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Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis 
in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or 
mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprout-
ing. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogen-
esis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to 
maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during 
tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular 
growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular 
cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and 
senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a 
diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies 
in cardiovascular regenerative medicine.
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Introduction

In mammalian cells, highly complex and regulated processes 
involving a plethora of signals monitor the initiation, sus-
tainment, and termination of cell division and migration. 
Due to its importance for tissue development, maintenance, 
and regeneration, several molecular mechanisms and check-
points exist to regulate and balance these two morphogenetic 
processes. Through the regulation of cellular proliferation, 
the building blocks of a tissue are formed, while migration 
is essential to distribute those blocks in space, to give a tis-
sue its ultimate shape and function. It is often difficult to 
dissociate the effect of genes or pathways on cell prolifera-
tion versus cell sprouting or migration in vivo. As a simple 
example, if the migration of cells towards a given growth 
factor niche is inhibited, proliferation will be indirectly also 

affected, since the cells will not be able to occupy areas of 
high growth factor bioavailability. On the other hand, if pro-
liferation and formation of tissue building blocks are com-
promised, there will not be enough cells to move towards 
growth or chemotactic factors. A separate analysis of pro-
liferation, sprouting, and migration is particularly necessary 
when studying the coordinated growth of blood vessels as 
certain cells of a growing vascular network fulfill one but 
not the other task. Most genetic studies so far simply assign 
a pro or anti-angiogenic function to a given gene or path-
way. They suggest that genetic pathways either promote or 
inhibit both proliferation and sprouting of endothelial cells 
(ECs) [1–3]. This is either because most genes co-regulate 
in a similar fashion endothelial proliferation and sprouting, 
or they target mainly one of the two processes, but end up 
causing a similar deregulation of the other. However, several 
recent and higher resolution studies are proposing the exist-
ence of pathological situations or molecular mechanisms 
that when activated induce opposing proliferative and migra-
tory cellular responses [4–7]. These can be mechanisms that 
when activated induce sprouting and cell migration at the 
same time as they block proliferation and vice versa. Besides 
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a simplistic positive or negative role of specific molecular 
mechanisms on angiogenesis, it is also becoming clear that 
certain molecular mechanisms may have important roles 
only in some vascular development and disease contexts, 
and their effect is dose-dependent. Mechanisms that at low 
functional doses promote angiogenesis may be inhibitory at 
high doses and vice versa [6, 8]. Also, genes that can induce 
quiescence and vascular maturation when growth factor bio-
availability is low or blood flow increases may be essential to 
sustain active angiogenesis when the vascular niche is high 
on growth factors and blood perfusion is lower. Vascular 
disease or aging, or the forced induction of angiogenesis and 
cell proliferation, may also induce replicative senescence, 
DNA-damage-induced senescence, or stress-induced senes-
cence [9, 10].

Understanding how cell-type or cell-status-dependent 
gene function modifiers work in vivo and how they tem-
porally intersect and modify a given genetic pathway func-
tion will be critical to overcome the failure of anti or pro-
angiogenesis trials. It may also allow us to understand how 
mutations in certain genes lead to very different vascular 
malformations depending on the timing or vascular tissue 
in which they are identified [11–13]. Here, we will review 
some of the most basic and updated insights on the biol-
ogy of ECs and discuss how those findings can be used to 
improve current therapies involving the inhibition or stimu-
lation of blood vessel growth.

Angiogenesis translational research

Angiogenesis research began with the first description 
of blood vessel growth in the late eighteenth century and 
received considerable attention in several observational 
studies later in the first half of the nineteenth century [14]. 
Approximately 75 years ago, experimental studies of mouse 
blood vessel growth during wound healing and tumor growth 
have sparked the idea that a secreted stimulating growth fac-
tor may be involved or even responsible for this process [15]. 
The authors furthermore hypothesized that tumor cells pro-
duce a putative factor of different quantity or quality than 
normal cells to accelerate vascular growth. Based on this 
theory, it was proposed that tumor and the corresponding 
blood vessel growth are interdependent processes, and tar-
geting one mechanism would inevitably affect the other [16]. 
The cloning and biochemical characterization of a potent 
and specific human Vascular Permeability Factor or Vas-
cular Endothelial Growth Factor-A (further named VEGF) 
then paved the way for the development of pharmacologi-
cal compounds and therapies modulating angiogenesis with 
high specificity in a variety of human diseases [17]. The 
indispensable role of VEGF for vascular biology was later 
shown in multiple genetic studies conducted 25 years ago. 

These studies have shown that the deletion of a single Vegf 
gene allele or its main receptor (Vegfr2) caused the prema-
ture death of mouse embryos due to severe defects in vas-
cular development [18–20]. Inhibition of VEGF signaling 
also significantly impaired vascular and tumor growth in 
mice [19, 21]. These results proved that the initial concept of 
VEGF being a key regulator of vascular tumor growth inter-
dependence was correct. These revolutionary discoveries 
led to the development of several anti-angiogenic therapies 
targeting VEGF or its receptors, which prolonged the lives 
of numerous patients having tumors or prevented blindness 
due to age-related eye disease [22]. However, the clinical 
benefits of these treatments were below initial expectations 
and often due to anti-VEGF resistance [23–26]. It has since 
become apparent that the modulation of angiogenesis by 
VEGF (or anti-VEGF) is not as simple as initially thought, 
and that the physiological or pathological cellular context is 
a key modifier of VEGF function given the molecular cross-
talk and compensation by multiple other signaling pathways. 
These complex molecular switches and balances need to be 
understood and integrated to stimulate or inhibit vascular 
growth in a clinically relevant manner.

Fortunately, since the first studies involving VEGF-tar-
geted therapy in humans [27, 28], advances in research and 
diagnosis of physiological and tumor angiogenesis, vascular 
anomalies, and cardiovascular disease have shed light on 
other molecular mechanisms important for angiogenesis that 
could pave the way for the discovery of novel or more effi-
cient therapeutic targets. These include the Notch [29–31], 
Ang-Tie, BMP/TGF-β [32, 33], EphrinB2-EphB4 [34, 35], 
Cxcr4-Cxcl12 [36], Wnt [37, 38], and various other factors 
involved in the endothelial metabolism [39–41]. These path-
ways are not as endothelial-specific as the VEGF pathway, 
but they control in one way or another endothelial prolifera-
tion, sprouting, or maturation. And like VEGF, their acti-
vation also often converges on the regulation of either the 
RAS viral oncogene homologue/mitogen-activated protein 
kinase (RAS/MAPK) or phosphoinositide 3-kinase/AKT/
mammalian target of rapamycin (PI3K/AKT/mTOR) path-
ways [36, 42, 43]. It is interesting that the majority of the 
identified genetic mutations causing congenital or sporadic 
vascular malformations activate directly or indirectly either 
the RAS/MAPK or the PI3K/AKT/mTOR pathways [11]. 
These pathways are also highly relevant for cancer biology, 
and known anti-cancer drugs are being tested for their thera-
peutic potential against vascular anomalies [12, 44].

Even though inhibition of angiogenesis in tumors or 
endothelial overgrowth in vascular malformations has been 
so far an achievable target, the effective induction and pro-
motion of angiogenesis have been so far much more chal-
lenging. This likely reflects the basic principle that is easier 
to bring down a house than to build one new. Understanding 
basic pro-angiogenesis principles will be crucial to achieve 
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a clinical benefit for patients suffering from cardiovascular 
ischemic disease such as coronary artery disease or periph-
eral artery disease [45–48]. It will also be relevant for tissue 
regeneration, since poor blood vessel growth is one com-
monality in all types of chronic wounds leading to poor 
wound bed perfusion and granulation tissue formation [49]. 
Unfortunately, most therapies involving the use of vascular 
or endothelial mitogenic growth factors have failed in car-
diovascular disease studies or did not reach the clinically 
relevant criteria of wound regeneration or closure [50, 51]. 
Therefore, understanding how to effectively induce maxi-
mal and sustained EC proliferation, sprouting, and vascular 
remodeling in desired tissues is of central importance to 
cardiovascular and regenerative medicine.

Key regulators of endothelial sprouting

Tissues that grow beyond the diffusion limit of oxygen 
require an adequate blood supply to provide them with 
nutrients and oxygen and to remove waste products. The 
vascularization of such ischemic tissues occurs via a pro-
cess termed angiogenesis, that consists in the formation 
of new blood vessels from existing ones [52, 53]. For 
angiogenesis to be effective, there must exist a balance 
between EC proliferation, sprouting, and migration, which 
involves a certain degree of endothelial differentiation or 
specialization (Fig. 1). Research in the last years led to 
the identification of morphological and molecular markers 
that distinguish endothelial tip cells from stalk cells and 

within these several subtypes. Tip cells are defined by their 
extended sprouting morphology and their position at the 
tip or leading edge of vessels [54, 55]. In central nervous 
system blood vessels (brain and retina), tip cells also emit 
long sensory filopodia likely for continuous evaluation of 
the surrounding microenvironment to adequately guide 
the sprout [56, 57]. However, the finding that blood ves-
sel development occurs normally in a filopodia-deficient 
zebrafish model questioned the requirement of filopodia 
for tip cell guidance [58, 59]. Stalk cells, on the other 
hand, do not sprout, tend to proliferate significantly more 
than tip cells, and form the perfused network of capillaries 
at the angiogenic front [53].

