 8B and C, to emphasize the large number of microscopic pKa predictions submitted by 

many methods. In the case of microscopic pKa, the number of unmatched predictions does 

not indicate an error in the form of an extra predicted pKa, because the spectrophotometric 

experiments do not capture all microscopic pKas theoretically possible (transitions between 

all pairs of microstates that differ by one proton). pKas of transitions to and from very high 

energy tautomers are very hard to measure by experimental methods, including the most 

sensitive methods like NMR. Prediction of extra microscopic pKa values can cause 

underestimation of prediction errors when numerical matching algorithms such as 

Hungarian matching are used. We also checked how often Hungarian matching led to the 

correct matches between predicted and experimental pKa in terms of the microstate pairs, 

i.e., how often the microstate pair of the Hungarian match recapitulates the dominant 
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microstate pair of the experiment. The overall accuracy of microstate pair matching was 

found to be low for the SAMPL6 Challenge submission. Fig. S4 shows that for most 

methods the predicted microstate pair selected by the Hungarian match did not correspond to 

the experimentally-determined microstate pair. This means lower RMSE (better accuracy) 

performance statistics obtained from Hungarian matching are artificially low. This problem 

could be avoided by matching experimental and predicted values on the basis of microstate 

IDs, if experimental microscopic assignments are available.

Unfortunately, we were only able to perform this more reliable microstate-based analysis for 

a subset of compounds. The conclusions in this section reflect only eight compounds with 

limited structural diversity: Six molecules with 4-aminoquinazoline and two with 

benzimidazole scaffolds, with a total of 10 pKa values. The sequences of dominant 

microstates for SM07 and SM14 were determined by NMR experiments directly [8], while 

dominant microstates of their derivatives were inferred by taking them as a reference (Fig. 

8). Although we believe that microstate-based evaluation is more informative, the lack of a 

large experimental dataset limits the conclusions to a very narrow chemical diversity. Still, 

microstate-based matching revealed errors masked by pKa value-based matching between 

experimental and predicted pKas.

3.2.2 Accuracy of pKa predictions evaluated by microstate-based matching—
Both accuracy- and correlation-based statistics were calculated for the predicted microscopic 

pKa values after microstate-based matching. RMSE, MAE, ME, R2, and Kendall’s Tau 

results of each method are shown in Fig. 8C and Fig. 9. A table of the calculated statistics 

can be found in Table S4. Due to the small number of data points in this set, correlation-

based statistics have large uncertainties and thus have less utility for distinguishing better-

performing methods. Therefore, we focused more on accuracy-based metrics for the analysis 

of microscopic pKas than correlation-based metrics. In terms of accuracy of predicted 

microscopic pKa values, all three QSPR/ML based methods (nb016 (MoKa), hdiyq 
(Simulations Plus), 6tvf8 (OE Gaussian Process)), three QM-based methods (nb011 
(Jaguar), ftc8w (EC-RISM/MP2/cc-pVTZ-P2-q-noThiols-2par), t8ewk 
(COSMOlogic_FINE17)), and one LFER method (v8qph (ACD/pKa GALAS)) achieved 

RMSE lower than 1 pKa unit. The same six methods also have the lowest MAE.

3.2.3 Evaluation of dominant microstate prediction accuracy—For many 

computational chemistry approaches, including structure-based modeling of protein-ligand 

interactions, predicting the ionization state and the exact position of protons is necessary to 

establish what to include in the modeled system. In addition to being able to predict pKa 

values accurately, we require pKa prediction methods to be able to capture microscopic 

protonation states accurately. Even when the predicted pKa value is accurate, the predicted 

protonation sites can be incorrect, leading to potentially large modeling errors in quantities 

such as the computed free energy of binding. Therefore, we assessed whether methods 

participating in the SAMPL6 pKa Challenge were correctly predicting the sequence of 

dominant microstates, i.e., dominant tautomers of each charge state observed between pH 2 

and 12.
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Fig. 10 shows how well methods perform for predicting the dominant microstate, as 

analyzed for eight compounds with available experimental microstate assignments. The 

dominant microstate sequence is essentially the sequence of states that are most visible 

experimentally due to their higher fractional population and relative free energy within the 

tautomers at each charge. To extract the dominant tautomers predicted for the sequence of 

ionization states of each method, the relative free energy of microstates were first calculated 

at reference pH 0 [26]. To subsequently determine the dominant microstate at each formal 

charge, we selected the lowest energy tautomer for each ionization state based on the relative 

microstate free energies calculated at pH 0. The choice of reference pH is arbitrary, as 

relative free energy difference between tautomers of the same charge is always constant with 

respect to pH. This analysis was performed only for the charges −1, 0, 1, and 2—the charge 

range captured by NMR experiments. Predicted and experimental dominant microstates 

were then compared for each charge state to calculate the fraction of correctly predicted 

dominant tautomers. This value is reported as the dominant microstate accuracy for all 

charge states (Fig. 10A).

Many of the methods which participated in the challenge made errors in predicting the 

dominant microstate. 10 QM and 3 QSPR/ML methods did not make any mistakes in 

dominant microstate predictions, although, they are expected to make mistakes in the 

relative population of tautomers (free energy difference between microstates) as reflected by 

the pKa value errors. While all participating QSPR/ML methods showed good performance 

in dominant microstate prediction, LFER and some QM methods made mistakes. The 

accuracy of the predicted dominant neutral tautomers was perfect for all methods, except 

qsicn (Fig. 10B), but errors in predicting the major tautomer of charge +1 were much more 

frequent. 22 out of 35 prediction sets made at least one error in predicting the lowest energy 

tautomer with +1 charge. We didn’t include ionization states with charges −1 and +2 in this 

assessment because we had only one compound with these charges in the dataset. 

Nevertheless, errors in predicting the dominant tautomers seem to be a bigger problem for 

charged tautomers than the neutral tautomer.

Only eight compounds had data on the sequence of dominant microstates. Therefore 

conclusions on the performance of methods in terms of dominant tautomer prediction are 

limited to this limited chemical diversity (benzimidazole and 4-aminoquinazoline 

derivatives). We present this analysis as a prototype of how microscopic pKa predictions 

should be evaluated. Hopefully, future evaluations can be performed with larger 

experimental datasets following the strategy we demonstrated here in order to reach broad 

conclusions about which methods are better for capturing dominant microstates and ratios of 

tautomers. Even if experimental microscopic pKa measurement data is not available, 

experimental dominant tautomer determinations are still informative for assessing 

computational predictions.

The most frequent misprediction was the major tautomer of the SM14 cationic form, as 

shown in Fig. 10. This figure shows the accuracy of the predicted dominant microstate 

calculated for individual molecules and for charge states 0 and +1, averaged over all 

prediction methods. SM14, the molecule that exhibits the most frequent error in the 

predicted dominant microstate, has two experimental pKa values that were 2.4 pKa units 
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apart, and we suspect that could be a contributor to the difficulty of predicting microstates 

accurately. Other molecules are monoprotic (4-aminoquinazolines) or their experimental 

pKa values are very well separated (SM14, 4.2 pKa units). It would be very interesting to 

expand this assessment to a larger variety of drug-like molecules to discover for which 

structures tautomer predictions are more accurate and for which structures computational 

predictions are not as reliable.

3.2.4 Consistently well-performing methods for microscopic pKa predictions
—We have identified different criteria for determining consistently top-performing 

predictions of microscopic pKa than macroscopic pKa: having perfect dominant microstate 

prediction accuracy, unmatched pKa count of 0, and ranking in the top 10 according to 

RMSE and MAE. Correlation statistics were not found to have utility for discriminating 

performance due to large uncertainties in these statistics for a small dataset of 10 pKa values. 

