
NUTS AND BOLTS

Identification of potential key genes and miRNAs involved
in Hepatoblastoma pathogenesis and prognosis

Taha Aghajanzadeh1
& Kiarash Tebbi1 & Mahmood Talkhabi1

Received: 12 August 2020 /Accepted: 15 September 2020
# The International CCN Society 2020

Abstract
Hepatoblastoma (HB) is one of the most common liver malignancies in children, while the molecular basis of the disease is
largely unknown. Therefore, this study aims to explore the key genes andmolecular mechanisms of the pathogenesis of HB using
a bioinformatics approach. The gene expression dataset GSE131329 was used to find differentially expressed genes (DEGs).
Functional and enrichment analyses of the DEGs were performed by the EnrichR. Then, the protein-protein interaction (PPI)
network of the up-regulated genes was constructed and visualized using STRING database and Cytoscape software, respectively.
MCODE was used to detect the significant modules of the PPI network, and cytoHubba was utilized to rank the important nodes
(genes) of the PPI modules. Overall, six ranking methods were employed and the results were validated by the Oncopression
database. Moreover, the upstream regulatory network and the miRNA-target interactions of the up-regulated DEGs were
analyzed by the X2K web and the miRTarBase respectively. A total of 594 DEGs, including 221 up- and 373 down-regulated
genes, were obtained, which were enriched in different cellular and metabolic processes, human diseases, and cancer.
Furthermore, 15 hub genes were screened, out of which, 11 were validated. Top 10 transcription factors, kinases, and
miRNAs were also determined. To the best of our knowledge, the association of RACGAP1, MKI67, FOXM1, SIN3A, miR-
193b, andmiR-760 with HBwas reported for the first time. Our findingsmay be used to shed light on the underlyingmechanisms
of HB and provide new insights for better prognosis and therapeutic strategies.
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Introduction

Hepatoblastoma (HB) is one of the most common liver ma-
lignancies in children, which originates from the undifferenti-
ated hepatic progenitor cells during embryogenesis and main-
ly affects infants under three years of age (Feng et al. 2019;
Yang et al. 2020). Although it is a rare neoplasm, accounting
for less than 1% of all pediatric tumors, it has increased nota-
bly in the last three decades (Carrillo-Reixach et al. 2020; De
Ioris et al. 2008).Modern imaging, surgical and chemotherapy
techniques have considerably improved the survival rates of
HB to the range of 70–80% (Czauderna and Garnier 2018).

Despite these advances, major challenges remain undissolved
as the 3-year event-free survival rate for advanced tumors is
only 34%, and prognosis for patients with advanced or
chemotherapy-refractory disease is still relatively poor
(Semeraro et al. 2013; Sumazin et al. 2017). Furthermore,
the molecular basis of the disease is largely unknown, and
the rarity of the HB further complicates the study of the dis-
ease (Bell et al. 2017; Magrelli et al. 2009). Therefore, it is
vital to further explore the molecular mechanisms of HB to
develop more effective treatment methods and potential
markers for early diagnosis.

Microarray analysis has been widely used to produce huge
quantities of gene expression and other functional genomics
data, which can help demonstrate crucial biomarkers, path-
ways, and gene functions associated with diseases (Mokhlesi
and Talkhabi 2020; Talkhabi et al. 2017). Microarray data can
be obtained from online repositories such as the NCBI Gene
Expression Omnibus (GEO), which provides different forms
of high-throughput functional genomic data such as microar-
ray and next-generation sequencing (NGS) (Barrett et al.

Taha Aghajanzadeh and Kiarash Tebbi contributed equally to this work.

* Mahmood Talkhabi
m_talkhabi@sbu.ac.ir

1 Department of Animal Sciences andMarine Biology, Faculty of Life
Sciences and Biotechnology, Shahid Beheshti University,
Tehran, Iran

https://doi.org/10.1007/s12079-020-00584-1

/ Published online: 13 October 2020

Journal of Cell Communication and Signaling (2021) 15:131–142

http://crossmark.crossref.org/dialog/?doi=10.1007/s12079-020-00584-1&domain=pdf
mailto:m_talkhabi@sbu.ac.ir


2012). Moreover, bioinformatic tools can be implemented for
predicting miRNA-target gene interactions, as many studies
h av e i n d i c a t e d t h a t m iRNAs a r e i n vo l v ed i n
hepatocarcinogenesis (Callegari et al. 2015; Chou et al. 2018).