Most of the insights on tip and stalk-cell biology were 
obtained in the postnatal retina angiogenesis model given 
its ease of genetic manipulation, dissection, immunostain-
ing, and microscopic imaging [60]. The first studies in 
this system showed how sensitive tip cells and stalk cells 
were to the levels of VEGF signaling. VEGF is required 
for sprouting initiation, EC guidance, and also stalk-cell 
proliferation [55]. Signaling is primarily initiated via 
activation of the receptor VEGFR-2 [1, 53], although het-
erodimerization with VEGFR-3 has also been shown to 
be required for angiogenesis and sprouting [61]. Several 
different VEGF ligands binding to three different VEGF 
receptors exist [62]. This review will focus mainly on the 
role of VEGF-A-induced VEGFR-2 signaling which has 
been shown to be the most relevant ligand–receptor pair. 
For more information regarding the role of other VEGF 
ligands and receptors, the reader is directed to two recent 

Arrested/p21+ cell Proliferating/Ki67+ cell

Quiescent endothelium
Notch signaling high
ERK signaling low

Tip cell selection upon mitogenic stimulation
Strong induction of ERK signaling

Cell cycle arrest and 
expression of tip cell genes

Elongation of growing sprout
Continuous tip-stalk cell competition

Mixed proliferation and arrest
Higher Notch in stalk-cells
 Proliferation mantained 

High ERK and low Notch in Tip cells
Migration towards mitogenic gradient

Mitogenic signal Mitogenic signal Mitogenic signal

Fig. 1   The role of cell cycle arrest during endothelial sprouting. Upon 
strong activation of quiescent ECs by a mitogenic signal, a tip cell 
becomes selected by induction of tip cell gene expression and tempo-
rary arrest of the cell cycle. Tip cells activate Notch in adjacent stalk 
cells which results in inhibition of their ERK activity, thereby main-

taining their proliferative status. The arrested tip cells are responsible 
to guide the sprout towards the mitogenic gradient and are followed 
by proliferating cells that ensure the growth of the newly formed ves-
sel
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reviews [22, 63]. Upon VEGFR-2 activation by VEGF, a 
series of phosphorylation cascades is triggered, includ-
ing downstream MAPK (ERK) signaling activation [3, 
63, 64]. Through yet unknown mechanisms, when the 
level of VEGFR-2 activation is very high, it results in 
the transcriptional upregulation of several genes that 
are enriched or highly expressed by endothelial tip cells. 
This includes the genes delta-like-ligand 4 (Dll4), Esm1, 
Angpt2, Cxcr4, Apln, Kcne3, Igfbp3, Plxnd1, Robo4, and 
Adm [65, 66]. Among these genes, the most tip-cell spe-
cific in angiogenic retina blood vessels is Esm1, likely due 
to the requirement for higher VEGF signaling levels for its 
transcriptional activation [3].

Several landmark studies have shown that through tip-
to-stalk Dll4-to-Notch signaling, tip cells can further dif-
ferentiate themselves from adjacent stalk cells [67, 68]. This 
mechanism may be important to amplify transcriptional and 
phenotypic differences among tip and stalk cells. Through 
this mechanism, cell-to-cell differentiation or specialization 
can occur even after a relatively small difference in VEGF 
signaling between tip and stalk cells. Even though all ECs 
express Dll4 at the angiogenic front, the tip-cell enriched 
ligand Dll4 induces a stronger activation of the receptors 
Notch (namely, Notch1 and Notch4) in adjacent stalk cells 
[31]. This results in the receptors cleavage and translocation 
of the Notch intracellular domain (NICD) to the nucleus 
where it binds the co-factor RBPJ (recombination signal-
sequence binding protein Jk). This transcriptional complex 
elicits the expression of several direct Notch target genes, 
such as Hey1 and Hey2, which are canonical transcriptional 
repressors that will directly or indirectly regulate the expres-
sion of hundreds to thousands of other genes [69–71]. This 
complex and multifactorial Notch-dependent transcriptional 
activation and repression mechanism is frequently associ-
ated with a change in a cell´s identity, fate, or proliferation 
[69, 71–73]. Its biological output is fast, variable, and often 
unpredictable, because it depends on the existent cell status 
and signaling context. In the case of ECs, the increase in 
Notch transcriptional activity is usually associated with a 
decrease in the cell´s activity and the adoption of stalk-cell 
features in the case of the angiogenic front, or the adoption 
of arterial cell features in the case of remodeling or mature 
vessels. This is confirmed by the fact that loss of Dll4/
Notch1/Rbpj induces a significant increase in the number of 
sprouting cells (tip cells) and a loss of arterial identity [1, 6, 
29, 31, 67, 68, 74–80].

Another important Notch ligand that regulates tip–stalk-
cell differentiation is Jagged1. In angiogenic front ECs, this 
ligand behaves as a competitive and antagonistic Notch 
ligand [78]. This is due to the expression of Fringe glyco-
syltransferases (Mfng and Lfng) in angiogenic ECs. These 
enzymes glycosylate Notch receptors, turning their activa-
tion less sensitive to Jagged1 ligands and more sensitive to 

Dll4 ligands. The relatively higher expression of the stronger 
Dll4 ligand in tip cells and the weaker Jagged1 ligand in 
stalk cells reinforces the differences in the bidirectional 
Notch signaling between tip and stalk cells. In the absence 
of the weaker Jagged1 ligand, Dll4-Notch activity increases, 
and endothelial sprouting is suppressed [78].

Mechanistically, the suppression of endothelial sprouting 
by higher Dll4-Notch activity was initially thought to depend 
on the repression of VEGFR-2 transcription [31], a phenom-
ena mostly observed in human umbilical vein ECs (HUVECs) 
under NOTCH overactivation [68, 81, 82]. However, several 
recent studies in zebrafish and mice have shown that physi-
ological Notch signaling does not regulate Vegfr2 transcrip-
tion, translation, or phosphorylation in vivo [6, 77, 79, 83]. 
In contrast to Vegfr2, the transcription of the homologous 
Vegfr3 receptor [80, 83] or its protein levels [77] were sig-
nificantly upregulated after loss of Notch signaling in vivo, 
and thought to be sufficient to induce EC sprouting [61, 62]. 
However, later discoveries suggest that even though Vegfr3 is 
an important gene for lymphatic sprouting [84], it may actually 
inhibit blood vessel EC sprouting [85–87]. Dll4-Notch activ-
ity has also been shown to regulate Vegfr1 transcription [68], 
an essential modulator of embryonic vascular development 
[88]. VEGFR-1 kinase activity is relatively weak, but it has a 
significantly higher affinity for VEGF compared to VEGFR-2. 
Since it is secreted as a soluble form, it functions as a VEGF 
decoy receptor [1, 63, 89]. Indeed, mice expressing a mutated 
Vegfr1 lacking its phosphorylation site develop normally [90], 
indicating that its core function may be to negatively balance 
VEGF signaling. Recently, several studies provided insights 
into the dynamics of VEGF signaling regulation by endothe-
lial Vegfr1 expression and its effects on morphogenesis and 
anastomosis formation, suggesting that it may function as a 
molecular rheostat [91–93].

Despite the controversy surrounding the mechanistic 
cross-talk between Notch and VEGFR signaling, it is clear 
from several recent studies conducted in zebrafish and mice 
that Notch suppresses the downstream MAPK/ERK signal-
ing [6, 64], by yet unidentified mechanisms and indepen-
dently of decreases in Vegfr2 signaling [6]. This observation 
is in line with the fact that stalk cells have significantly more 
Notch and less ERK activity than tip cells. Since the differ-
ences in ERK signaling between tip and stalk cells are far 
more pronounced than the observed differences in Vegfr2 
or Vegfr3 mRNA or protein levels, the expressions of these 
genes are likely not polarizing or key differentiation mecha-
nisms. Availability and distribution of the VEGFA ligand 
and Nrp1 expression, another known modulator of VEGF 
signaling, seem to have a much higher tip–stalk differen-
tiation effect [55, 94, 95]. Tgf-beta/Bmp/Alk signaling and 
its mechanistic interaction with Notch and Nrp1 also seem 
to be highly relevant for tip–stalk-cell differentiation [94]. 
All these studies, however, have not clearly addressed the 
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paradoxical evidence, showing that stalk cells have signifi-
cantly lower VEGF/ERK activity, even though they prolifer-
ate more than tip cells [6, 55].

Bell‑shaped response to angiogenesis 
stimulation and its implications

The most prominent pathway shown to regulate EC prolif-
eration is VEGF signaling via VEGFR-2 [17, 22, 63, 96]. 
Similar to many other growth factor signals, VEGF signal-
ing via VEGFR-2 leads to the downstream activation of the 
MAPK pathway and phosphorylation of ERK1/2 which is 
widely regarded as a pro-mitogenic pathway [63]. However, 
ERK1/2 phosphorylation is significantly higher in tip cells 
[6, 64] and these cells are significantly less proliferative than 
stalk cells [55], particularly the ERK/Esm1-high tip cells 
[6]. Furthermore, in vitro analyses revealed that endothe-
lial motility, a key feature of endothelial tip cells [31], is 
enhanced when ECs are in the G0/G1 phases of their cell 
cycle and decreased in their proliferative S/G2/M phases 
[97]. It has also been shown in vivo that the expression of a 
constitutively active mutant of Vegfr2 in stalk cells induces 
extreme tip-cell features, such as very high ERK activation 
and a pronounced cell-cycle arrest [6]. Interestingly, inhibi-
tion of Notch signaling was shown recently to have tempo-
ral and context-dependent effects on EC proliferation that 
are dependent on the heterogeneity of ERK signaling levels 
[6]. When Notch signaling is blocked in highly proliferative 
ECs located at the angiogenic front, these have an increase 
in ERK signaling to levels similar to tip cells, and this is 
detrimental for their proliferation, because it leads to the 
strong upregulation of the cell cycle inhibitor p21 (encoded 
by Cdkn1a). However, when Notch signaling is blocked in 
VEGF low and quiescent retina vessels, these have a milder 
increase in ERK levels, which induces cell cycle entry. This 
work shows that there is a bell-shaped response to ERK/
mitogenic stimulation and explains why tip cells proliferate 
significantly less than adjacent stalk cells, even though they 
have more VEGF/ERK signaling [6]. The identified ERK-
dependent hypermitogenic cell cycle arrest mechanism is 
highly conserved and also occurs in other cell types and in 
cancer [98].