Unmatched predicted pKa count was also not considered since experimental data was only 

informative for the pKa between dominant microstates and did not capture all the possible 

theoretical transitions between microstate pairs. Table 3 reports six methods that have 

consistent good performance according to many metrics, although evaluated only for the 8 

molecule set due to limitations of the experimental dataset. Six methods were divided evenly 

between methods of QSPR/ML category and QM category. nb016 (MoKa), hdiyq 
(Simulations Plus), and 6tvf8 (OE Gaussian Process) were QSPR and ML methods that 

performed well. nb011 (Jaguar), 0xi4b(EC-RISM/B3LYP/6-311+G(d,p)-P2-phi-

noThiols-2par), and cywyk (EC-RISM/B3LYP/6-311+G(d,p)-P2-phi-noThiols-2par) were 

QM predictions with linear empirical corrections with good performance with microscopic 

pKa predictions.

The Simulations Plus pKa prediction method is the only method that appeared to be 

consistently well-performing in both the assessment for macroscopic and microscopic pKa 

prediction (gyuhx and hdiyq). However, it is worth noting that two methods that were in the 

list of consistently top-performing methods for macroscopic pKa predictions lacked 

equivalent submissions of their underlying microscopic pKa predictions, and therefore could 

not be evaluated at the microstate level. These methods were xmyhm (ACD/pKa Classic) 

and xvxzd(DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS] + RRHO(GFN-

xTB[GBSA]) + Gsolv(COSMO-RS[TZVPD]) and linear fit).

3.3 How do pKa prediction errors impact protein-ligand binding affinity predictions?

pKa predictions provide a key input for computational modeling of protein-ligand binding 

with physical methods. The SAMPL6 pKa Challenge focused only on small molecule pKa 

prediction and showed how pKa prediction accuracy observed can impact the modeling of 

ligands. Many affinity prediction methods such as docking, MM/PBSA, MM/GBSA, 

absolute or alchemical relative free energy calculation methods predict the affinity of the 

ligand to a receptor using a fixed protonation state for both ligand and receptor. These 

models can sensitively depend upon pKa and dominant tautomer predictions for determining 

possible protonation states of the ligand in the aqueous environment and in a protein 

complex, as well as the free energy penalty to access those states [4]. The accuracy of pKa 
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predictions can become a limitation for the performance of physical models that try to 

quantitatively describe molecular association.

In terms of ligand protonation states, there are two ways in which pKa prediction errors can 

influence the prediction accuracy for protein-ligand binding free energies as depicted in Fig. 

11. The first scenario is when a ligand is present in aqueous solution in multiple protonation 

states (Fig. 11A). When only the minor aqueous protonation state contributes to protein-

ligand complex formation, the overall binding free energy (ΔGbind) needs to be calculated as 

the sum of binding free energy of the minor state and the protonation penalty of that state 

(ΔGprot). ΔGprot is a function of both pH and pKa. A 1 unit of error in predicted pKa would 

lead to 1.36 kcal/mol error in overall binding free energy if the protonation state with the 

minor population binds the protein and this minor protonation state is correctly selected to 

model the free energy of binding; if the incorrect dominant protonation state for the complex 

is selected, the dominant contribution to the free energy of binding may be missed entirely, 

leading to much larger modeling errors in the binding free energy. Other scenarios—in 

which multiple protonation states can be significantly populated in complex—can lead to 

more complex scenarios in which the errors in predicted pKa propagate in more complex 

ways. The equations in Fig. 11A show the overall free energy for a simple thermodynamic 

cycle involving multiple protonation states.

In addition to the presence of multiple protonation states in the aqueous environment, 

multiple charge states can contribute to complex formation (Fig. 11B). Then, the overall free 

energy of binding needs to include a Multiple Protonation States Correction (MPSC) term 

(ΔGcorr) [4]. MPSC is a function of pH, aqueous pKa of the ligand, and the difference 

between the binding free energy of charged and neutral species (ΔGbind
C − ΔGbind

N ) as shown 

in Fig. 11B.

Using the equations in Fig. 11B, we can model the true MPSC (ΔGcorr) with respect to the 

difference between pH and the pKa of the ligand to see when this value has a significant 

impact on the overall binding free energy. In Fig. 12, the true MPSC that must be added to 

ΔGbind
N  is shown for ligands with varying binding affinity difference between protonation 

states (ΔΔG = ΔGbind
C − ΔGbind

N ). Fig. 12A shows the case of a monoprotic base in which the 

charged state has a lower affinity than the neutral state. Solid lines depict the accurate 

correction value. In cases where the pKa is lower than the pH, the correction factor 

disappears as the ligand fully populates the neutral state (ΔGbind = ΔGbind
N ). As the pH dips 

below the pKa, the charged state is increasingly populated and ΔGcorr increases to approach 

ΔΔG.

It is interesting to note the pH-pKa range over which ΔGcorr changes significantly. It is often 

assumed that, for a basic ligand, if the pKa of a ligand is more than 2 units higher than the 

pH, only 1% of the population is in the neutral state according to Henderson-Hasselbalch 

equation, and it is safe to approximate the overall binding affinity with ΔGbind
C . Based on the 

magnitude of the relative free energy difference between ligand protonation states, this 

assumption is not always correct. As seen in Fig. 12A, the responsive region of ΔGcorr can 

span 3 pH units for a system with ΔΔG = 1kcal/mol, or 5 pH units for a system with ΔΔG = 
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4kcal/mol. This highlights that the range of pKa values that impact binding affinity 

predictions is wider than 2 pH units. Molecules with pKa values several units away from the 

physiological pH can still impact the overall binding affinity significantly due to the MPSC.

Despite the need to capture the contributions of multiple protonation states by including the 

MPSC in binding affinity calculations, inaccurate pKa predictions can lead to errors in 

ΔGcorr and overall free energy of binding prediction. In Fig. 12A dashed lines show 

predicted ΔGcorr based on pKa error of −1 units. We have chosen a pKa error of 1 unit as this 

is the average inaccuracy expected from the pKa prediction methods based on the SAMPL6 

Challenge. Underestimation of the pKa causes the ΔGcorr to be underestimated as well and 

will result in overestimated affinities (i.e., too negative binding free energy) for a varying 

range of pH - pKa values depending on the binding affinity difference between protonation 

states(ΔΔG). In Fig. 12B dashed lines show how the magnitude of the absolute error caused 

by calculating ΔGcorr with an inaccurate pKa varies with respect to pH. Different colored 

lines show simulated results with varying binding free energy differences between 

protonation states. For a system whose charged state has higher binding free energy than the 

neutral state (ΔΔG = 2 kcal/mol), the absolute error caused by underestimated pKa by 1 unit 

can be up to 0.9 kcal/mol. For a system whose charged state has an even lower affinity (more 

positive binding free energy) than the neutral state (ΔΔG = 4 kcal/mol), the absolute error 

caused by underestimated pKa by 1 unit can be up to 1.2 kcal/mol. The magnitude of errors 

contributing to overall binding affinity is too large to be neglected. Improving the accuracy 

of small molecule pKa prediction methods can help to minimize the error in predicted 

MPSC.

With the current level of pKa prediction accuracy as observed in SAMPL6 Challenge, is it 

advantageous to include the MPSC in affinity predictions that may include errors caused by 

pKa predictions? We provide a comparison of the two choices to answer this question: (1) 

Neglecting the MPSC completely and assuming overall binding affinity is captured by 

ΔGbind
N , (2) including MPSC with a potential error in overall affinity calculation. The 

magnitude of error caused by Choice 1 (ignoring MPSC) is depicted as a solid line in Fig. 

12B and the magnitude of error caused by MPSC computed with inaccurate pKa is depicted 

as dashed lines. What is the best strategy? Error due to choice 1 is always larger than error 

due to choice 2 for all pH-pKa values. In this scenario, including the MPSC improves overall 

binding affinity prediction accuracy. The error caused by the inaccurate pKa is smaller than 

the error caused by neglecting the MPSC.