In the present study, we applied a microarray gene expres-
sion profile to identify the potential TFs, protein kinases, and
hub genes involved in hepatoblastoma. Thus, differentially
expressed genes (DEGs) were analyzed between HB and non-
cancerous liver tissue samples. Protein-protein interaction
(PPI) and upstream regulatory networks were constructed for
the up-regulated genes, and the hub genes were screened and
validated with/by other resources. Also, we performed func-
tional and pathway enrichment analyses for the DEGs and hub
genes. Finally, miRNA-target gene interactions were discov-
ered. These findings/results can be applied to better under-
stand underlying molecular mechanisms of the progression
of HB and provide new insights for their prognosis and ther-
apeutic strategies.

Materials and methods

Microarray data

The gene expression profile dataset with the accession number
GSE131329 was downloaded from the NCBI Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/) (Edgar et al. 2002). The array data, based on the
GPL6244 platform (Affymetrix Human Gene 1.0 ST Array),
contains 67 samples, including 53 HB and 14 noncancerous
liver tissue samples.

DEGs identification

The GEO online tool GEO2R (http://www.ncbi.nlm.nih.gov/
geo/geo2r/) was used to screen the DEGs. GEO2R is an online
tool that allows users to compare two or more groups of
samples in a GEO series (Barrett et al. 2012). We divided
the samples into cancerous and noncancerous groups and
compared them by GEO2R. Benjamini and Hochberg false
discovery rate method was applied for p value adjustment to
help correct false-positives. The cut-off criteria for DEGs se-
lection were defined as |log2fold-change (FC)| ≥1.5 and ad-
justed p value <0.05.

Gene ontology and pathway enrichment analyses

Enrichment analysis is a commonly used approach for analyz-
ing gene sets generated by genome experiments and classify-
ing characteristic biological attributes. To investigate the
probable biological functions and signaling pathways corre-
lated with the DEGs, gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were

performed using EnrichR (https://amp.pharm.mssm.edu/
Enrichr/), a comprehensive web-based resource for analyzing
gene sets (Ashburner et al. 2000; Kanehisa and Goto 2000;
Kuleshov et al. 2016). An adjusted p value <0.05 was consid-
ered statistically significant. Visualization of the top 10 results
of the analyses was performed using GraphPad Prism version
8.2.1 for Windows (http://www.graphpad.com).

Gene regulatory network analysis

The eXpression2Kinases (X2K) (https://amp.pharm.mssm.
edu/X2K/) is a web-based application that computationally
predicts the involvement of upstream cell signaling pathways
and identifies the regulatory associations between transcrip-
tion factors(TFs), protein kinases, and their target genes
(Clarke et al. 2018). We utilized X2K to analyze the upstream
regulatory network responsible for the regulation of gene ex-
pression of the up-regulated genes with default parameters.
Top 10 most enriched TFs and kinases were ranked based
on hypergeometric p value, and the inferred network was con-
structed and visualized.

PPI network and module screening

The potential interactions between proteins were demonstrat-
ed by submitting the up-regulated genes list into the Search
Tool for the Retrieval of Interacting Genes (STRING) data-
base (https://www.string-db.org), which collects and
integrates information of functional interactions between
expressed proteins (Szklarczyk et al. 2019). The high confi-
dence score (0.7) was set as the minimum required interaction
score. The PPI network was visualized using Cytoscape soft-
ware version 3.7.2 (https://cytoscape.org/) (Shannon et al.
2003). In addition, the Molecular Complex Detection
(MCODE), a Cytoscape plug-in, was used to identify more
significant modules of the PPI network. The criteria were set
as: Degree Cutoff = 2, Node Score Cutoff = 0.2, K-Core = 2,
and Max. Depth = 100 (Bader and Hogue 2003).

Hub genes analysis and validation

To predict the hub genes, we used Cytoscape plug-in
CytoHubba for ranking and exploring important nodes in the
PPI network modules (Chin et al. 2014). Top 40 genes were
selected according to centrality measures including Degree,
Closeness, Betweenness, Stress, Radiality, and EcCentricity.
Any overlap from the six ranking methods was regarded as a
hub gene. An online tool (http://bioinformatics.psb.ugent.be/
webtools/Venn/) was used to extract the overlapping genes.
To validate the results, we compared the expression of the hub
genes in HB and normal liver tissue samples using
Oncopression (http://oncopression.com/), a web-based inte-
grated gene expression profile that uses single sample
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normalization method UPC (Lee and Choi 2017). GraphPad
Prism was utilized for visualizing the results. GO and KEGG
enrichment analyses were performed for the hub genes using
EnrichR with a criterion of an adjusted p value <0.05.

miRNA-target gene identification

miRTarBase is a database containing miRNA-target interac-
tions (MTIs) that are validated experimentally by reporter as-
say, western blot, microarray, and next-generation sequencing
experiments (Chou et al. 2018). To identify the MTIs, we
submitted the up-regulated genes into EnrichR and exported
the results from the miRTarBase section. An adjusted p value
<0.05 was considered as the cut-off value.