These data imply that the effect of VEGF or any other 
pro-mitogenic stimulus that induces high MAPK/ERK 
activity, such as inhibition of Notch signaling, may not 
lead to the intended result of increasing angiogenesis. In 
fact, Notch inhibition [6], or VEGF ocular injection [99], 
has been shown to induce transient vascular sprouting and 
expansion, in the absence of proliferation. If sustained over 
time, excessive mitogenic stimulation leads to a pronounced 
decrease in vascular outgrowth and angiogenesis, since the 

vessels lose the capacity to maintain their proliferation in 
VEGF-rich and hypoxic areas [6]

This bell-shaped dose–response to mitogenic stimulation 
has not been noticed in most previous studies because of the 
focus on markers of cell proliferation and not on markers of 
cell-cycle arrest. VEGF administration to a quiescent vascu-
lar network should always cause an increase in the frequency 
of proliferating (KI67+/EdU+) ECs, because the baseline 
level of EC proliferation is very low. However, given the 
recently identified EC hypermitogenic arrest marker p21 [6], 
it will be of interest to analyze how prevalent is the cell-
cycle arrest in tumor vessels or in situations of therapeutic 
pro-angiogenesis. Could the hypermitogenic arrest explain 
the failure of most pro-angiogenesis therapies so far [47, 48, 
98, 100, 101]?

Exploiting pro-mitogenic stimulation for therapeutic 
angiogenesis is a promising strategy for treating patients 
suffering from ischemic diseases such as cardiovascular dis-
ease or chronic wounds. This would promote the induction 
of tissue vascularization and thus better tissue function or 
regeneration [102]. Cardiovascular disease remains a leading 
cause of death or morbidity worldwide [103] and every year 
millions of patients are suffering from wounds that are the 
result of traumatic injury or surgical routine in the US and 
Europe [52]. Effective treatment options and understanding 
the cardiac or wound healing process are therefore of cen-
tral clinical concern. Ineffective angiogenesis can lead to 
impaired cardiac and wound healing as several regenerative 
and tissue homeostasis processes are affected in the absence 
of the vascular function [47–49, 100, 101, 104, 105]

In regenerative medicine, VEGF delivery has been tested 
numerous times with the goal of achieving increased tissue 
vascularization and regeneration, however, without reach-
ing any clinically relevant outcome [47–49, 100, 101, 104, 
106, 107]. One of the hypotheses suggests that rapid diffu-
sion and short half-life of VEGF in vivo may explain the 
absence of significant benefits in humans [108]. In other 
cases, applications of high doses or multiple growth factors 
lead to the formation of unstable, tumor-like vasculature and 
leaky vessels [109]. As described above, VEGF and Notch-
driven angiogenesis is a tightly balanced and coordinated 
process. Mouse genetic experiments have shown that even a 
50% decrease in Vegf or Dll4 expression and signaling leads 
to severe vascular defects and embryonic lethality [18, 19, 
75, 76, 110]. Indeed, the microenvironmental VEGF concen-
tration has been shown to determine the threshold between 
normal and pathological angiogenesis [111]. Several studies 
have already pointed to the importance of a balanced VEGF 
and Notch signaling dose for therapeutic angiogenesis, and 
suggested that intermediate or lower mitogenic stimuli may 
be more effective than hypermitogenic stimulation [47, 54, 
101, 111, 112]. Delivery of high local VEGF concentrations 
led to angioma-like vessel formation, while lower doses 
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caused functional vessel formation [47, 111, 113]. This may 
explain why the use of VEGF in therapeutic angiogenesis in 
patients remains to be experimental and is not a standard-of-
care treatment [47]. For example, the current clinical proce-
dures for wound management involve surgery, removal, and 
debridement of necrotic tissue and biofilms and application 
of wound dressings to promote endogenous wound repair 
[114]. Instead of VEGF, only one mitogenic growth fac-
tor was approved in 1997 to be used in a gel for treating 
chronic wounds: platelet-derived growth factor (PDGF)-BB 
and it still remains to be the only pharmacological agent to 
be used today for this indication [114, 115]. In addition to 
wound healing, patients suffering from chronic cardiovas-
cular diseases such as coronary artery disease, peripheral 
artery disease, or refractory angina could benefit from pro-
angiogenic therapies to promote tissue regeneration by col-
lateral vessel formation [47, 107]. However, several clinical 
trials employing infusion or gene transfer of VEGF failed 
to show any clinically relevant benefit for these patients [47, 
48, 101, 106]. This body of data collectively suggests that 
balancing mitogenic stimuli dose and its downstream effec-
tors or modifiers will be critical to enhance EC proliferation 
and thus functional angiogenesis. However, this balance 
that is beautifully orchestrated by developing tissues may 
be difficult to achieve in therapeutic settings of angiogen-
esis, where we can only add pro-mitogenic pharmacological 
compounds, without knowing or being able to monitor how 
they are actually modulating EC proliferation throughout the 
treatment. Particularly problematic may be that the occur-
rence of an endothelial hypermitogenic cell cycle arrest is 
time-, context-, and tissue-dependent and thus difficult to 
control for. It also has remained unnoticed in most previous 
studies because of the focus on markers of cell proliferation 
and not on markers of cell-cycle arrest as mentioned above. 
In most cases, an intense and transient stimulation with an 
endothelial mitogen such as VEGF results in a strong ERK 
activation and induction of EC proliferation, however, often 
to a level that cannot be sustained leading to a decrease in 
cycling ECs over time, as it has been shown in different 
in vivo models [6, 113]. Furthermore, mitogenic stimulation 
does not affect all areas of a growing vascular tree equally, 
since mitogen-induced cell cycle arrest has been observed 
primarily at the angiogenic front, while an increase in pro-
liferating ECs can be observed in more mature and quiescent 
vascular regions [6]. Finally, high mitogenic stimuli may 
be productive and induce vascular network growth through 
different processes. For instance, VEGF overexpression in 
skeletal muscle cells can result in vessel formation through 
splitting angiogenesis or intussusception, a process that 
occurs without the formation of endothelial tip cells [116].

The concept of balanced angiogenesis also clashes with 
the ideal and simplistic concept of achieving maximal EC 
proliferation and angiogenesis à la carte. One alternative to 

the difficult goal of achieving a balance in mitogenic stimu-
lation is to simultaneously induce high mitogenic stimula-
tion and inhibit the endogenous hypermitogenic arrest mech-
anisms, such as the ones mediated by classical cell cycle 
inhibitors [98], or by exploiting alternative pathways that 
limit endothelial proliferation [113, 117]. These strategies 
may allow a significant boost in pro-angiogenesis therapies. 
But before it is important to understand what are the main 
players in the hypermitogenic arrest, what pharmacologi-
cal tools we have to target them, and if their targeting has 
any negative consequences for the endothelial health and 
genomic stability.

Role and disease relevance of canonical cell 
cycle inhibitors

Several factors exist which control the status and progres-
sion of a cell cycle as dysregulated cell proliferation can 
be harmful to cells or leads to cancer [44]. In mamma-
lian cells, this is governed by three classes of molecules, 
cyclin-dependent kinases (CDKs), cyclins, which serve as 
activators of CDKs to exert their kinase activity, and CDK 
inhibitors [118]. While only one major CDK appears to be 
sufficient for cell division of yeast, more than 20 CDKs 
and several different cyclins exist in mammalian cells 
that can form various combinations of complexes and are 
expressed differently in each phase of the cell cycle [118, 
119]. With the advent of gene knockout mouse technolo-
gies, it became evident that a great degree of redundancy 
exists within this network of cell cycle proteins [118]. 
Whenever the conditions are unfavourable or risky for cell 
division, CDK activity and thus cell cycle progression can 
be restrained by several canonical cell cycle suppressors, 
named as cyclin-dependent kinase inhibitors (Cdkn) that 
will be the focus of this review. Most of what we know 
today about the function of these genes has been studied 
in the context of cancer and in vitro. However, Cdkn genes 
also have important physiological and tissue homeosta-
sis roles. The first findings in vitro were followed by the 
characterization of mouse lines with a single or multiple 
Cdkn genes deleted, which enabled the evaluation of their 
physiological roles in vivo and the identification of genetic 
compensation among some of the homologous Cdkn pro-
teins [44, 120–122]. Cdkn genes can be divided into two 
separate families: genes which belong to the Cdkn1 or Cip/
Kip family encode the cell cycle regulators p21 (Cdkn1a), 
p27 (Cdkn1b), and p57 (Cdkn1c) [123]. On the other hand, 
genes of the Cdkn2 or INK4 family encode the proteins 
p16 and p19ARF (Cdkn2a), p15 (Cdkn2b), p18 (Cdkn2c), 
and p19 (Cdkn2d) [123, 124]. Due to an alternative read-
ing frame of the Cdkn2a gene, an unrelated gene ARF is 
encoded expressing a protein named as p14ARF in humans 
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and p19ARF in mice [125], which shares the ability to 
induce cell cycle arrest with other members of the Cdkn 
families [126]. Despite their similar names, Cdkn1 and 
Cdkn2 genes code for biochemically and functionally dis-
tinct proteins [127, 128] (Fig. 2). CDKN2 proteins spe-
cifically inhibit CDK4 and CDK6 kinase activity, while 
CDKN1 proteins preferentially inhibit CDK1 and CDK2 
but can block the activity of all cyclin/CDK complexes 
[44, 118, 119].