We can also ask whether or not an MPSC calculated based on an inaccurate pKa should be 

included in binding affinity predictions in different circumstances, such as underestimated or 

overestimated pKa values and charged states with higher or lower affinities than the neutral 

states. We tried to capture these circumstances in four quadrants of Fig. 12. In the case of 

overestimated pKa values (Fig. 12E-H), it can be seen that for most of the pH-pKa range, it 

is more advantageous to include the predicted MPSC in affinity calculations, except a 

smaller window where the opposite choice would be more advantageous. For instance, for 

the system with ΔΔG = 2 kcal/mol and overestimated pKa (Fig. 12E) for the pH-pKa region 

Işık et al. Page 26

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between −0.5 and 2, including the predicted ΔGcorr introduces more error than ignoring the 

MPSC.

In practice, we normally do not know the exact magnitude or the direction of the error of our 

predicted pKa. Therefore, using simulated MPSC error plots to decide when to include 

MPSC in binding affinity predictions is not possible. However, based on the analysis of a 

case with 1 unit of pKa error, including the MPSC correction would be more often than not 

helpful in improving binding affinity predictions. The detrimental effect of pKa inaccuracy is 

still significant. Hopefully, future improvements in pKa prediction methods will improve the 

accuracy of the MPSC and binding affinity predictions of ligands which have multiple 

protonation states that contribute to aqueous or complex populations. Being able to predict 

pKa values with 0.5 units accuracy, for example, would significantly aid binding affinity 

models in computing more accurate MPSC terms.

The whole analysis presented in this section assumes that at least the dominant protonation 

state of the ligand is correctly included in the modeling of the protein-ligand complex. We 

have not discussed the case of omitting this dominant state from the free energy calculations 

entirely when it is erroneously predicted to be a minor state in solution. Such a mistake 

could be the most problematic, and the errors in estimated binding free energy could be very 

large.

3.4 Take-away lessons from SAMPL6 pKa Challenge

The SAMPL6 pKa Challenge showed that, in general, pKa prediction accuracy of 

computational methods is lower than expected for drug-like molecules. Our expectation 

prior to the blind challenge was that well-developed methods would achieve prediction 

errors as low was 0.5 pKa units, and make reliable predictions of dominant charge and 

tautomer states in solution. There are many factors that complicate predicting pKa values of 

drug-like molecules: multiple titratable sites, including tautomerization, frequent presence of 

heterocycles, and extended conjugation patterns, as well as high numbers of rotatable bonds 

and the possibility of intramolecular hydrogen bonds. Macroscopic pKa predictions have not 

yet reached experimental accuracy (where the inter-method variability of macroscopic pKa 

measurements is around 0.5 pKa units [23]). There was not a single method in the SAMPL6 

Challenge that achieved RMSE around 0.5 or lower for macroscopic pKa predictions for the 

24 molecule set of kinase inhibitor fragment-like molecules. Smaller RMSEs were observed 

in the microscopic pKa evaluation section of this study for some methods; however, the 8 

molecule set used for that analysis poses a very limited dataset to reach conclusions about 

general expectations for drug-like molecules.

As the majority of experimental data was in the form of macroscopic pKa values, we had to 

adopt a numerical matching algorithm (Hungarian matching) to pair predicted and 

experimental values to calculate performance statistics of macroscopic pKa predictions. 

Accuracy, correlation, and extra/missing pKa prediction counts were the main metrics for 

macroscopic pKa evaluations. An RMSE range of 0.7 to 3.2 pKa units was observed for all 

methods. Only five methods achieved RMSE between 0.7–1 pKa units, while an RMSE 

between 1.5–3 log units was observed for the majority of methods. All four methods of the 

LFER category and three out of 5 QSPR/ML methods achieved RMSE less than 1.5 pKa 
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units. All the QM methods that achieved this level of performance included linear empirical 

corrections to rescale and unbias their pKa predictions.

Based on the consideration of multiple error metrics, we compiled a shortlist of consistently-

well performing methods for macroscopic pKa evaluations. Two methods from QM+LEC 

methods, one QSPR/ML, two empirical methods achieved consistent performance according 

to many metrics. The common features of the two empirical methods were their large 

training sets (16000–17000 compounds) and commercial nature.

There were four submissions of QM-based methods that utilized the COSMO-RS implicit 

solvation model. While three of these achieved the lowest RMSE among QM-based methods 

(xvxzd, yqkga, and 8xt50) [46], one of them showed the highest RMSE (0hxtm 
(COSMOtherm_FINE17)). The comparison of these methods indicates that capturing the 

conformational ensemble of microstates, using high-level QM calculations, and including 

RRHO corrections contribute to better macroscopic pKa predictions. Linear empirical 

corrections applied QM calculations improved results, especially when the linear correction 

is calibrated for an experimental dataset using the same level of theory as the deprotonation 

free energy predictions (as in xvxzd). This challenge also points to the advantage of the 

COSMO-RS solvation approach compared to other implicit solvent models.

Molecules that posed greater difficulty for pKa predictions were determined by comparing 

the macroscopic pKa prediction accuracy of each molecule averaged over all methods 

submitted to the challenge. pKa prediction errors were higher for compounds with sulfur-

containing heterocycles, iodo, and bromo groups. This trend was also conserved when only 

QM-based methods were analyzed. The SAMPL6 pKa dataset consisted of only 24 small 

molecules which limited our ability to statistically confirm this conclusion, however, we 

believe it is worth reporting molecular features that coincided with larger errors even if we 

can not evaluate the reason for these failures.

Utilizing a numerical matching algorithm to pair experimental and predicted macroscopic 

pKa values was a necessity, however, this approach did not capture all aspects of prediction 

errors. Computing the number of missing or extra pKa predictions remaining after 

Hungarian matching provided a window for observing macroscopic pKa prediction errors 

such as the number of macroscopic transitions or ionization states expected in a pH interval. 

In pKa evaluation studies, it is typical to just focus on pKa value errors evaluated after 

matching and to ignore pKa prediction errors that the matching protocol can not capture 

[49-53]. Frequently ignored prediction errors include predicting missing or extra pKas and 

failing to predict the correct charge states. The SAMPL6 pKa Challenge results showed 

sporadic presence of missing pKa predictions and very frequent tendency to make extra pKa 

predictions. Both indicate failures to capture the correct ionization states. The traditional 

way of evaluating pKas that only focuses on the pKa value error after some sort of numerical 

match between predictions and experimental values may have motivated these types of 

errors as there would be no penalty for missing a macroscopic deprotonation and predicting 

an extra one. This problem does not seem to be specific to any method category.
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We used the eight molecule subset of SAMPL6 compounds with NMR-based dominant 

microstate sequence information to demonstrate the advantage of evaluating pKa prediction 

on the level of microstates. Comparison of statistics computed for the 8 molecule dataset by 

Hungarian matching and microstate-based matching showed how Hungarian matching, 

despite being the best choice when only numerical matching is possible, can still mask errors 

in pKa predictions. Errors computed by microstate-based matching were larger compared to 

numerical matching algorithms in terms of RMSE. Microscopic pKa analysis with numerical 

matching algorithms may mask errors due to the higher number of guesses made. Numerical 

matching based on pKa values also ignores information regarding the relative population of 

states. Therefore, it can lead to pKas defined between very low energy microstate pairs to be 

matched to the experimentally observable pKa between microstates of higher populations. 

Of course, the predicted pKa value could be correct however the predicted microstates would 

be wrong. Such mistakes caused by Hungarian matching were observed frequently in 

SAMPL6 results, and therefore we decided microstate-based matching of pKavalues 

provides a more realistic picture of method performance.