Results

Identification of HB-related genes

A total of 594 DEGs, including 221 up-regulated (HB-related
genes) and 373 down-regulated genes (normal tissue-related
genes), were obtained comparing HB and normal tissue sam-
ples. Top 10 down-regulated genes were CYP2C8,
CYP2B7P, CYP2B6, C9, HSD17B13, F9, SLC22A1, CRP,
CYP2A13, and CYP2A7. In addition, top 10 up-regulated
genes were DKK1, REG3A, GPC3, DLK1, SNORD113–4,
LGR5, AFP, EPCAM, PEG10, and SNORD114–26.

GO function and KEGG pathway enrichment analysis of
HB-related genes.

GO enrichment analysis is classified into three functional
categories: biological process (BP), molecular function (MF),
and cellular component (CC). Here, top 10 enriched GO and
KEGG were determined (Fig. 1). These results were mainly
associated with the following list for up-regulated and down-
regulated genes respectively: cellular processes and biological
regulation, cellular and metabolic processes for BP; kinase
activity, catalytic activity for MF; spindle and chromosome,
organelles especially microbody for CC; human diseases and
cellular processes, metabolism and cancer for KEGG.

Construction of PPI and upstream regulatory network

The PPI network of the up-regulated genes was screened via
STRING and Cytoscape, and included 123 nodes (genes) and
919 edges (interactions) (Fig. 2a). CDK1, CCNB1, CCNA2,
HIST1H2BB and PLK1 had the highest number of connectiv-
ities with other upregulated genes. We also applied X2K to
construct and visualize the upstream regulatory network of the
up-regulated genes produced between top 10 transcription
factors and kinases, and their intermediate proteins (Fig. 2b).
These TFs and kinases were connected to 18 intermediate
proteins with an overall 323 edges. SIN3A, FOXM1, E2F4,

CEBPD and SOX2 were most important TFs that regulate
upregulated gene expression. In addition, CSNK2A1,
GSK3B, CDK1, MAPK13 and MAPK1 were identified as
most important kinases that control the expression of upregu-
lated genes (Fig. 2b).

Using MCODE, five modules were retrieved from the PPI
network constructed using upregulated genes (Fig. 3). Module
1 includes 54 nodes and 651 edges with a cluster score (den-
sity multiplied by the number of members) of 24.566 (Fig.
3a); Module 2, 7 nodes, 21 edges with score 7 (Fig. 3b);
Module 3, 4 nodes, 6 edges with score 4 (Fig. 3c); Module 4
and 5, 3 nodes, 3 edges with score 3 (Fig. 3d and e).

Hub genes selection

Using Cytohubba plug-in, 15 hub genes were identified from
the PPI network modules (Table 1). The functional annota-
tions of hub genes were performed by EnrichR. Top 10 GO
analysis results revealed that these genes were mostly
enriched in items regarding cell cycle for BP, kinase binding
and activity for MF, and spindle and cytoskeleton for CC.
Also, KEGG analysis demonstrated that the genes were sig-
nificantly enriched in terms associated with human diseases
and cell growth and death (Table 2). Moreover, to verify the
expression of candidate hub genes, Oncopression database
was utilized. Results confirmed that the expression of 11
hub genes in tumor samples is significantly higher than that
of normal samples (Fig. 4).

miRNA-target gene interactions

To find the MTIs, we used mirTarBase database from
EnrichR. Here, we listed the top 10 important miRNAs that
target the highest number of up-regulated genes (Table 3).
hsa-miR-34a-5p, hsa-miR-193b-3p, hsa-miR-760, and hsa-
miR-98-5p target 42, 27, 26 and 22 genes of the up-
regulated genes, respectively.

Discussion

Although the survival rates of HB are relatively high, the main
treatment methods being chemotherapy and surgical resec-
tion, present a great burden on the patient’s quality of life
(Czauderna and Garnier 2018). Additionally, the treatment
of high-risk patients is not satisfactory (Hiyama 2014).
Therefore, exploring the molecular mechanisms of HB is piv-
otal for early diagnosis and improved treatment.