Global knockout experiments in mice confirmed the role 
of some of these Cdkn genes in suppressing tumor growth 
and gave insights into their tissue functions [124, 127]. 
Due to their role in the expansion of cell lines in vitro and 
their expression and regulation patterns in vivo, it was 
assumed that factors from the Cdkn1 and Cdkn2 families 
would have an essential function during the normal devel-
opment of tissues in addition to their role in cancer [127]. 
However, p21 (Cdkn1a) [129], p27 (Cdkn1b) [130–132], 
p16 (Cdkn2a) [133, 134], p15 (Cdkn2b) [135], p19ARF 
(ARF) [136], p18 (Cdkn2c) [135], and p19 (Cdkn2d) [137] 

global KO mice develop normally, which raised questions 
about their in vivo physiologic role [123]. In contrast to 
these, only 8.5% of Cdkn1c KO mice reach adulthood due 
to cleft palate, gastrointestinal, and endochondral ossifica-
tion abnormalities [138, 139]. However, additional infor-
mation on Cdkn gene function could have been masked due 
to the global knockout technology, but might be revealed 
with genetic mosaics [5]. For example, a global deletion of 
Cdkn1b has recently been demonstrated to result in only a 
0.6-fold increase in corneal EC proliferation in vivo, while 
the simultaneous presence of wild-type and mutant clones 
within one tissue revealed a sixfold expansion of mutant 
cells compared to wild-type cells [140].

Although little is known about the significance of Cdkn 
genes in cardiovascular biology, most studies suggest a role 
for Cdkn1 and Cdkn2 genes in suppressing cell prolifera-
tion, maintaining tissue homeostasis, and genetic stability 
[141, 142]. A prominent role of the tumor suppressor p53 
in guarding the stability of the genome by inducing expres-
sion of Cdkn genes has been described in numerous studies 

Fig. 2   Structural domains of Cdkn  proteins. Members of the Cdkn1 
family have a specific Cdk inhibitor domain region. This domain is 
of similar size in all three Cdkn1 proteins. p21 additionally contains a 
PCNA-binding domain. All members of the Cdkn2 family contain an 
ankyrin repeat region used for binding to and regulating the function 

of binding partners such as Cdk. This region is of similar size in p16 
and p15 and in p18 and p19. Cdkn2 proteins exclusively inhibit the 
complex formation of D-type cyclins with Cdk4/6. Members of the 
Cdkn1 gene family can inhibit all cyclin/Cdk complexes but primarily 
block the activity of Cdk1 and Cdk2
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(reviewed here [143]). However, certain Cdkn genes such 
as Cdkn1a, Cdkn1b, Cdkn2a, Cdkn2b, and ARF have also 
important p53-independent functions in ensuring cell cycle 
arrest and DNA repair mechanisms [124, 144–146].

Genetic deletion of Cdkn1a or Cdkn1b does not result in 
major developmental or proliferation defects but results in 
spontaneous tumor formation in some tissues of adult mice 
[120]. Cdkn1a and Cdkn1b double KO mice also develop 
normally and reach adulthood, but have a decreased sur-
vival due to an increased tumorigenesis rate, suggesting 
some degree of compensation or functional overlap between 
these Cdkn genes [120, 147]. Indeed, both genes have been 
observed to be significantly downregulated within cancer 
cells [148, 149]. As mentioned above, Cdkn1c deletion 
results in severe defects in cleft palate, gastrointestinal, and 
bone development [138, 139]. Because of this, compensation 
between all three Cdkn1 genes has mostly been observed at 
earlier stages of development. Deletion of Cdkn1a in addi-
tion to Cdkn1c results in a twofold increase in lethality at 
E16.5 due to defects in skeletal muscle cell proliferation 
and differentiation [150]. Similarly, combined deletion of 
Cdkn1b and Cdkn1c has also been reported to result in a 
twofold increase in lethality between E12.5 and E16.5 com-
pared to Cdkn1c single deletion, although the only pheno-
typic difference was observed in the development of the eye 
lens [150]. Furthermore, this wide developmental window 
and incomplete phenotypic penetrance is likely the result of 
genetic-background-dependent modifiers [151] which makes 
these data difficult to compare to other single Cdkn knockout 
studies. Interestingly, when analyzing Cdkn1 single, dou-
ble- and triple-gene global KO mice in a single study, it was 
suggested that Cdkn1a only has an accessory role, while the 
compensatory functions of Cdkn1b appear to be more criti-
cal during the development of Cdkn1c knockout mice [152]. 
Specifically, a triple Cdkn1 KO results in 100% lethality, 
while the double KO of Cdkn1a/c or Cdkn1b/c leads to 19% 
and 67% lethality, respectively, at E15.5. These compound 
mutant embryos show a significant increase in the prolif-
eration and apoptosis of different cell types. The simulta-
neous increase in proliferation and apoptosis may explain 
why the tissues of these animals show no apparent signs of 
overgrowth.

Analysis of mice with deletion of individual Cdkn2 genes 
revealed that alone they have no major functions in tissue 
development, likely due to genetic redundancy or com-
pensation. However, in contrast to Cdkn1 genes, Cdkn2a/b 
is one of the most frequently mutated gene loci in human 
cancer [141], suggesting a crucial function of these genes 
in maintaining genomic stability of quiescent cells. Single 
deletion of Cdkn2b (codes for p15Ink4b) in mice does not 
result in any significant tumor susceptibility [135], while 
Cdkn2a (codes for p16Ink4a and p19ARF) global knockout 
animals reach adulthood without any major developmental 

defects, but begin to spontaneously form tumors at 20 weeks 
of age [153]. In line with this, experiments in mice showed 
that an increased gene dosage of the Cdkn2a locus provides 
the animals with resistance to cancer while maintaining the 
same life span [154]. Interestingly, it appears that Cdkn2b 
fulfills a compensatory function in the absence of p16 and 
vice versa, while the deletion of p19ARF does not seem to be 
compensated for [135, 155]. This could explain the reduced 
tumor-free survival of p19ARF-null compared to p16Ink4a-
null mice [156] and highlights the independent function of 
p19ARF [144].

Data on Cdkn2c or Cdkn2d gene KO mice indicate no 
function on tissue development and only little contribution 
to adult cells homeostasis and genomic stability. Cdkn2c 
knockout mice develop normally and age well into adult-
hood, but have an increased body size and hyperplas-
tic spleen and thymus and develop pituitary tumors by 
10 months of age [157]; however, its function is partially 
compensated by the Cdkn2a gene [158]. No tumor phe-
notypes have been observed in Cdkn2d knockout animals 
[137].

Besides data on single Cdkn2 gene deletions described 
above, studies in mice with multiple Cdkn2 genetic dele-
tions revealed compensatory or redundant roles of certain 
Cdkn2 genes. In contrast, the deletion of Cdkn2b in addi-
tion to Cdkn2c does not lead to significantly different phe-
notypes in mice indicating limited compensatory tasks of 
these two Cdkn genes [135]. Importantly, multiple studies 
suggested that co-deletions of Cdkn2c and Cdkn2a/b/ARF 
observed in some human cancers such as glioblastoma 
are responsible for worsened tumor severity (reviewed in 
[159]). To our knowledge, the effects on development or 
tumor formation of a combined deletion of all four Cdkn2 
genes has not been investigated so far.

Despite the structural differences, the above-described 
mild phenotypes observed upon global KO of single or 
few Cdkn1 (Cip/Kip) or Cdkn2 (Ink4) proteins suggest 
possible compensatory mechanisms between Cdkn1 and 
Cdkn2 genes. The functions of both Cip/Kip and Ink4 cell 
cycle regulators converge at the regulation of Cdk4 and 
Cdk6, which can be inhibited by any cell cycle inhibitor 
of the Cdkn gene family [44]. In fact, p16 and p21 com-
pete for Cdk4 binding [160], suggesting that removal from 
one binding partner could shift the equilibrium towards 
other available binding partners [161] potentially leading 
to confounding effects. Therefore, to reveal masked com-
pensatory pathways between Cip/Kip and Ink4 proteins, 
multiple genetic deletions or mutation studies are needed 
to better understand the complex network of cell cycle 
inhibition.

In the particular case of the cardiovascular system, stud-
ies in zebrafish embryos and mice have uncovered spe-
cific roles for Cdkn genes in angiogenesis [6, 162, 163], 
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vascular homeostasis [120, 164], or atherosclerosis and 
aging [165–167]. scRNA-seq data revealed expression of 
Cdkn1 and Cdkn2c/d genes in quiescent ECs, pericytes, and 
SMCs [168, 169]. Interestingly, Cdkn2a/b genes, required 
for the genomic stability of cells [142, 154, 155] and mark-
ers of geriatric cellular aging and senescence [10, 124] are 
not expressed in quiescent vascular cells of young mice 
[168, 169]. On the other hand, expression of Cdkn1a/b genes 
varies greatly in single capillary, venous, and arterial mouse 
lung ECs, interestingly, in a similar fashion as proliferat-
ing cells expressing Pcna [168, 169]. However, it is neces-
sary to mention that Cdkn1 genes are subject to tight post-
translational regulation [170], and hence, their transcription 

dynamics might not accurately reflect on the presence of the 
protein or its function.