Some QM and LFER methods made mistakes in predicting the dominant tautomers of the 

ionization states. Dominant tautomer prediction seemed to be particularly difficult for 

charged tautomers compared with neutral tautomers. The easiest way to extract the dominant 

microstate sequence from predictions was to calculate the relative free energy of microstates 

at any reference pH, determining the lowest free energy state in each ionization state. Errors 

in dominant microstate predictions were very rare for neutral tautomers, but more frequent 

in cationic tautomers with +1 charge of the 8 molecule set. SM14 was the molecule with the 

lowest dominant microstate prediction accuracy, while dominant microstates predictions for 

SM15 were perfect for all molecules. SM14 and SM15 both possess two experimental pKas 

and a benzimidazole scaffold. The difference between them is the distance between the 

experimental pKa values, which is smaller for SM14. These results make sense from the 

perspective of relative free energies of microstates. Closer pKa values mean that the free 

energy difference between different microstates is smaller for SM14, and therefore any error 

in predicting the relative free energy of tautomers is more likely to cause reordering of 

relative populations of microstates and impact the accuracy of dominant microstate 

predictions. It would have been extremely informative to evaluate the tautomeric ratios and 

relative free energy predictions of microstates, however, the experimental data needed for 

this approach was not available. Tautomeric ratios could not be measured by the 

experimental methods available to us. Resolving tautomeric ratios would require extensive 

NMR measurements, but these measurements can suffer from lower accuracy especially 

when the free energy difference between tautomers is large.

The overall assessment of the SAMPL6 pKa Challenge captured non-stellar performance for 

microscopic and macroscopic pKa predictions which can be detrimental to the accuracy of 

protein-ligand affinity predictions and other pH-dependent physicochemical property 

predictions such as distribution coefficients, membrane permeability, and solubility. Protein-

ligand binding affinity predictions utilize pKa predictions in two ways: determination of the 

relevant aqueous microstates and quantification of the free energy penalty to reach these 

states. More accurate microscopic pKa predictions are needed to be able to accurately 
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incorporate multiple protonation state corrections (MPSC) into overall binding affinity 

calculations.

We simulated the effect of overestimating or underestimating pKa of a ligand by one unit on 

overall binding affinity prediction for a ligand where both cation and neutral states 

contribute to binding affinity. A pKa prediction error of this magnitude (assuming dominant 

tautomers were predicted correctly) could cause up to 0.9 and 1.2 kcal/mol error in overall 

binding affinity when the binding affinity of protonation states are 2 or 4 kcal/mol different, 

respectively. For the case of 4 kcal/mol binding affinity difference between protonation 

states, the pH-pKa range that the error would be larger than 0.5 kcal/mol surprisingly spans 

around 3.5 pH units. The worse case, of course, is where there is a significant difference in 

binding free energy between the two protonation states, but we include the wrong one in our 

free energy calcuation. We demonstrated that the range of pH-pKa value that the MPSC 

needs to be incorporated in binding affinity predictions can be wider than the widely 

assumed range of 2 pH units, based on the affinity difference between protonation states. At 

the level of 1 unit pKa error, incorporating the MPSC would improve binding affinity 

predictions more often than not. If the microscopic pKa could be predicted with 0.5 pKa 

units of accuracy, MPSC calculations would be much more reliable.

There are multiple factors to consider when deciding which pKa prediction method to 

utilize. These factors include the accuracy of microscopic and macroscopic pKa values, the 

accuracy of the number and the identity of ionization states predicted within the 

experimental pH interval, the accuracy of microstates predicted within the experimental pH 

interval, the accuracy of tautomeric ratio (i.e., relative free energy between microstates), how 

costly is the calculation in terms of time and resources, and whether one has access to 

software licenses that might be required.

All of the top-performing empirical methods were developed as commercial software that 

requires a license to run, and there were not any open-source alternatives for empirical pKa 

predictions. Since the completion of the blind challenge, two publications reported open-

source machine learning-based pKa prediction methods, however, one can only predict the 

most acidic or most basic macroscopic pKa values of a molecule [54] and the second one is 

only trained for predicting pKa values of monoprotic molecules [55]. Recently, a pKa 

prediction methodology was published that describes a mixed approach of semi-empirical 

QM calculations and machine learning that can predict macroscopic pKas of both mono- and 

polyprotic species [56]. The authors reported RMSE of 0.85 for the retrospective analysis 

performed on the SAMPL6 dataset.

3.5 Suggestions for future blind challenge design and evaluation of pKa predictions

This analysis helped us understand the current state of the field and led to many lessons 

informing future SAMPL challenges. We believe the greatest benefit can be achieved if 

further iterations of small molecule pKa prediction challenges can be organized, creating 

motivation for improving protonation state prediction methods for drug-like molecules. In 

future challenges, it is desirable to increase chemical diversity to cover more common 

scaffolds [57] and functional groups [58] seen in drug-like molecules, gradually increasing 

the complexity of molecules.
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Microscopic pKa measurements are needed for careful benchmarking of pKa 

predictions for multiprotic molecules.—Future challenges should promote stringent 

evaluation for pKa prediction methods from the perspective of microscopic pKa and 

microstate predictions. It is necessary to assess the capability of pKa prediction methods to 

capture the free energy profile of microstates of multiprotic molecules. This is critical 

because pKa predictions are often utilized to determine relevant protonation states and 

tautomers of small molecules that must be captured in other physical modeling approaches, 

such as protein-ligand binding affinity or distribution coefficient predictions. Different 

tautomers can have different binding affinities and partition coefficients.

In this paper, we demonstrated how experimental microstate information can guide the 

analysis further than the typical pKa evaluation approach that has been used so far. The 

traditional pKa evaluation approach focuses solely on the numerical error of the pKa values 

and neglects the difference between macroscopic and microscopic pKa definitions. This is 

mainly caused by the lack of pKa datasets with microscopic detail. To improve pKa and 

protonation state predictions for multiprotic molecules, it is necessary to embrace the 

difference between macroscopic and microscopic pKa definitions and select strategies for 

experimental data collection and prediction evaluation accordingly. In the SAMPL6 

Challenge, the analysis was limited by the availability of experimental microscopic data as 

well. As is usually the case, macroscopic pKa values were abundant (24 molecules) and 

limited data on microscopic states was available (8 molecules), although the latter opened 

new avenues for evaluation. For future blind challenges for multiprotic compounds, striving 

to collect experimental datasets with microscopic pKas would be very beneficial, despite the 

high cost of these measurements. Benchmark datasets of microscopic pKa values with 

assigned microstates are currently missing because experimental determination of these are 

much more expensive and time-consuming than macroscopic pKa measurements. This limits 

the ability to improve pKa and tautomer prediction methods for multiprotic molecules. If the 

collection of experimental microscopic pKas is not possible due to time and resource costs 

of such NMR experiments, at least supplementing the more automated macroscopic pKa 

measurements with NMR-based determination of the dominant microstate sequence or 

tautomeric ratios of each ionization state can create very useful benchmark datasets. This 

supplementary information can allow microstate-based assignment of experimental to 

predicted pKa values and a more realistic assessment of method performance.

Evaluation strategy for pKa predictions must be determined based on the 
nature of experimental pKa measurements available.—If the only available 

experimental data is in the form of macroscopic pKa values, the best way to evaluate 

computational predictions is by calculating predicted macroscopic pKa from microscopic 

pKa predictions. With the conversion of microscopic pKa to macroscopic pKas, all structural 

information about the titration site is lost, and the only remaining information is the total 

charge of macroscopic ionization states. Unfortunately, most macroscopic pKa 

measurements—including potentiometric and spectrophotometric methods—do not capture 

the absolute charge of the macrostates. The spectrophotometric method does not measure 

charge at all. The potentiometric method can only capture the relative charge changes 

between macrostates. Only pH-dependent solubility-based pKa estimations can differentiate 
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neutral and charged states from one another. It is, therefore, very common to have 

experimental datasets of macroscopic pKa without any charge or protonation position 

information regarding the macrostates. This causes an issue of assigning predicted and 

experimental pKa values before any error statistics can be calculated.