To better understand the pathogenesis and development of
HB, we performed a bioinformatic analysis of microarray data
GSE131329, which included 53 HB and 14 noncancerous
liver tissue samples. Using GEO2R, we identified 221 up-
and 373 down-regulated genes, comparing HB and normal
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tissue samples (Barrett et al. 2012). Biological process analy-
sis of up-regulated DEGs showed that chromatin and nucleo-
some assembly, Wnt signaling pathway, cell cycle, and other
enriched terms, as shown in Fig. 1/(Fig. 1) might play key
roles in the progression of HB. It is well known that cell cycle
processes serve an essential role in the development of many
cancers (Evan and Vousden 2001). These genes are also in-
volved in the cellular composition of spindle and kinetochore,
which have critical functions in mitotic events (Sharp et al.

2000). Also, KEGG pathway analysis was enriched in tran-
scriptional misregulation in cancer, Wnt signaling pathway,
cell cycle, and p53 signaling pathway. Recently, researchers
have found the effects of Wnt signaling on cancer stem cells
and metastasis (Zhan et al. 2017). Mavila et al. revealed that
Wnt/beta-catenin signaling abnormality has the highest rate in
HB among human cancers (Mavila and Thundimadathil
2019). Moreover, many studies have been focused on cell
cycle regulators such as CDKs and PLKs, as attractive targets
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Fig. 1 Gene Set Enrichment and Pathway Analyses of the down- (a, b)
and up-regulated (c, d) genes. (a) and (c) indicate the top ten GO analysis
results (if any) of the DEGs. (b) and (d) indicate the top ten KEGG

pathway analysis results of the DEGs. BP: Biological Process, MF:
Molecular Function, CC: Cellular Component
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a

b c d e

Fig. 3 Graphic representation of Top five significant modules of the PPI network. (a) Module 1, (b) Module 2, (c) Module 3, (d) Module 4, (e) Module 5

a b

Fig. 2 A graphic representation of the networks based on Upregulated genes. (a) Protein- protein interaction (PPI) and (b) Upstream regulatory network
of the up-regulated genes. The color (in A) and size of nodes (in B) is proportional to their degree
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in cancer therapy (Otto and Sicinski 2017). In summary, some
of our results, especially the ones named above, are
established terms related to carcinogenesis and tumor prolif-
eration, thereby suggesting that our results may play key roles
in the occurrence and development of HB, and shed light on
the path of further research.

The PPI network was constructed and included 123 nodes
(genes) and 919 edges (interactions). The significance of the
PPI enrichment p value demonstrates that the proteins are at
least partially biologically connected as a group. From the
network, 5 modules were detected, and 15 genes were selected
as hub genes. Furthermore, we validated 11 hub genes using

Table 2 Gene Set Enrichment and Pathway Analyses of the Hub Genes

Biological Process Count Adj P value Cellular Component Count Adj P value

cell cycle G2/M phase transition 6 7.09E-07 spindle 5 8.19E-05

G2/M transition of mitotic cell cycle 6 1.35E-06 spindle midzone 3 3.05E-04

regulation of cell cycle process 5 8.13E-06 nuclear chromosome part 5 8.03E-04

mitotic cell cycle phase transition 6 9.99E-06 spindle microtubule 3 9.16E-04

DNA damage response, signal transduction
by p53 class mediator

4 2.94E-04 mitotic spindle 3 2.33E-03

anaphase-promoting complex-dependent
catabolic process

4 3.04E-04 condensed nuclear chromosome
kinetochore

2 2.57E-03

regulation of ubiquitin protein ligase activity 3 1.75E-03 spindle pole 3 4.12E-03

regulation of G2/M transition of mitotic cell cycle 4 2.42E-03 centrosome 4 1.73E-02

mitotic nuclear envelope disassembly 3 2.52E-03 microtubule 3 2.11E-02

nuclear envelope disassembly 3 2.59E-03 microtubule organizing center 4 2.21E-02

Molecular Function Count Adj P value KEGG pathway Count Adj P value

protein kinase binding 7 3.40E-05 progesterone-mediated oocyte maturation 5 2.39E-06