Data from EC culture experiments initially suggested 
that p21 is a positive regulator of proliferation and down-
regulated in a Notch-dependent manner as these cells reach 
confluency [163]. This puzzling observation contrasts with 
what was shown in keratinocyte, fibroblasts, and tumor cell 
cultures [145, 171–173]. More recently, it was confirmed 
that p21 does not have any major function on EC prolifera-
tion during developmental angiogenesis in vivo, except in 
endothelial tip cells, or after the stimulation of angiogenesis 
by increasing VEGF signaling or decreasing Notch signaling 
[6]. This is because during vascular development, the p21 
protein (unlike the mRNA) is not normally expressed by the 
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Fig. 3   The role of mitogenic stimuli and p21 in endothelial cell cycle 
arrest. a At the angiogenic front, p21+ tip cells arrest and are fol-
lowed by proliferating Ki67+ stalk cells. If the levels of the mitogenic 
stimulus are high in all cells, the phenotypic differences between 
tip and stalk cells disappear as most cells at the angiogenic front 
become arrested and acquire tip-like features. This cell-cycle arrest at 
the angiogenic front impairs the sustained vascular network growth 
despite an increased number of tip cells. If p21 function is lost or 
inhibited, a high mitogenic stimulus fails to induce cell-cycle arrest in 
some cells, resulting in the partial preservation of proliferation at the 

angiogenic front. b The relation of EC proliferation to the intensity 
of a mitogenic stimulus corresponds to a bell-shaped curve. Depend-
ing on the intensity of mitogenic stimulus, cells can be either quies-
cent, proliferate, or become arrested. EC proliferation is maximal at 
intermediate mitogenic stimulus. Proliferating ECs become arrested if 
a threshold is exceeded which triggers the upregulation of p21 and 
inhibition of proliferation. This hypermitogenic cell cycle arrest can 
be partially prevented by p21 deletion in ECs, resulting in prolifera-
tive activity even at high mitogenic stimulus levels
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large majority of ECs, except by endothelial tip cells [6], 
which undergo hypermitogenic arrest induced by excessive 
VEGF/ERK stimuli. It was additionally identified that the 
VEGF-mediated p21 induction induces endothelial sprout-
ing, but ultimately halts angiogenesis due to the inhibition 
of endothelial proliferation. This cell cycle arrest mecha-
nism is restricted to tip ECs during physiological angio-
genesis. Accordingly, in the absence of p21, tip ECs pro-
liferate significantly more, whereas ECs with a balanced 
mitogenic stimuli (stalk ECs) proliferate normally, since 
they do not express p21 protein. These results suggest that 
pro-angiogenic therapies employing delivery of VEGF may 
be counterproductive, as it can induce p21 and cell cycle 
arrest of angiogenic ECs closest to hypoxic areas, which are 
the most important cells for effective tissue vascularization 
(Fig. 3a). However, targeting the function of p21 or other 
cell-cycle checkpoints at the same time VEGF is provided or 
Notch is inhibited, may lead to more effective EC prolifera-
tion and angiogenesis in wound healing or after myocardial 
infarction/ischemia (Fig. 3b). The general role of p21 in tis-
sue regeneration appears to be ambiguous as studies exist 
which report an improved [174], impaired [175], or indif-
ferent [176] regenerative potential upon Cdkn1a deletion. 
Furthermore, data from global heterozygous Cdkn1a+/− and 
homozygous Cdkn1a−/− animals indicate that both partial 
and full deletion of Cdkn1a improves neovascularization 
in a subcutaneous disc angiogenesis system [177]. In con-
trast to angiogenic tip cells, p21 protein is undetectable 
in more mature quiescent vessels [178]. However, its low 
basal or very sporadic and transient high expression is still 
important to maintain long-term vascular quiescence, since 
approximately 9% of Cdkn1a KO mice have been reported to 
develop hemangiomas at an average age of 16 months [164].

In addition to p21, p27 is also capable of inhibiting all 
complexes of cyclin with CDK, thereby preventing abnormal 
proliferation [179]. Because the regulation of p27 expression 
is often dysfunctional in human cancer, its expression levels 
in tissues were proposed as a prognostic marker after chemo-
therapy [180]. Yet, a role for the cell cycle regulator p27 in 
angiogenesis remains enigmatic. Due to the highly similar 
structural homology between p21 and p27, they may com-
pensate for one another. Indeed, p21 and p27 have compa-
rable cell cycle mechanisms of action [179, 181]. However, 
data from tumor suppression experiments in global knockout 
mice suggest that different upstream regulation mechanisms 
exist for p21 and p27 [182]. Additionally, it was shown 
in vivo that p21 activity in hepatocytes can compensate for 
the absence of p27 [183]; however, this appears to be in con-
flict with data from other in vivo studies, showing that p27 
can only partly [184] or not at all be compensated by p21 
[185]. A recent study showed that shear stress-dependent 
activation of Notch in ECs resulted in the upregulation of 
p27 which induced EC quiescence and arterial specification 

in vivo [186], even though Cdkn1b KO mice develop arter-
ies [130–132]. Interestingly, inhibition of p27 in develop-
ing zebrafish embryos resulted in an increased number of 
ECs in developing vessels, however, without impairing the 
formation of intersegmental blood vessels [162]. Neverthe-
less, a role for p27 in the growth arrest of angiogenic tip 
ECs experiencing high VEGF levels was never shown, but 
cannot be ruled out.

Like p21 and p27, p57 also belongs to the Cip/Kip family 
thus sharing similar features (Fig. 2) [127]. However, p57 is 
the only Cdkn gene to be required for skeletal muscle, cleft 
palate, and gastrointestinal tissue development, resulting in 
severe embryonic defects upon deletion and death shortly 
after birth [138, 139]. As a result of this, there are very 
limited data on its role in neonatal or adult tissues. Inter-
estingly, using tissue-specific knockout mice, a cooperation 
between Cdkn1a–Cdkn1c and Cdkn1b–Cdkn1c in hemat-
opoietic stem cell quiescence has been reported, suggesting 
that Cdkn1 genes can indeed compensate for each other if 
co-expressed in the same cell [187, 188]. Given their broad 
co-expression in different cell types composing the vascular 
tissue, it will be important to determine the combinatorial 
roles of Cdkn1a/b/c genes in distinct vascular cells during 
cardiovascular development, homeostasis, and disease.

Like Cdkn genes, the tumor suppressor p53 can also 
induce cell cycle arrest, prevents apoptosis, and promotes 
DNA repair mechanisms. p53 is considered an upstream 
regulator of other cell cycle regulators such as p21 [189]. 
In heart disease, p53 has been suggested to be a central 
mediator of angiogenesis, and upregulation of this factor 
may contribute to the rarefaction of the cardiac vasculature 
which was observed in hypertrophic hearts (reviewed in 
[190]). Of note, it has been demonstrated in various models 
that endothelial-specific deletion of p53 in mice resulted in 
increased vessel formation not during tissue development, 
but in hypertrophic hearts, resulting in improved cardiac 
function and prevention of heart failure [191]. The same 
study also demonstrated that deletion of p53 augmented 
angiogenesis during hindlimb ischemia. These results sug-
gest that p53 can restrict EC proliferation and that blocking 
p53 could promote angiogenesis in cardiovascular disease. 
In addition to vessels, p53 has been shown to be transiently 
activated in cardiac tissue during regeneration in neonatal 
mouse hearts [192]. A recent article has shown that knock-
down of protein tyrosine kinase phosphatase-1B (PTP1B) 
promotes EC senescence by upregulation of p53 and p16 
[193]. This is particularly interesting, since PTP1B has 
also been shown to inhibit VEGF-induced VEGFR-2 and 
ERK1/2 phosphorylation [194]. Taken together, this indi-
cates that dysregulation of this phosphatase drives EC senes-
cence through aberrant activation of VEGFR-2 and ERK1/2. 
On the other hand, it has been shown that inactivating 
genetic mutations in the endothelial phosphatase PTPRB, 
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another negative regulator of VEGFR-2 signaling, occur in 
about 26% of malign vascular tumors, named angiosarcomas 
[195]. This ambiguity of the VEGFR-2 signaling pathway 
in inducing endothelial proliferation and senescence may be 
related to the bell-shaped response to mitogenic stimulation 
discussed above [6].

Little is known about the contribution of the cell 
cycle regulators Cdkn2a (p16Ink4a and p19ARF) 
Cdkn2b (p15Ink4b), Cdkn2c (p18Ink4c), and Cdkn2d 
(p19Ink4d) to endothelial sprouting, proliferation, or 
hypermitogenic arrest. Although one of the most com-
mon genetic alterations in human cancer is the deletion 
of the Cdkn2a/b gene locus encoding for the cell cycle 
regulators p15Ink4b, p16Ink4a and ARF-Ink4a [44, 141], 
it seems that these factors do not play a major role in EC 
development and physiology. In muscle stem cells, p16 
was also shown to be upregulated in geriatric mice and a 
key factor in the loss of regenerative potential [196, 197]. 
Interestingly, while no developmental vascular defects 
occur upon Cdkn2a deletion in mice, 23% of all spontane-
ously formed tumors in these animals were angiosarcomas 
[156], suggesting a critical function of this Cdkn gene in 
maintaining EC homeostasis. Importantly, this was not 
described upon deletion of ARF or the entire Cdkn2a/ARF 
gene locus [156]. Indeed, another report showed that dele-
tion of Cdkn2a/ARF led to hemangioma formation in only 
6.1% of all tumors analyzed [198], suggesting that co-
deletion of ARF changes the spectrum of tumors caused 
by Cdkn2a deletion in addition to an increase in lethal-
ity [156]. A recent study analyzed tumors from animals 
overexpressing mutated Cdk4 or Cdk6, which severely 
impairs the function of all four Cdkn2 cell cycle regula-
tors but not of p19ARF [199, 200], and found that 56% 
of all tumors in these animals were angiosarcomas [122, 
161]. Together, these data indicate a link between Cdkn2 
genes and the long-term maintenance of EC quiescence.

Still, future combinatorial and more refined loss-of-
function studies of Cdkn2 genes may reveal the existence 
of genetic redundancy and even more important physio-
logical roles in cardiovascular development, homeostasis, 
disease, or aging. Despite this body of data describing the 
importance of Cdkn genes in cellular processes, includ-
ing vascular growth and homeostasis, it is still not pos-
sible to directly and selectively target Cdkn proteins such 
as p21 with existing pharmacological compounds [201]. 
Therefore, it will be also of high relevance to use these 
as biomarkers for the discovery of alternative or other 
upstream/downstream molecular mechanisms leading to 
the hypermitogenic arrest or senescence of ECs. These 
novel molecular mechanisms may be easier to target or 
have a more vascular or hyperangiogenesis-specific func-
tion, reducing potential side-effects and increasing the 
value and specificity of pro-angiogenesis therapies. In 

other circumstances, such as during tumor angiogenesis, 
it may be also of high therapeutic relevance to modu-
late these mechanisms to induce irreversible EC arrest or 
senescence, as an alternative to the current induction of 
endothelial quiescence with standard anti-angiogenesis 
(anti-VEGF) compounds. Endothelial senescence by defi-
nition is not reversible, and its induction may be able to 
generate long-lasting effects, unlike the reversible induc-
tion of endothelial quiescence by current anti-angiogen-
esis therapies. In addition, it is known that ECs can use 
alternative sources of stimulation when VEGF or other 
sources are blocked [41], but if they have activated a cell 
cycle arrest or pro-senescence mechanism, this may pro-
vide an insurmountable break for angiogenesis.