As delineated by Fraczkiewicz [23], the fairest and most reasonable solution for the pKa 

matching problem involves an assignment algorithm that preserves the order of predicted 

and experimental microstates and uses the principle of smallest differences to pair values. 

We recommend Hungarian matching with a squared-error penalty function. The algorithm is 

available in SciPy package (scipy.optimize.linear_sum_assignment) [35]. In addition to the 

analysis of numerical error statistics following Hungarian matching, at the very least, the 

number of missing and extra pKa predictions must be reported based on unmatched pKa 

values. Missing or extra pKa predictions point to a problem with capturing the right number 

of ionization states within the pH interval of the experimental measurements. We have 

demonstrated that for microscopic pKa predictions, performance analysis based on 

Hungarian matching results in overly optimistic and misleading results—instead the 

employed microstate-based matching provided a more realistic assessment when microstate 

data is available.

Lessons from the first pKa blind challenge will guide future decisions on 
challenge rules, prediction reporting formats, and challenge inputs.—We 

solicited three different submission types in SAMPL6 to capture all the necessary 

information related to pKa predictions. These were (1) macroscopic pKa values, (2) 

microscopic pKa values and microstate pair identities, and (3) fractional population of 

microstates with respect to pH. We realized later that collecting fractional populations of 

microstates was redundant since microscopic pKa values and microstate pairs capture all the 

necessary information to construct fractional population vs. pH curves [26]. Only 

microscopic and macroscopic pKa values were used for the challenge analysis presented in 

this paper.

While exploring ways to evaluate SAMPL6 pKa Challenge results, we developed a better 

way to capture microscopic pKa predictions, as presented in Gunner et al. [26]. This 

alternative reporting format consists of reporting the charge and relative free energy of 

microstates with respect to an arbitrary reference microstate and pH. This approach presents 

the most concise method of capturing all necessary information regarding microscopic pKa 

predictions and allows calculation of predicted microscopic pKas, microstate population 

with respect to pH, macroscopic pKa values, macroscopic population with respect to pH, and 

tautomer ratios. Still, there may be methods developed to predict macroscopic pKas directly 

instead of computing them from microstate predictions that justifies allowing a macroscopic 

pKa reporting format. In future challenges, we recommend collecting pKa predictions with 

two submission types: (1) macroscopic pKa values together with the charges of the 

macrostates and (2) microstates, their total charge, and relative free energies with respect to 

a specified reference microstate and pH. This approach is being used in SAMPL7.

In SAMPL6, we provided an enumerated list of microstates and their assigned microstate 

IDs because we were worried about parsing submitted microstates in SMILES from different 
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sources correctly. There were two disadvantages to this approach. First, this list of 

enumerated microstates was used as input by some participants which was not our intention. 

(Challenge instructions requested that predictions should not rely on these microstate lists 

and only use them for matching microstate IDs.) Second, the first iteration of enumerated 

microstates was not complete. We had to add new microstates and assign them microstate 

IDs for a couple of rounds until reaching a complete list. In future challenges, a better way 

of handling the problem of capturing predicted microstates would be asking participants to 

specify the predicted protonation states themselves and assigning identifiers after the 

challenge deadline to aid comparative analysis. This would prevent the partial unblinding of 

protonation states and allow the assessment of whether methods can predict all the relevant 

states independently, without relying on a provided list of microstates. Predicted states can 

be submitted as mol2 files that represent the microstate with explicit hydrogens. The 

organizers must only provide the microstate that was selected as the reference state for the 

relative microstate free energy calculations.

In the SAMPL6 pKa Challenge, there was not a requirement that participants should report 

predictions for all compounds. Some participants reported predictions for only a subset of 

compounds, which may have led these methods to look more accurate than others due to 

missing predictions. In the future, it will be better to allow submissions of only complete 

sets for a better comparison of method performance.

A wide range of methods participated in the SAMPL6 pKa Challenge—from very fast QSPR 

methods to QM methods with a high-level of theory and extensive exploration of 

conformational ensembles. In the future, it would be interesting to capture computing costs 

in terms of average compute hours per molecule. This can provide guidance to future users 

of pKa prediction methods for selection of which method to use.

It is advantageous to field associated challenges with common set of 
molecules for different physicochemical properties.—Future blind challenges can 

maximize learning opportunities by evaluating predictions of different physicochemical 

properties for the same molecules in consecutive challenges. In SAMPL6, we organized 

both pKa and log P challenges. Unfortunately only a subset of compounds in the pKa 

datasets were suitable for the potentiometric log P measurements [8]. Still, comparing 

prediction performance of common compounds in both challenges can lead to beneficial 

insights especially for physical modeling techniques if there are common aspects that are 

beneficial or detrimental to prediction performance. For example, in SAMPL6 pKa and log P 
Challenges COSMO-RS and EC-RISM solvation models achieved good performance. 

Having access to a variety of physicochemical property measurements can also help the 

identification of error sources. For example, dominant microstates determined for pKa 

challenge can provide information to check if correct tautomers are modeling in a log P or 

log D challenge. pKa prediction is a requirement for log D prediction and experimental pKa 

values can help diagnosing the source of errors in log D predictions better. The physical 

challenges in SAMPL7, for which the blind portion of the challenges have just concluded on 

October 8th, 2020, follow this principle and include both pKa, log P, and membrane 

permeability properties for a set of monoprotic compounds. We hope that future pKa 
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challenges can focus on multiprotic drug-like compounds with microscopic pKa 

measurements for an in-depth analysis.

4 Conclusion

The first SAMPL6 pKa Challenge focused on molecules resembling fragments of kinase 

inhibitors, and was intended to assess the performance of pKa predictions for drug-like 

molecules. With wide participation, we had an opportunity to prospectively evaluate pKa 

predictions spanning various empirical and QM based approaches. In addition to community 

participants, a small number of popular pKa prediction methods that were missing from 

blind submissions were added as reference calculations after the challenge deadline.

Practical experimental limitations restricted the overall size and microscopic information 

available for the blind challenge dataset [8]. The experimental dataset consisted of 

spectrophotometric measurements of 24 molecules, some of which were multiprotic. For a 

subset of molecules there was also NMR data to inform the dominant microstate sequence, 

though microscopic pKa measurements were not performed. We conducted a comparative 

analysis of methods represented in the blind challenge in terms of both macroscopic and 

microscopic pKa prediction performance avoiding any assumptions about the interpretation 

of experimental pKas.

Here, we used Hungarian matching to assign predicted and experimental values for the 

calculation of accuracy and correlation statistics, because the majority of experimental data 

was macroscopic pKa values. In addition to evaluating error in predicted pKa values, we also 

reported the macroscopic pKa errors that were not captured by the match between 

experimental and predicted pKa values. These were extra or missing pKa predictions which 

are important indicators that predictions are failing to capture the correct ionization states.

We evaluated microscopic pKa predictions utilizing the experimental dominant microstate 

sequence data of eight molecules. This experimental data allowed us to use microstate-based 

matching for evaluating the accuracy of microscopic pKa values in a more realistic way. We 

have determined that QM and LFER predictions had lower accuracy in determining the 

dominant tautomer of the charged microstates than the neutral states. For both macroscopic 

and microscopic pKa predictions we have determined methods that were consistently well-

performing according to multiple statistical metrics. Focusing on the comparison of 

molecules instead of methods for macroscopic pKa prediction accuracy indicated molecules 

with sulfur-containing heterocycles, iodo, and bromo groups suffered from lower pKa 

prediction accuracy.

The overall performance of pKa predictions as captured in this challenge is concerning for 

the application of pKa prediction methods in computer-aided drug design. Many 

computational methods for predicting target affinities and physicochemical properties rely 

on pKa predictions for determining relevant protonation states and the free energy penalty of 

such states. 1 unit of pKa error is an optimistic estimate of current macroscopic pKa 

predictions for drug-like molecules based on SAMPL6 Challenge where errors in predicting 

the correct number of ionization states or determining the correct dominant microstate were 
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also common to many methods. In the absence of other sources of errors, we showed that 1 

unit over- or underestimation of the pKa of a ligand can cause significant errors in the overall 

binding affinity calculation due to errors in multiple protonation state correction factor.