kinase binding 6 1.97E-04 systemic lupus erythematosus 5 5.29E-06

cyclin-dependent protein kinase activity 3 7.73E-04 alcoholism 5 1.60E-05

protein serine/threonine kinase activity 5 1.52E-03 oocyte meiosis 4 1.16E-04

histone kinase activity 2 4.34E-03 cell cycle 4 1.40E-04

protein kinase activity 5 5.07E-03 cellular senescence 4 2.58E-04

cyclin-dependent protein serine/threonine
kinase activity

2 4.50E-02 viral carcinogenesis 4 5.45E-04

Table 1 The selected Hub genes overlapping in all six centrality ranking methods

Gene Degree Closeness Betweenness Stress Radiality EcCentricity

CDK1 40 54 425.28385 10,828 4.57143 0.33333

AURKA 39 53.5 712.13238 10,850 4.55714 0.33333

CCNB1 37 52.5 292.22128 8338 4.52857 0.33333

CCNA2 35 51.5 235.17959 7338 4.5 0.33333

HIST1H4E 35 49.83333 72.79362 3918 4.31429 0.25

HIST1H2BB 34 49.33333 62.37444 3146 4.3 0.25

TOP2A 32 50 166.35268 5026 4.45714 0.33333

HIST1H3F 31 47.83333 13.79695 798 4.25714 0.25

HIST1H3H 31 47.83333 13.79695 798 4.25714 0.25

HIST1H3J 31 47.83333 13.79695 798 4.25714 0.25

PLK1 31 49.5 138.94383 3390 4.44286 0.33333

MKI67 30 47.83333 681.70006 7428 4.32857 0.33333

PBK 29 48.5 134.92199 2566 4.41429 0.33333

FOXM1 27 46.66667 787.57813 19,446 4.31429 0.33333

RACGAP1 26 45.5 1.85942 76 4.24286 0.33333
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Oncopression database: AURKA, CCNA2, CCNB1, CDK1,
FOXM1, HIST1H2BB, HIST1H3F, MKI67, PBK,
RACGAP1, TOP2A. MKI67 (Marker Of Proliferation Ki-
67) is usually used to detect and quantify cell proliferation.
Our BP analysis also revealed MKI67 to be involved in the
regulation of the cell cycle process. Earlier research has shown
thatMKI67 is significantly increased in thyroid cancer, gastric
carcinogenesis, breast cancer, and HCC (Cheah et al. 2008;
Griffiths et al. 2008; Smallridge et al. 2009; Von Minckwitz
et al. 2008). Cyclin family proteins bind and activate CDK
kinases and function as regulators of the cell cycle (Pagano
et al. 1992). Cyclin-A2 protein encoded by CCNA2, is a
member of the cyclin family that is used as a marker of cell
proliferation, similar to MKI67. It has also been shown that
dysregulation of CCNA2 is associated with the epithelial-
mesenchymal transition (Loukil et al. 2015). Previous studies
have indicated that the overexpression of CCNA2 is associat-
ed with the development of different cancers, including gastric
and ER+ breast cancer (T. Gao et al. 2014; Mrena et al. 2006).
Shin et al. have also shown that CCNA2 is significantly up-

regulated in HB, which is consistent with our findings (Shin
et al. 2011). Our BP analysis further indicate that CCNA2 is
enriched in G2/M transition of the mitotic cell cycle, binding
to CDK1 while cells transition from G2 to M phase (Pagano
et al. 1992). Cyclin-B1 (CCNB1) is also another member of
the cyclin family and regulates the cell cycle. Prior to the
present study, few studies have also addressed the association
of the up-regulation of CCNB1with HB (Bandopadhyay et al.
2016; Zhang et al. 2018b). GO and KEGG enrichment analy-
sis showed that CCNB1 is associated with the cell cycle (G2/
M transition), and early mitotic events including microtubule
organization, spindle pole assembly, and nuclear envelope
disassembly. Cyclin A2-Cdk1 triggers cyclin B1-Cdk1 acti-
vation and these complexes together bring about early mitotic
events (13). CDK1 (Cyclin Dependent Kinase 1), along with
some other CDKs, are involved in the progression of the cell
cycle, and it is noteworthy that there has been an extensive
research in the pursuit of drugs for CDK inhibitors for cancer
therapy in recent years (Malumbres et al. 2008). Goga et al.
demonstrated that CDK1 inhibitor treatment of MYC-driven
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Fig. 4 Hub genes expression analysis in normal and HB tissues. The
expression values are UPC-normalized, ranging from 0 to 1.0 where 0.0
indicates no expression and 1.0 the highest expression among other

genes. The expression levels of all hub genes in tumor samples were
significantly higher than normal samples, except for PLK1 and
HIST1H4E. The plot represents Mean with SEM. ****: p value <0.0001
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hepatoblastoma transgenic mouse models, decreased tumor
growth and prolonged their survival (Goga et al. 2007).