Endothelial senescence and aging 
in cardiovascular disease

Cellular senescence is characterized by an irreversible cell 
cycle arrest along with metabolic changes and alterations 
of a cells’ secretome induced by a variety of stressors such 
as DNA damage or replicative stress. Senescence is differ-
ent from quiescence as senescent cells remain unable to 
respond to any mitogenic stimuli and are therefore inca-
pable of re-entering the cell cycle [202]. It is generally 
believed that during aging, there is a continuous increase 
in the number of senescent cells throughout all tissues of 
the body resulting in a progressive decrease of an organ 
proliferative capacity or function. Senescence impairs 
a tissues’ resilience to disease and ability to regenerate 
after injury [203]. However, in some contexts, senescent 
cells have also been reported to have important develop-
mental, homeostatic, or health-promoting functions [176, 
204–206].

In cancer biology, various types of senescence have 
been identified: replicative senescence, DNA-damage-
induced senescence, stress-induced senescence, and 
oncogene-induced senescence [202, 204, 206]. This may 
indicate diversity in the underlying molecular mecha-
nisms, which may also vary depending on the cell type 
and environmental conditions. For example, overexpres-
sion of the micro RNA 21 (miR-21) has been observed 
several human tumor types including brain, breast, and 
cervical cancer [207], but its enhanced expression in ECs 
induces cell cycle arrest by increasing p21 [208]. p21 is 
one of the most important markers of cell cycle arrest or 
cellular senescence, and it is frequently downregulated 
in cancer [145, 209]. However, its reliability as a bona-
fide senescence marker remains controversial. It has been 
demonstrated that short-term expression of p21 leads to a 
reversible growth arrest, while only a sustained and high 
expression of p21 induces irreversible cell cycle exit [171]. 
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Expression of p21 appears to be important for the initia-
tion of senescence; however, it is not maintained in some 
senescent cells unlike p16, which seems to accumulate at 
high levels only in senescent cells [210], although a certain 
dynamic expression of this factor has been described as 
well [211]. The senescence mechanisms and markers may 
also vary according to the cell type and cellular context. 
Besides the expression of these two genes, other unique 
features of senescent cells are the very active biosyn-
thetic activity and the expression of a variety of cytokines 
(senescence-associated secretory phenotype), larger cell 
size, high beta-galactosidase activity, heterochromatin 
formation, and increased reactive oxygen species (ROS) 
levels [204]. Importantly, constitutive, irreversible activa-
tion of the MAPK signaling pathway in fibroblasts appears 
to be essential for executing a senescence program in vitro 
[212–214]. In ECs, senescence leads to the development of 
a dysfunctional phenotype, which promotes impaired tis-
sue function by acquiring pro-oxidant, pro-inflammatory, 
and pro-thrombotic features in addition to irregular blood 
pressure regulation and cell cycle arrest [203, 215]. An 
accumulation of senescent cells has been regarded to be 
a significant contributor to cardiovascular disease in an 

aging population [215]. The expression of the cell cycle 
suppressors p53 and p21 in arteries of healthy individuals 
correlates with age [216, 217] and is even more increased 
in vessels from hypertensive patients [218], suggesting 
a link between cell cycle arrest (senescence), aging, and 
cardiovascular disease. Additionally, it has been claimed 
that p16 levels are increased in aged human veins and aged 
mouse aorta tissue [216, 219]. Importantly, an increased 
expression of p53 has been associated with several age-
related conditions such as heart failure, atherosclerosis, 
obesity, and diabetes (reviewed in [215]). Indeed, global 
expression of a mutated, constitutively active form of 
p53 in mice resulted in a significantly decreased tumor 
incidence but decreased survival due to early onset of 
age-related defects such as impaired tissue regeneration, 
general organ atrophy, osteoporosis, and reduced stress 
tolerance [220]. Moreover, endothelial-specific deletion 
of p53 in mice has been shown to have no impact on the 
normal development of vessels, but improves cardiac 
neovascularization and regeneration after heart failure 
[191]. In another study, a global increased gene dosage 
of p53 in mice, resulting in normally regulated basal but 
increased stress-response levels, did not result in increased 
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prevalence of age-related diseases but in normal aging and 
enhanced resistance to chemically-induced fibrosarcomas, 
papillomas, and urinary bladder carcinomas [221, 222]. 
Similarly, in a mouse cardiac regeneration model, signifi-
cantly elevated p53 levels were detected in heart tissue of 
young animals, while in adults only, a mild induction was 
observed [192]. Collectively, these data suggest that both 
the intensity (strong or weak) and the dynamics (transient 
or sustained) of p53 induction may be relevant to pro-
mote age-related defects. Interestingly, in mice contain-
ing an increased gene dosage of Tp53, p21 levels were 
also increased compared to WT animals upon induction 
of DNA damage [222], pointing out the link between p53 
and p21 [223, 224]. Using a similar approach, mice con-
taining an increased gene dosage of Cdkn1a display an 
indistinguishable cancer protection phenotype to mice 
containing an additional allele of Tp53 [225], indicating 
that p53-maintained genetic stability may be largely medi-
ated by p21. However, p21 expression can also be induced 
independently of p53 [209]. Indeed, several studies have 
reported that an Ras/MAPK/ERK stimulus induces p21 
expression independently of p53 [6, 226–228]. Therefore, 
both anti and pro-mitogenic pathways can induce the 
expression of the genomic guardian p21.

Aging is also a strong inducer of p21 expression (Fig. 4). 
For instance, a comparison between ECs obtained from 
young and aged human antecubital veins or brachial arter-
ies revealed a 119% (veins) and 23% (arteries) increase in 
p21 expression with aging [216]. Similarly, the number of 
p21-positive ECs in the mouse aorta has been reported to 
be increased by approximately twofold in aged compared 
to young mice [219]. Of note, a significant baseline expres-
sion in normal blood vessels has been observed only of p21, 
while expression of the other common senescence/aging 
marker p16 has been demonstrated to be barely detectable 
in ECs from young adult mice and humans [216, 219, 229]. 
This correlates with data obtained from scRNAseq analyses 
of mouse lung ECs [168, 169]. The differential effects of 
transient and continued p21 expression in the growth arrest 
of ECs during developmental and tumor angiogenesis will 
be also interesting to explore. In most tip cells, the detected 
p21 expression [6] is likely only transient as the tip cell 
state has been suggested to be transient and highly dynamic 
[6, 56]. On the other hand, a high and persistent mitogenic 
stimulus, such as after deletion of Dll4 or the Notch regula-
tor Rbpj, results in the long term and sustained expression of 
p21 [6], which could lead to an irreversible cell cycle arrest 
or senescence. Currently, the role of Notch in EC senescence 
remains to be understood as both activation [230, 231] and 
inhibition [232] of Notch have been shown to promote a 
pro-senescent phenotype of ECs. However, Notch signal-
ing exerts context and time-dependent effects in a grow-
ing vasculature which needs to be taken into account when 

interpreting these results. Interestingly, it has been reported 
that the increased expression of the Notch target gene HES1 
was essential for quiescent cells to be able to resume cell 
cycle in response to mitogenic stimuli and to prevent the 
senescence of human fibroblasts and tumor cells [171]. If a 
similar mechanism occurs in ECs, these results would sug-
gest that quiescent and proliferating stalk ECs, which have 
higher levels of Notch activation [1, 30], would be more 
resistant to acquiring a senescent phenotype. On the other 
hand, tip cells having lower or inactive Notch signaling 
would be more prone to acquiring a senescent phenotype, if 
they remain in their tip cell position and therefore continu-
ously express p21. Interestingly, besides expressing p21 and 
exiting cell-cycle, arrested tip cells also have some other 
senescent cell-like features, such as larger size than stalk 
cells, larger biosynthetic activity, and expression of secreted 
molecules, such as Esm1, Apln, Angpt2, and higher glyco-
lytic activity [3, 41, 65, 233]. It is still to be determined if 
they also have other markers of senescence, such as higher 
senescence-associated beta-galactosidase activity or reactive 
oxygen species.

In contrast to angiogenic vessels, Dll4-signaling blockade 
of adult organs vessels seems to induce a transition from 
quiescence to proliferation [234], being yet unclear if hyper-
mitogenic stimulus-associated senescence is also increased 
after this treatment. Similarly, endothelial-specific deletion 
of Rbpj in adult mice results in an increase in coronary ves-
sel density and ERK1/2 phosphorylation; however, this leads 
to cardiac hypertrophy and heart failure [235].

Differences in senescence mechanisms between physi-
ological angiogenesis, vascular homeostasis, and pathologic 
settings in young and aged tissues remain to be understood. 
Indeed, aging has been shown to affect tissues differently 
dependent on their exposure to stressors or organ-specific 
diseases and therapies [206]. Distinct organ vascular beds 
may also have marked differences in senescence frequen-
cies and mechanisms. In regenerating tissues, the presence 
of senescent cells even appears to be crucial for adequate 
healing of the injury [176, 236], suggesting that not only the 
presence but also the clearance of senescent cells is neces-
sary for regeneration. Indeed, effective immunosurveillance 
and clearance of senescent cells appear to be a critical factor 
in limb regeneration [205]. In addition, therapeutic drugs 
which specifically target senescent cells (senolytics) could 
be applied to improve angiogenesis and regeneration [206]. 
However, more research is necessary as it has been reported 
that removal of senescent cells both improves [237] or 
impairs [176, 236] tissue regeneration. A recent study even 
suggests that p16-positive ECs in the liver and other organs 
are essential for a healthy lifespan as their removal leads to 
a disruption of the blood–tissue barrier [238]. Collectively, 
these findings demonstrate the need for a better understand-
ing of the molecular mechanisms controlling the reversible 
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or irreversible induction of cellular arrest and how it can 
be modulated in therapeutic settings. The above findings 
also highlight the need for better genetic and imaging tools 
to probe cardiovascular proliferation and senescence with 
higher cellular and temporal resolution in health and disease.