The SAMPL6 GitHub Repository contains all information regarding the challenge structure, 

experimental data, blind prediction submission sets, and evaluation of methods. The 

repository will be useful for future follow up analysis and the experimental measurements 

can continue to serve as a benchmark dataset for testing methods.

In this article, we aimed to demonstrate not only the comparative analysis of the pKa 

prediction performance of contemporary methods for drug-like molecules, but also to 

propose a stringent pKa prediction evaluation strategy that takes into account differences in 

microscopic and macroscopic pKa definitions. We hope that this study will guide and 

motivate further improvement of pKa prediction methods.

5 Code and data availability

• SAMPL6 pKa challenge instructions, submissions, experimental data and 

analysis is available at SAMPL6 GitHub Repository: https://github.com/

samplchallenges/SAMPL6

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands

pKa −log10 of the acid dissociation equilibrium constant

log P log10 of the organic solvent-water partition coefficient (Kow) of 

neutral species
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log D log10 of organic solvent-water distribution coefficient (Dow)

SEM Standard error of the mean

RMSE Root mean squared error

MAE Mean absolute error

τ Kendall’s rank correlation coefficient (Tau)

R2 Coefficient of determination (R-Squared)

MPSC Multiple protonation states correction for binding free energy

DL Database Lookup

LFER Linear Free Energy Relationship

QSPR Quantitative Structure-Property Relationship

ML Machine Learning

QM Quantum Mechanics

LEC Linear Empirical Correction
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Figure 1. Distribution of molecular properties of the 24 compounds from the SAMPL6 pKa 
Challenge.
A Histogram of spectrophotometric pKa measurements collected with Sirius T3 [8]. The 

overlaid rug plot indicates the actual values. Five compounds have multiple measured pKas 

in the range of 2–12. B Histogram of molecular weights calculated for the neutral state of 

the compounds in SAMPL6 set. Molecular weights were calculated by neglecting 

counterions. C Histogram of the number of non-terminal rotatable bonds in each molecule. 

D The histogram of the ratio of heteroatom (non-carbon heavy atoms including, O, N, F, S, 

Cl, Br, I) count to the number of carbon atoms.
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Figure 2. RMSE and unmatched pKa counts vs. submission ID plots for macroscopic pKa 
predictions based on Hungarian matching.
Methods are indicated by submission IDs. RMSE is shown with error bars denoting 95% 

confidence intervals obtained by bootstrapping over challenge molecules. Submissions are 

colored by their method categories. Light blue colored database lookup methods are utilized 

as the null prediction method. QM methods category (navy) includes pure QM, QM+LEC, 

and QM+MM approaches. Lower bar plots show the number of unmatched experimental 

pKa values (light grey, missing predictions) and the number of unmatched pKa predictions 

(dark grey, extra predictions) for each method between pH 2 and 12. Submission IDs are 

summarized in Table 1. Submission IDs of the form nb### refer to non-blinded reference 

methods computed after the blind challenge submission deadline. All others refer to blind, 

prospective predictions.

Işık et al. Page 41

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Additional performance statistics for macroscopic pKa predictions based on Hungarian 
matching.
Methods are indicated by submission IDs. Mean absolute error (MAE), mean error (ME), 

Pearson’s R2, and Kendall’s Rank Correlation Coefficient Tau (τ) are shown, with error bars 

denoting 95% confidence intervals were obtained by bootstrapping over challenge 

molecules. Refer to Table 1 for the submission IDs and method names. Submissions are 

colored by their method categories. Light blue colored database lookup methods are utilized 

as the null prediction method.
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Figure 4. Predicted vs. experimental macroscopic pKa prediction for four consistently well-
performing methods, a representative method with average performance (2ii2g), and the null 
method (5nm4j).
When submissions were ranked according to RMSE, MAE, R2, and τ, four methods ranked 

in the Top 10 consistently in each of these metrics. Dark and light green shaded areas 

indicate 0.5 and 1.0 units of error. Error bars indicate standard error of the mean of predicted 

and experimental values. Experimental pKa SEM values are too small to be seen under the 

data points. EC-RISM/MP2/cc-pVTZ-P2-q-noThiols-2par method (2ii2g) was selected as 

the representative method with average performance because it is the method with the 

highest RMSE below the median.
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Figure 5. Molecules from the SAMPL6 Challenge with MAE calculated for all macroscopic pKa 
predictions.
The MAE calculated over all prediction methods indicates which molecules had the lowest 

prediction accuracy in the SAMPL6 Challenge. MAE values calculated for each molecule 

include all the matched pKa values. SM06, SM14, SM15, SM16, SM18, and SM22 were 

multiprotic. Hungarian matching algorithm was employed for pairing experimental and 

predicted pKa values. MAE values are reported with 95% confidence intervals.
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Figure 6. Average prediction accuracy calculated over all prediction methods was poorer for 
molecules with sulfur-containing heterocycles, bromo, and iodo groups.
(A) MAE calculated for each molecule as an average of all methods. (B) MAE of each 

molecule broken out by method category. QM-based methods (blue) include QM predictions 

with or without linear empirical correction. Empirical methods (green) include QSAR, ML, 

DL, and LFER approaches. (C) Depiction of SAMPL6 molecules with sulfur-containing 

heterocycles. (D) Depiction of SAMPL6 molecules with iodo and bromo groups.
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Figure 7. Macroscopic pKa prediction error distribution plots show how prediction accuracy 
varies across methods and individual molecules.
(A) pKa prediction error distribution for each submission for all molecules according to 

Hungarian matching. (B) Error distribution for each SAMPL6 molecule for all prediction 

methods according to Hungarian matching. For multiprotic molecules, pKa ID numbers 

(pKa1, pKa2, and pKa3) were assigned in the direction of increasing experimental pKa 

value.
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Figure 8. NMR determination of dominant microstates allowed in-depth evaluation of 
microscopic pKa predictions for 8 compounds.
A Dominant microstate sequence of two compounds (SM07 and SM14) were determined by 

NMR [8]. Based on these reference compounds, the dominant microstates of 6 related 

compounds were inferred and experimental pKa values were assigned to titratable groups 

with the assumption that only the dominant microstates have significant contributions to the 

experimentally observed pKa. B RMSE vs. submission ID and unmatched pKa vs. 

submission ID plots for the evaluation of microscopic pKa predictions of 8 molecules by 

Hungarian matching to experimental macroscopic pKa values. C RMSE vs. submission ID 

and unmatched pKa vs. submission ID plots showing the evaluation of microscopic pKa 
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predictions of 8 molecules by microstate-based matching between predicted microscopic 

pKas and experimental macroscopic pKa values. Submissions 0wfzo, z3btx, 758j8, and 

hgn83 have RMSE values bigger than 10 pKa units which are beyond the y-axis limits of 

subplot C and B. RMSE is shown with error bars denoting 95% confidence intervals 

obtained by bootstrapping over the challenge molecules. Lower bar plots show the number 

of unmatched experimental pKas (light grey, missing predictions) and the number of 

unmatched pKa predictions (dark grey, extra predictions) for each method between pH 2 and 

12. Submission IDs are summarized in Table 1.
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Figure 9. Additional performance statistics for microscopic pKa predictions for 8 molecules with 
experimentally determined dominant microstates.
Microstate-based matching was performed between experimental pKa values and predicted 

microscopic pKa values. Mean absolute error (MAE), mean error (ME), Pearson’s R2, and 

Kendall’s Rank Correlation Coefficient Tau (τ) are shown, with error bars denoting 95% 

confidence intervals obtained by bootstrapping over challenge molecules. Methods are 

indicated by their submission IDs. Submissions are colored by their method categories. 