MF and CC analyses revealed that PLK1 (Polo Like
Kinase 1) is involved in protein serine/threonine kinase activ-
ity, spindle pole, and microtubule organizing center. Due to its
role in the cell cycle, PLK1 is involved in several cancers,
such as melanomas, lymphomas, and carcinomas in different
tissues (van de Weerdt and Medema 2006). Yamada et al.
have reported that PLK1 oncogene is overexpressed in HB
patients (Yamada et al. 2004). Plk1 promotes mitotic entry
events by activating Cyclin B-Cdk1 and centrosome matura-
tion in G2/M phase transition (14). BP analysis illustrated that
PLK1 is also enriched in nuclear envelope disassembly, reg-
ulation of ubiquitin protein ligase activity, and anaphase-
promoting complex-dependent catabolic process.

Aurora Kinase A, a protein serine/threonine kinase that is
encoded by the AURKA gene, is involved in spindle forma-
tion and chromosome segregation (Goos et al. 2013). It begins

to accumulate at centrosomes in the S phase, contributes to
activation of the Cyclin B-Cdk1 complex, and is activated at
the boundary between the G2 and M phases (Nikonova et al.
2013). Katsha et al. showed that AURKA controls STAT3
activation by regulating the expression and phosphorylation
of JAK2 in vitro and has essential roles in gastric and esoph-
ageal cancers (El-Rifai 2014). In another study, it is reported
that the overexpression of miR-26a-5p repressed HB cell pro-
liferation and colony formation through its inhibition of the
oncogenic LIN28B–RAN–AURKA pathway (Zhang et al.
2018c). RACGAP1 and TOP2A were two other hub genes,
enriched in protein kinase binding according to MF analysis.
RACGAP1 encodes a GTPase-activating protein (GAP), a
component of the centralspindlin complex that is required
for the contractile ring formation during cytokinesis (21).
Overexpression of RacGAP1 was observed in the gastric can-
cer cells, with a significant correlation with age, tumor size,
and lymph node metastasis (Saigusa et al. 2015). Another

Table 3 The experimentally
validated microRNA-gene
interactions

miRNA adjPval Target genes

hsa-miR-6822-3p 6.76E-19 H2AC13, H3C12, H2BC13, H2AC14, H2AC21, H3C15, H3C1, H2AC8,
H2BC7, H3C7, H2AC7, H2BC9, H3C10, H2BC8, H2BC3, H3C13,
H3C2, H3C14, H1–5, H3C4, H3C6

hsa-miR-760 1.27E-17 H3C12, MAGED1, H2BC13, H2AC21, AURKA, H3C1, NT5DC2, H3C7,
H2AC8, H2AC7, H3C10, H3C2, H3C4, H1–5, H3C6, H2AC13, H2AC14,
HMGA2, H3C15, BAMBI, H2BC7, H2BC9, H2BC8, H3C13, H2BC3,
H3C14

hsa-miR-34a-5p 1.24E-15 H3C12, LEF1, H2AC21, FIGN, GXYLT2, MKI67, TYMS, CDC20, H4C14,
H3C1, H4C15, PEG10, STMN1, H3C7, H2AC8, H2AC7, H3C10,
IGF2BP3, H3C11, H3C2, H3C4, H1–5, H3C6, H2AC4, H2AC16,
H2AC13, SORT1, H2AC15, H2AC14, HMGA2, ACSL4, AXIN2,
H3C15, MYCN, H4C8, ITGA6, H3C13, CD24, H2BC3, H3C14, H4C4,
H4C5

hsa-miR-1276 5.03E-14 H2AC13, H3C12, H2BC13, H2AC14, H2AC21, SKA3, H3C15, H3C1,
H2AC8, H2BC7, H3C7, H2AC7, H2BC9, H3C10, H2BC8, H2BC3,
H3C13, H3C2, H3C14, H3C4, H1–5

hsa-miR-8057 6.29E-14 H2AC13, H3C12, H2BC13, H2AC14, H2AC21, H3C15, H3C1, H2AC8,
H2BC7, H3C7, H2AC7, H2BC9, H3C10, H2BC8, H2BC3, H3C13,
H3C2, H3C14, H3C4, H1–5, H3C6