Vascular anomalies caused by abnormal 
mitogenic stimulation

Aberrant cell proliferation as a result of genetic mutations 
leads to uncontrolled tissue growth and is a key feature 
of cancer [44]. Pathologies associated with dysregulated 
EC proliferation or differentiation are summarized under 
the umbrella term “vascular anomalies”, which is further 
divided into benign and malign vascular tumors and vascular 
malformations [11, 12, 239]. One of the main differences 
between a tumor and a malformation is that malformations 
are mainly caused by congenital or sporadic developmental 
abnormalities present at birth, while vascular tumors arise 
in adults [11, 12, 239, 240]. One exception from this rule is 
the benign hemangioma which is a skin birthmark formed 
by excessive blood vessel growth. Although the molecular 
basis for it is still unknown and likely multifactorial, it has 
been suggested that this benign vascular tumor occurs due to 
congenital defects [12]. On the other hand, malignant vascu-
lar tumors, named angiosarcomas, arise spontaneously and 
later in life, due to a later sporadic event or as result from 
exposure to radiation or toxic chemicals [240]. Due to their 
relatively low occurrence and multiple causes and forms, 
treatment options, especially for life-threatening vascular 
anomalies, are mostly limited to currently used anti-angio-
genic drugs or surgical intervention, and additional research 
is required to identify specific targetable mechanisms [11, 
240, 241]. Although they occur sporadically, familiar forms 
of vascular anomalies have been key to the discovery of the 
pathophysiological causes. Inherited loss-of-function genetic 
mutations have been found in bone morphogenic protein 
(BMP) and transforming growth factor-β (TGF-β) recep-
tor genes in hereditary hemorrhagic telangiectasia (HHT) 
[242–246]; several CCM genes causing cerebral cavernous 
malformations [247–249], glomulin in inherited glomu-
venous malformations (GVM) [250], RASA1 in capillary 
malformation–arteriovenous malformations (CM–AVM) 
[251], and weak germline gain-of-function (GOF) mutations 
in the TIE2/TEK gene appear to be the main genetic cause of 
capillary–venous malformations [252, 253].

With the advent of next-generation sequencing, it has 
been possible to identify also the genetic causes of sporadic 
and mosaic vascular anomalies [11]. For instance, it was 
shown that a somatic mutation in the TIE2/TEK gene occurs 
in 60% of these vascular anomalies resulting in a stronger 

increase in receptor activity compared to the inherited TIE2 
mutations [254]. Germline mutations cannot cause a signifi-
cant increase in receptor activity; otherwise, it would not 
enable vascular and embryo development and the subsequent 
germline transmission. On the other hand, somatic mutations 
occurring sporadically in vascular progenitor cells need to 
cause a stronger change in protein activity to induce a sig-
nificant selective or competitive advantage of the mutant 
cells and hence a significant malformation. For this reason, 
sporadic malformations can be even more aggressive and 
deleterious than germline malformations.

Most vascular malformations inducing mutations identi-
fied so far result in the direct or indirect activation of the 
PI3K/AKT/mTOR or RAS/MAPK/ERK pathways [11] 
(Fig. 5a, b). This is no surprise as these two pathways belong 
to the most dysregulated pathways found in human cancers 
and are highly relevant for the control of cell growth [255, 
256]. Both pathways can be activated by various growth 
factor receptor subtypes including receptor tyrosine kinases 
(RTKs) or G protein-coupled receptors (GPCRs) [63, 255] 
and by the transactivation of RTKs by GPCRs [257–260]. 
However, even though the activation of PI3K signaling often 
results in proliferative venous malformations, the increase 
in RAS/MAPK/ERK activity often induces non-proliferative 
arterial-venous malformations which is in agreement with 
the bell-shaped response to mitogenic/VEGF/ERK signaling 
[6] discussed above.

Gain-of-function mutations of the RTK TIE2/TEK, which 
also leads to the activation of PI3K signaling, are respon-
sible for around half of venous malformations in humans 
[261]. Rapamycin, an inhibitor of the PI3K/AKT/mTOR 
pathway, significantly improved the quality of life and 
reduced bleeding, lesion size, intravascular coagulopathy, 
and functional and esthetic impairment of patients suffer-
ing from TIE2-mutated venous malformations [262]. Impor-
tantly, about 30% of patients suffering from venous malfor-
mations without a TIE2/TEK mutation have been discovered 
to contain a gain-of-function mutation in the PI3KCA gene, 
showing the central role of this pathway in this type of vas-
cular anomalies [263, 264]. Recently, it was demonstrated 
that pharmacological inhibition of PI3K also prevents VMs 
in a mouse model of HHT caused by Alk1 inactivation or 
BMP9/10 ligand blockade [265]. Similarly, VMs induced 
by EC-specific deletion of Eng (encoding for endoglin) were 
partly normalized by blocking PI3K [266], highlighting the 
role of the BMP/TGF-β pathway in the formation of VMs. 
Notably, genetic deletion of Eng only in veins and capillar-
ies but not in arteries has been shown to be sufficient for the 
development of malformations in the vasculature [267]. Fur-
thermore, endothelial-specific activation of the PI3K path-
way induced by deletion of Pten, an inhibitor of PI3K activa-
tion, has been shown to promote vascular hyperplasia in vivo 
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[268]. For additional information on the role of the PI3K 
pathway in vascular malformations, the reader is directed to 
recent review articles [252, 261, 269, 270].

In contrast to the PI3K/AKT/mTOR pathway, observed 
mutations in the RAS/MAPK pathway generally induce arte-
riovenous malformations (AVMs). AVMs are morphologi-
cally characterized by the absence of a functional capillary 
network that links arteries and veins, resulting in a direct 
arterial-venous connection (Fig. 5a, b). In cerebral AVMs, 
for instance, most of the pathology arises from abnormal 

arterial-venous direct connections that are prone to leakage 
or even rupture leading to hemorrhage and the subsequent 
progressive development of the disease [271]. Several sign-
aling mechanisms have been identified to influence arterial-
venous fate decisions during development [272]. Early in 
vascular development, ECs begin to differentiate towards an 
arterial or venous lineage even in the absence of blood flow 
[75, 76, 273–275]. Interestingly, VEGF and downstream 
ERK1/2 activation seem to be strongly activated in cells 
directed towards arterial fate, while PI3K activation and 

Fig. 5   Abnormal endothelial 
signaling driving vascular 
malformations. a Artery–vein 
specification is ensured by 
separate, counteracting arterio-
venous signaling pathways. The 
adequate commitment to either 
the arterial or venous fate allows 
the proper formation of a hierar-
chical network of blood vessels 
with a capillary plexus between 
the arterial and venous vessels. 
b Abnormal endothelial signal-
ing results in improper AV dif-
ferentiation and the formation of 
a direct artery–vein connection 
without an intermediate capil-
lary network. These aberrant 
arteriovenous connections lead 
to vascular dysfunction and are 
prone to rupture

ERK / NOTCH / CXCR4PI3K / TIE2 / Endoglin

Signaling activity profile for venous/arterial differentiation

Proper arterial and venous fate specification

ERK / NOTCH / CXCR4

Abnormal signaling activity profile in vascular malformations
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General vessel enlargement

Prone to rupture

Caused by mutations that directly or indirectly activate 
RAS/MAPK or PI3K/AKT/mTOR pathways

a

b
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Induced by disordered vessel-specific signaling
Possible occurrence in any region of a vascular network
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ERK1/2 suppression drive venous fate decision [274–278] 
(Fig. 5a). However, contradictory results have been obtained 
in a recent study conducted in zebrafish where inhibition of 
ERK1/2 activity prevented sprouting angiogenesis but not 
initial artery differentiation [64]. Still, it is generally consid-
ered that VEGF, not necessarily ERK activity, is a key factor 
for arterial differentiation [64, 279].

Besides regulating MAPK/ERK activity, VEGF has also 
been shown to be responsible for the activation of Notch, a 
major pathway essential for arterial development and dif-
ferentiation [30]. Indeed, VEGF induces the expression of 
the Notch ligand Dll4, which levels are the highest in arterial 
and sprouting tip ECs [1, 280] and lower in capillaries and 
absent in veins [79]. Absence of Dll4-Notch signaling results 
in the specific loss of the arterial genetic program [74–76, 
274, 281]. Conversely, increased levels of Dll4 in develop-
ing embryos lead to ectopic induction of arterial markers in 
venous ECs [282]. It is, however, curious that Notch induces 
arteriogenesis and, at the same time, blocks ERK signal-
ing, whereas VEGF induces ERK signaling and Notch. It is 
therefore likely that other yet unidentified factors, controlled 
by Notch and not ERK signaling, play an important role.

Recently, data obtained in the mouse retina and zebrafish 
embryo angiogenesis models indicate that high Cxcr4/Notch 
expressing tip ECs migrate against the blood flow to form 
arteries, thereby providing a more dynamic mechanistic 
insight into the role of Cxcr4 and Dll4-Notch signaling in 
arterialization [283, 284]. A similar genetic signature and 
mechanism were identified in capillary pre-arterial ECs in 
developing mouse hearts by scRNAseq and genetic line-
age tracing analysis [285]. Genetic deletion experiments in 
developing coronary vessels confirmed the importance of 
Dll4-Notch signaling for the formation of coronary arter-
ies [286, 287]. Collectively, these studies suggest that pre-
arterial capillaries contain pre-determined endothelial cells, 
having an arterial signaling and genetic profile consisting 
of high VEGF/Notch/Cxcr4 activity that commits them to 
form arteries.