Refer to Table 1 for submission IDs and method names. Submissions 0wfzo, z3btx, 758j8, 

and hgn83 have MAE and ME values bigger than 10 pKa units which are beyond the y-axis 

limits of subplots A and B. A large number and wide variety of methods have statistically 

indistinguishable performance based on correlation statistics (C and D), in part because of 

the relatively small dynamic range and small size of the set of 8 molecules.
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Figure 10. Some methods predicted the sequence of dominant tautomers inaccurately.
Prediction accuracy of the dominant microstate of each charged state was calculated using 

the dominant microstate sequence determined by NMR for 8 molecules as reference. (A) 
Dominant microstate accuracy vs. submission ID plot was calculated considering all the 

dominant microstates seen in the experimental microstate dataset of 8 molecules. (B) 
Dominant microstate accuracy vs. submission ID plot was generating considering only the 

dominant microstates of charge 0 and +1 seen in the 8 molecule dataset. The accuracy of 

each molecule is broken out by the total charge of the microstate. (C) Dominant microstate 

prediction accuracy calculated for each molecule averaged over all methods. In (B) and (C), 
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the accuracy of predicting the dominant neutral tautomer is shown in blue and the accuracy 

of predicting the dominant +1 charged tautomer is shown in green. Error bars denoting 95% 

confidence intervals obtained by bootstrapping.
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Figure 11. Aqueous ligand pKa can influence overall protein-ligand binding affinity.
A When only the minor aqueous protonation state contributes to protein-ligand complex 

formation, the overall binding free energy (ΔGbind) needs to be calculated as the sum of 

binding affinity of the minor state and the protonation penalty of that state. B When multiple 

charge states contribute to complex formation, the overall free energy of binding includes a 

multiple protonation states correction (MPSC) term (ΔGcorr). MPSC is a function of pH, 

aqueous pKa of the ligand, and the difference between the binding free energy of charged 

and neutral species (ΔGbind
C − ΔGbind

N ).
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Figure 12. Inaccuracy of pKa prediction (± 1 unit) affects the the accuracy of MPSC and overall 
protein-ligand binding free energy calculations to varying degrees based on aqueous pKa and 
relative binding affinity of individual protonation states ΔΔG = ΔGbind

C − ΔGbind
N ).

All calculations are made for 25°C, and a ligand with a single basic titratable group. A, C, 
E, and G show MPSC (ΔGcorr) calculated with true vs. inaccurate pKa. B, D, F, and H show 

the comparison of the absolute error to ΔGbind caused by ignoring the MPSC completely 

(solid lines) vs. calculating MPSC based in inaccurate pKa value (dashed lines). These plots 

provide guidance on when it is beneficial to include MPSC correction based on pKa error, 

pH - pKa, and ΔΔG.
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Table 1.
Submission IDs, names, category, and type for all the pKa prediction sets.

Reference calculations are labeled as nb###. The method name column lists the names provided by each 

participant in the submission file. The “type” column indicates if a submission was or a post-deadline 

reference calculation, denoted by “Blind” or “Reference” respectively. The methods in the table are grouped 

by method category and not ordered by performance.

Method
Category Method

Microscopic 
pKa
(Type I)
Submission ID

Macroscopic 
pKa
(Type III)
Submission ID

Submission
Type Ref.

DL Substructure matches to experimental data in pKa OpenEye pKa 
Prospector Database v1.0 5nm4j Null [36]

DL OpenEye pKa-Prospector 1.0.0.3 with Analog Search ion 
identification algorithm pwn3m Null [36]

LFER ACD/pKa GALAS (ACD/Percepta Kernel v1.6) v8qph 37xm8 Blind [37]

LFER ACD/pKa Classic (ACD/Percepta Kernel, v1.6) xmyhm Blind [38]

LFER Epik Scan (Schrödinger v2017-4) nb007 Reference [30]

LFER Epik Microscopic (Schrödinger v2017-4) nb008 nb010 Reference [30]

QSPR/ML OpenEye Gaussian Process 6tvf8 hytjn Blind [12]

QSPR/ML OpenEye Gaussian Process Resampled q3pfp Blind [12]

QSPR/ML S+pKa (ADMET Predictor v8.5, Simulations Plus) hdiyq gyuhx Blind [24]

QSPR/ML Chemicalize v18.23 (ChemAxon MarvinSketch v18.23) nb015 Reference [39]

QSPR/ML MoKa v3.1.3 nb016 nb017 Reference [22, 
40]

QM

Adiabatic scheme with single point correction: SMD/M06-2X//
6-311++G(d,p)//M06-2X/6-31+G(d) for bases and SMD/
M06-2X//6-311++G(d,p)//M06-2X/6-31G(d) for acids + thermal 
corrections

ko8yx ryzue Blind [41]

QM

Direct scheme with single point correction: SMD/M06-2X//
6-311++G(d,p)//M06-2X/6-31+G(d) for bases and SMD/
M06-2X//6-311++G(d,p)//M06-2X/6-31G(d) for acids + thermal 
corrections

w4z0e xikp8 Blind [41]

QM

Adiabatic scheme: thermodynamic cycle that uses gas phase 
optimized structures for gas phase free energy and solution 
phase geometries for solvent phase free energy. SMD/M06-2X/
6-31+G(d) for bases and SMD/M06-2X/6-31G(d) for acids + 
thermal corrections

wcvnu 5byn6 Blind [41]

QM

Vertical scheme: thermodynamic cycle that uses only gas phase 
optimized structures to compute gas hase and solvation free 
energy. SMD/M06-2X/6-31+G(d) for bases and SMD/M06-2X/
6-31G(d) for acids + Thermal corrections

arcko w4iyd Blind [41]

QM

Direct scheme: solution phase free energy is determined by 
solution phase geometries without thermodynamic cycle SMD/
M06-2X/6-31+G(d) for bases and SMD/M06-2X/6-31G(d) for 
acids + thermal corrections

wexjs y75vj Blind [41]

QM + LEC Jaguar (Schrödinger v2017-4) nb011 nb013 Reference [42]

QM + LEC CPCM/B3LYP/6-311+G(d,p) and global fitting y4wws 35bdm Blind [10]

QM + LEC CPCM/B3LYP/6-311+G(d,p) and separate fitting for neutral to 
negative and for positive to neutral transformations qsicn p0jba Blind [10]

QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-q-noThiols-2par kxztt ds62k Blind [43]

QM + LEC EC-RISM/MP2/cc-pVTZ-P2-q-noThiols-2par ftc8w 2ii2g Blind [43]

QM + LEC EC-RISM/MP2/6-311+G(d,p)-P2-phi-all-2par ktpj5 nb001 Blind* [43]
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Method
Category Method

Microscopic 
pKa
(Type I)
Submission ID

Macroscopic 
pKa
(Type III)
Submission ID

Submission
Type Ref.