hsa-miR-4766-5p 1.46E-13 H2AC13, H3C12, H2BC13, H2AC14, H3C15, H3C1, H2AC8, H3C7,
FLVCR1, H2AC7, H2BC9, H3C10, H2BC8, H2BC3, H3C13, H3C2,
H3C14, H3C4, H1–5

hsa-miR-146a-3p 3.01E-13 H2AC13, H3C12, H2BC13, H2AC14, H3C15, H3C1, H2AC8, H3C7,
H2AC7, H2BC9, H3C10, H2BC8, H2BC3, H3C13, H3C2, H3C14, H3C4,
H1–5

hsa-miR-5693 1.35E-06 H3C12, H2AC13, H2BC13, GREB1, H2AC14, H3C15, H3C1, RACGAP1,
BAMBI, H3C7, H2AC8, H2AC7, H3C10, H2BC9, H2BC8, H3C2,
H2BC3, H3C14, H3C4, H1–5

hsa-miR-193b-3p 3.17E-04 TOP2A, LEF1, CDCA7, APCDD1, SKA3, TYMS, CDC20, RACGAP1,
PEG10, STMN1, H3C10, H3C2, H3C4, H1–5, HELLS, H2AC14, TICRR,
CCNA2, TPX2, ASPM, SLC7A6, H3C15, MELK, PTK7, CDK1,
NCAPD2, SPC25

hsa-miR-98-5p 2.02E-02 PRKAA2, H2BC13, HMGA2, FIGN, NREP, DUSP9, H4C14, CCNA2,
SLC7A6, H4C15, CCND2, PEG10, H2BC7, IGF2BP1, H4C8, OLR1,
H2BC9, IGF2BP3, H2BC8, IGF2BP2, H3C4, H2BC5
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study reported that RACGAP1 was up-regulated in the recur-
rent HCC liver samples (Wang et al. 2007). DNA topoisom-
erase 2-alpha encoded by the TOP2A controls DNA topolog-
ical structure, chromosome segregation, and cell cycle pro-
gression (Panvichian et al. 2015). Overexpression of TOP2A
has been shown in many cancers such as liver, breast, colon,
ovarian, prostate, and small cell lung cancers and HB itself to
be a valuable prognostic marker for tumor advancements and
recurrences (Panvichian et al. 2015; Shin et al. 2011; Wong
et al. 2009).

SIN3A, FOXM1, and E2F4 were the TFs with the highest
interactions with other genes. The protein encoded by SIN3A
(Paired amphipathic helix protein) is a transcription regulator,
which contains paired amphipathic helix (PAH) domains im-
portant for protein-protein interactions (26). It regulates gene
expression by histone deacetylase (HDAC) activity and acts
as a negative regulator of several cancer-related factors such as
p53, Rb, and E2F (Das et al. 2013). Sin3a represses the MYC
genes and saves the protein from oncogenic activities (26). It
also interacts with STAT3 and promotes its deacetylation.
FOXM1 (Forkhead Box M1), which was also among hub
genes, is a proliferation-associated transcription factor that
regulates critical biological processes, including cell prolifer-
ation, cell cycle progression, cell differentiation, angiogenesis,
and apoptosis (Koo et al. 2012). Due to its overexpression in
many cancers such as liver, prostate, breast, lung, colon, pan-
creas, and cervix, it is plausible that FOXM1 has a crucial role
in tumorigenesis (Koo et al. 2012; Mei et al. 2017). FOXM1
transcription levels increase at the entry to the S-phase of the
cell cycle and peaks during the G2/M transition which is nec-
essary for the expression of Cdc25B, Ccnb1, Aurora B kinase,
Plk-1, CENP-A, B, F, and survivin to allow mitotic progres-
sion, assembly of the mitotic spindles, accurate chromosome
segregation, and cytokinesis (Halasi and Gartel 2013).

Among the top predicted protein kinases of the inferred
upstream regulatory network, Cyclin-dependent kinases
(CDKs) and mitogen-activated protein kinases (MAPKs)
were enriched more than others. Consistent with our results,
other studies have shown CDKs and MAPKs to be frequently
overexpressed in HB tumors and suggested CDK-inhibitors
for HB treatment (Adesina et al. 2009; Eichenmüller et al.
2012). CDKs are serine/threonine protein kinases and play a
central role in cell cycle progression (Z. Wang et al. 2014).
The Cdk4/cyclin D complex is required for progression
through G1 by the response to the growth factors (Morgan
1997). Cdk2/cyclin E complex functions at the beginning of
S phase to induce the initiation of DNA synthesis and then
binds to the cyclin A throughout S phase (Morgan 1997).
Cdk1/cyclin B complex, which is also known as M-phase
promoting factor (MPF), regulates the entry into mitosis, nu-
clear envelope disassembly, and centrosome separation
(Morgan 1997). MAPKs are serine/threonine protein kinases
similar to CDKs and share common features with them, and