These findings obtained in distinct angiogenesis model 
systems are very important to understand the consequence 
of mutations causing human AVMs. As an example, a recent 
study has shown that ECs from human brain AVMs have 
increased Ras and Notch activity, suggesting that the under-
lying cause of AVMs may be excessive arterialization of 
blood vessels [288]. Constitutive activation of Notch signal-
ing in the mouse postnatal veins and capillaries also leads to 
AVMs [289] (Fig. 5b). A recent report has shown that Notch 
activation results in upregulation of the arterial marker Con-
nexin 37 (Cx37) and the cell cycle inhibitor p27, inducing 
cell cycle arrest and thereby halting endothelial prolifera-
tion [186]. However, Cx37 KO and Cdkn1b KO mice are 
viable and reach adulthood without any major arteriogenesis 
or vascular defects [120, 290], suggesting the existence of 

alternative Notch-dependent mechanisms. Still, it remains 
to be fully investigated if the cell cycle arrest during arterial 
cell differentiation is merely a consequence or causative of 
arterialization and which are the underlying mechanisms. A 
recent study showed that overexpression of CoupTFII can 
impair arterialization by simply inducing cell cycle genes in 
pre-arterial ECs [285].

It is clear from all the above studies that pathways com-
monly associated with the regulation of cell proliferation 
can also regulate cell differentiation, depending on the 
dose of signaling and cellular context. It is plausible that 
MAPK activating mutations in AVMs cause more differ-
entiation than proliferation defects. Sporadic activating 
mutations in RAS pathway genes or its regulators are very 
frequent and cause RASopathies affecting more than 1 in 
1000 people. RASopathies are frequently associated with 
several tissue development abnormalities, including vascu-
lar malformations [291]. However, rarer mutations induce 
vascular anomalies not associated with other tissue abnor-
malities. This is the case for loss-of-function mutations in 
Rasa1, a gene coding for an important negative regulator 
of Ras activity. Mutations in this gene have been discov-
ered in patients suffering from CM–AVM and Parks-Weber 
Syndrome [251, 292, 293]. Yet, data in these studies are 
still relatively descriptive and are still unclear how the 
reported mutations affect EC signaling or growth. Somatic 
activating mutations in the gene GNAQ, which encodes for 
the G protein subunit Gq/11 inducing MAPK activation, 
have been associated also with vascular anomalies such 
as capillary malformations and Sturge–Weber syndrome 
[11, 294]. When transfected into cells, the mutated vari-
ant of GNAQ, however, only induced a mild activation of 
MAPK signaling, and no effect on endothelial prolifera-
tion was described [294]. Although activating mutations 
of HRAS can result in increased ERK phosphorylation and 
uncontrolled EC proliferation, resulting in cerebrovascular 
malformations in a mouse model [295], KRAS mutations 
observed in human brain malformations did influence ERK 
activation and angiogenic marker expression but not EC 
proliferation [288].

Besides germline and congenital vascular anomalies, 
present at birth, there are also another category of vas-
cular anomalies named as angiosarcomas. These usu-
ally develop much later in life as a result of exposure to 
toxic chemicals, radiation therapy or damaging UV light 
[296]. Angiosarcomas are frequently found in the head 
and neck vessels and less frequently in breast, liver, and 
heart vessels. They are usually highly proliferative and 
can metastasize to other organs, resulting in significant 
morbidity and mortality [297]. Treatment is usually non-
specific and aimed at inhibiting general cell proliferation 
pathways. Recent developments in DNA sequencing have 
uncovered a range of genetic mutations in genes important 
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for the regulation of angiogenesis. A recent review article 
has listed a collection of studies reporting genes and their 
occurrences of mutations in angiosarcoma tumor tissues, 
such as KDR (the gene was mutated in 5.9–7% of analyzed 
tumor samples), PLCG1 (2.9–20%), PTPRB (17.6–25.6%), 
KRAS (2.6–2.9%), HRAS (5.5–11.8%), NRAS (5.5–5.9%), 
BRAF (11.8%), MAPK1 (2.9%), NFL1 (2.6–2.9%), 
PI3KCA (2.6–16.7%), TP53 (4–35%), CIC (2–6%), ROS1 
(3%), and CDKN2A (26.5%), as summarized in [296]. Sev-
eral of these mutations found in angiosarcomas directly 
or indirectly affect the MAPK pathway [298]. Further-
more, frequent amplifications of MYC or VEGFR3 were 
detected in radiation-induced angiosarcomas [299, 300]. 
This information is being used to develop more targeted 
pharmacological approaches against angiosarcoma [296, 
297]. Interestingly, through genetic deletion experiments 
in mice, a link between angiosarcomas and Cdkn genes 
was suggested [122]. Specifically, in mice older than 
28  weeks containing various combinations of global 
Cdkn1a/Cdkn1b deletion in addition to a Cdk4 mutation 
(i.e., hetero- or homozygous deletion/mutation), between 
9 and 56% of all spontaneously formed tumors were angio-
sarcomas [122, 161]. Furthermore, 23% of all tumors in 
Cdkn2a-null mice have been shown to be angiosarcomas 
[156]. Collectively, this proves the significance of Cdkn 
gene function in maintaining endothelial homeostasis and 
quiescence, and demonstrates that loss-of-function muta-
tions or deletions within these genes or pathways can be 
potent drivers of disease.

Conclusion

The concept that ECs in a growing vessel have differ-
ent sprouting and proliferative abilities has been intro-
duced 15 years ago [55], but it took many more years of 
intense research by several groups to identify the most 
basic molecular mechanisms involved in the differentia-
tion of tip and stalk cells, a process of high relevance for 
angiogenesis. It is however interesting to notice that the 
large majority of these studies were conducted in zebrafish 
embryos or in the mouse retina angiogenesis system, and 
little is known about endothelial heterogeneity and the 
dynamic behavior of tip and stalk cells in other organ ves-
sels. The field has in general assumed that the most basic 
molecular and cellular mechanisms are highly conserved 
and should be involved in all events of sprouting angio-
genesis even in other organs and pathological contexts, 
but more experimental evidence will be needed to confirm 
this. This is of special relevance, since existing evidence 
points towards significant discrepancies between zebrafish 
intersomitic vessel sprouting and mouse retina angiogen-
esis sprouting. The most important of it is the fact that 

the majority of mouse retina endothelial tip cells do not 
proliferate [6, 55], whereas most zebrafish intersegmental 
vessel tip cells proliferate, while they migrate [80]. With 
the advent of scRNAseq, it is now possible to discover 
signatures of sprouting and proliferative cells in virtually 
any developmental context and organ. Even though the 
field has initially focused in scRNAseq analysis of wild-
type adult organ vessels [7, 169, 301–303], the number of 
different ongoing scRNAseq studies and developmental 
contexts analyzed is rapidly increasing and already some 
studies provided an unprecedented level of cellular reso-
lution on the molecular mechanisms driving developmen-
tal angiogenesis [285, 304]. The combination of targeted 
functional genetics with scOMICS will certainly change 
our understanding of vascular cell heterogeneity and the 
process of angiogenesis.

Modulating the already identified mechanisms of angio-
genesis to induce or inhibit functional blood vessel forma-
tion in ischemic vascular disease or in cancer has yet to show 
a very significant clinical benefit [102, 108, 305]. The most 
successful and widespread clinical use of anti-angiogenesis 
has been in the treatment of ocular disease [22, 306]. Sin-
gle pathway targeting anti-angiogenesis therapies in cancer 
face the problem of resistance or alternative modes of vessel 
growth, and combinatorial targeting seems to be the best 
approach [23, 41], even though, in most cases, tumors can 
continue to grow, or even become more metastatic in the 
absence of angiogenesis [307, 308]. Vascular normalization 
for effective chemotherapeutics delivery is another use of 
anti-angiogenesis, but so far with relatively limited use [23].

It is clear that is far easier to block angiogenesis, than 
to promote it. Waking up a dormant vasculature and induc-
ing effective and functional vascular growth is far more 
challenging but also of great potential clinical benefit. 
Simply promoting EC proliferation may not be the best 
way to achieve effective tissue vascularization and heal-
ing. Recently, administration of Cxcl12 to injured hearts, 
a chemokine that binds the receptor Cxcr4 and is key for 
EC chemotactic migration, has shown a significant effect 
on the development of collateral arteries in ischemic heart 
disease [309]. This study and others have shown that to 
effectively induce angiogenesis in the clinics, we will 
have to understand and mimic as much as possible the 
mechanisms used by developing tissues. Achieving the 
proper spatiotemporal mitogenic and sprouting balance 
with pharmacological compounds will be key [47]. But 
first, we need to understand what regulates the bell-shaped 
response of endothelial cells to mitogenic stimulation and 
find ways to achieve a therapeutic equilibrium to achieve 
maximal sprouting and proliferation.

It is interesting to note that the vast majority of muta-
tions detected in patients suffering from vascular malfor-
mations or angiosarcomas affect relatively few genes or 
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key downstream signaling mechanisms. Recapitulating 
or modeling the timing and mosaic spatial occurrence of 
these human mutations in lower organisms will be key to 
analyze and understand the cascade of underlying signal-
ing and cellular events triggered by a given mutation.

Progress in the understanding and treatment of cancer, 
cardiovascular disease, and congenital vascular malforma-
tions will require the collaboration and coordinated efforts 
of developmental biologists, bioinformaticians, and clini-
cians. Different backgrounds, experimental approaches, 
and expertises need to be integrated to effectively uncover 
mechanisms of clinical relevance and develop new 
treatments.
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