QM + LEC EC-RISM/MP2/6-311+G(d,p)-P2-phi-noThiols-2par wuuvc nb002 Blind* [43]

QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-phi-all-2par 2umai nb003 Blind* [43]

QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-phi-noThiols-2par cm2yq nb004 Blind* [43]

QM + LEC EC-RISM/MP2/6-311+G(d,p)-P2-phi-all-1par z7fhp nb005 Blind* [43]

QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-phi-all-1par 8toyp nb006 Blind* [43]

QM + LEC EC-RISM/MP2/cc-pVTZ-P2-phi-noThiols-2par epvmk ttjd0 Blind [43]

QM + LEC EC-RISM/MP2/cc-pVTZ-P2-phi-all-2par xnoe0 mkhqa Blind [43]

QM + LEC EC-RISM/MP2/cc-pVTZ-P3NI-phi-noThiols-2par 4o0ia mpwiy Blind [43]

QM + LEC EC-RISM/B3LYP/6-311+G(d,p)-P3NI-q-noThiols-2par nxaaw ad5pu Blind [43]

QM + LEC EC-RISM/B3LYP/6-311+G(d,p)-P3NI-phi-noThiols-2par 0xi4b f0gew Blind [43]

QM + LEC EC-RISM/B3LYP/6-311+G(d,p)-P2-phi-noThiols-2par cywyk np6b4 Blind [43]

QM + LEC PCM/B3LYP/6-311+G(d,p) gdqeg yc70m Blind [43]

QM + LEC COSMOtherm_FINE17 (COSMOtherm C30_1701, BP/
TZVPD/FINE//BP/TZVP/COSMO) t8ewk 0hxtm Blind [44, 

45]

QM + LEC
DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS] + 
RRHO(GFN-xTB[GBSA]) + Gsolv(COSMO-RS[TZVPD]) and 
linear fit

xvxzd Blind [46]

QM + LEC

ReSCoSS conformations // DSD-BLYP-D3 reranking// 
COSMOtherm pKa: DSD-BLYP-D3(BJ)/def2-TZVPD// PBE-
D3(BJ)/def2-TZVP/COSMO + RRHO[GFN-xTB + GBSA-
water] + Gsolv[COSMO-RS(FINE17/TZVPD)] level and 
COSMOtherm pKa applied at the single conformer pair level 
(COSMOthermX17.0.5 release and BP-TZVPD-FINE-
C30-1701 parameterization) ReSCoSS conformations // 
COSMOtherm pKa: DSD-BLYP-D3(BJ)/def2-TZVPD// PBE-
D3(BJ)/def2-TZVP/COSMO + RRHO[GFN-xTB + GBSA-
water] + Gsolv[COSMO-RS(FINE17/TZVPD)]

eyetm 8xt50 Blind [46]

QM + LEC

ReSCoSS conformations // COSMOtherm pKa: DSD-BLYP-
D3(BJ)/def2-TZVPD// PBE-D3(BJ)/def2-TZVP/COSMO + 
RRHO[GFN-xTB + GBSA-water] + Gsolv[COSMO-
RS(FINE17/TZVPD)] level and COSMOtherm pKa was applied 
directly on the resulting conformer sets with at least 5% 
Boltzmann weights for each microspecies 
(COSMOthermX17.0.5 release and BP-TZVPD-FINE-
C30-1701 parameterization)

ccpmw yqkga Blind [46]

QM + MM
M06-2X/6-31G*(for bases) or 6-31+G*(for acids) for gas phase, 
solvation free energy using TI with explicit solvent and GAFF, 
solvation free energy of proton −265.6 kcal/mol

0wfzo Blind [47]

QM + MM
M06-2X/6-31G*(for bases) or 6-31+G*(for acids) for gas phase, 
solvation free energy using TI with explicit solvent and GAFF, 
solvation free energy of proton −271.88 kcal/mol

z3btx Blind

QM + MM

M06-2X/6-31G*(for bases) or 6-31+G*(for acids) + thermal 
state correction for gas phase, solvation free energy using TI 
with explicit solvent and GAFF, solvation free energy of proton 
−265.6 kcal/mol

758j8 Blind

QM + MM

M06-2X/6-31G*(for bases) or 6-31+G*(for acids) + thermal 
state correction for gas phase, solvation free energy using TI 
with explicit solvent and GAFF, solvation free energy of proton 
−271.88 kcal/mol

hgn83 Blind

*
Microscopic pKa submissions were blind, however, participant requested a correction after blind submission deadline for macroscopic pKa 

submissions. Therefore, these were assigned submission IDs in the form of nb###.
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Table 2.
Four consistently well-performing prediction methods for macroscopic pKa prediction 

based on consistent ranking within the Top 10 according to various statistical metrics.

Submissions were ranked according to RMSE, MAE, R2, and τ. Consistently well-performing methods were 

selected as the ones that rank in the Top 10 in each of these statistical metrics. These methods also have less 

than 2 unmatched experimental pKas and less than 7 unmatched predicted pKas according to Hungarian 

matching. Performance statistics are provided as mean and 95% confidence intervals.

Submission 
ID Method Name RMSE MAE R2 Kendall’s Tau

(τ)

Unmatched 
Exp.
pKa Count

Unmatched 
Pred.
pKa Count [2, 
12]

xvxzd

Full quantum chemical 
calculation of free 
energies and fit to 
experimental pKa

0.68 [0.54, 
0.81]

0.58 
[0.45, 
0.71]

0.94 
[0.88, 
0.97]

0.82 [0.68, 
0.92] 2 4

gyuhx S+pKa 0.73 [0.55, 
0.91]

0.59 
[0.44, 
0.74]

0.93 
[0.88, 
0.96]

0.88 [0.8, 0.94] 0 7

xmyhm ACD/pKa Classic 0.79 [0.52, 
1.03]

0.56 
[0.38, 
0.77]

0.92 
[0.85, 
0.97]

0.81 [0.68, 0.9] 0 3

8xt50

ReSCoSS 
conformations // DSD-
BLYP-D3 reranking // 
COSMOtherm pKa

1.07 [0.78, 
1.36]

0.81 
[0.58, 
1.07]

0.91 
[0.84, 
0.95]

0.80 [0.68, 
0.89] 0 0
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Table 3.
Top-performing methods for microscopic pKa predictions based on consistent ranking 

within the Top 10 according to various statistical metrics calculated for 8 molecule 
dataset.

Performance statistics are provided as mean and 95% confidence intervals. Submissions that rank in the Top 

10 according to RMSE and MAE and have perfect dominant microstate prediction accuracy were selected as 

consistently well-performing methods. Correlation-based statistics (R2, and Kendall’s Tau), although reported 

in the table, were excluded from the statistics used for determining top-performing methods. This was because 

correlation-based statistics were not very discriminating due to the narrow dynamic range and the small 

number of data points in the 8 molecule dataset with NMR-determined dominant microstates.

Submission
ID Method Name

Dominant
Microstate
Accuracy

RMSE MAE R2 Kendall’s 
Tau

Unmatched
Exp. pKa
Count

Unmatched
Pred. pKa
Count [2,12]

nb016 MoKa 1.0 [1.0, 1.0] 0.52 [0.25, 
0.71]

0.43 
[0.23, 
0.65]

0.92 
[0.05, 
0.99]

0.62 [−0.14, 
1.00] 0 3

hdiyq S+pKa 1.0 [1.0, 1.0] 0.68 [0.49, 
0.83]

0.60 
[0.39, 
0.80]

0.86 
[0.47, 
0.98]

0.78 [0.40, 
1.00] 0 16

nb011 Jaguar 1.0 [1.0, 1.0] 0.72 [0.35, 
1.07]

0.54 
[0.28, 
0.86]

0.86 
[0.18, 
0.98]

0.64 [0.26, 
0.95] 0 36

6tvf8 OE Gaussian 
Process 1.0 [1.0, 1.0] 0.76 [0.55, 

0.95]

0.68 
[0.46, 
0.90]

0.92 
[0.78, 
0.99]

0.87 [0.6, 
1.00] 0 55

0xi4b

EC-RISM/B3LYP/
6-311+G(d,p)-
P3NI-phi-
noThiols-2par

1.0 [1.0, 1.0] 1.15 [0.75, 
1.50]

0.98 
[0.63, 
1.36]

0.77 
[0.02, 
0.98]

0.51 [−0.14, 
1.00] 0 33

cywyk
EC-RISM/B3LYP/
6-311+G(d,p)-P2-
phi-noThiols-2par

1.0 [1.0, 1.0] 1.17 [0.88, 
1.41]

1.06 
[0.74, 
1.35]

0.73 
[0.02, 
0.98]

0.56 [−0.08, 
1.00] 0 36
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