are important components of pathways controlling cell differ-
entiation, proliferation, and death (Pearson et al. 2001). ERK1
(MAPK3) and ERK2 (MAPK1) are activated by a broad spec-
trum of factors, including growth factors, insulin, GPCRs, and
cytokines (Cargnello and Roux 2011). The ERK1/2 module
which is activated principally by cell surface receptors such as
RTKs plays a key role in the G1 to S phase progression
(Cargnello and Roux 2011). MAPK14 (p38) negatively regu-
lates cell cycle progression at both the G1/S and G2/M tran-
sitions by downregulation of cyclins and upregulation of CDK
inhibitors (Cargnello and Roux 2011). Also, it is reported that
p38 activity is associated with the induction of apoptosis by
cellular stresses (Cargnello and Roux 2011).

Our miRNA-gene target analysis revealed hsa-miR-34a-
5p, hsa-miR-193b-3p, and hsa-miR-760 to be the top
miRNAs targeting the highest number of genes. miR-34a-5p
has been reported to be a tumor suppressor in several cancers,
including pancreatic, prostate, breast, colon cancer, and glio-
blastoma (Zhang et al. 2018a). In pancreatic cancer and glio-
blastoma, miR-34a inhibits cell proliferation by regulating
Notch and TGF-β signaling networks, respectively (Zhang
et al. 2018a). In colorectal cancer, miR-34a-5p induced cell
cycle arrest at G1 phase and induced apoptosis in vitro by
activation of p53/p21 and caspase-dependent pathways, re-
spectively (Gao et al. 2015). Dong et al. have also reported
that TUG1/miR-34a-5p/VEGFA network participates in reg-
ulating hypervascularity via VEGFA induction, HB cell func-
tion, and tumor progression and angiogenesis (Dong et al.
2016). miR-193b is down-regulated in many cancers such as
lung, liver, prostate, breast cancer, neuroblastoma, and ovari-
an carcinoma. An in vitro study on the non-small cell lung
cancer revealed that overexpression of miR-193b repressed
the expressions of cyclin D1 and urokinase-type plasminogen
activator and led to decreased proliferation, migration, and
invasion of cells Hu et al. 2012). Another study showed that
miR-193b functions as a tumor suppressor in HCC
in vitro, as it induced cell cycle arrest and inhibited the
invasion and migration of hepatoma cells by regulating
CCND1 and ETS1 (Xu et al. 2010). It is reported that
miR-760 is involved in the pathogenesis of various dis-
eases and can be used as a biomarker to predict the
progression of various cancers, including gastric, breast,
colorectal, and colon cancer (Sun et al. 2018). Recently,
a study demonstrated that miR-760 regulates breast can-
cer stem cell metastasis and gene expression by targeting
Nanog dependent pathways (Han et al. 2016). Sun et al.
showed that low expression of miR-760 was associated
with higher overall survival for HCC patients (Sun et al.
2018). Conversely, miR-760 expression is down-
regulated in HCC cell lines, while overexpression of
miR-760 leads to an increase in cytotoxicity and apopto-
sis, probably by down-regulating Notch1 and increasing
PTEN expression (Manvati et al. 2020).
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While our study provides potential new insights for a better
understanding of HB and improving current therapies, it is
sensible to highlight some of the limitations of the study.
Firstly, although we validated the expression levels of our
hub genes through the Oncopression database, our study
lacked any experimental analyses; thus, experimental verifi-
cation of our results is necessary. In addition, due to the ac-
cessibility of data by bioinformatic arrays, our sample size
was limited; therefore, large-scale research regarding the topic
is needed. Finally, we cannot eliminate the possibility that the
methods used to determine the hub genes or other results have
missed the possible roles of some DEGs; consequently, other
methods must be also considered.

Conclusion

In conclusion, we have revealed potential DEGs, PPI mod-
ules, hub genes, pathways, upstream regulators, and MTIs
which may provide valuable insights into the underlying mo-
lecular events that lead to the occurrence and progression of
HB. Of these, to the best of our knowledge, the association of
RACGAP1, MKI67, FOXM1, SIN3A, miR-193b, and miR-
760 with HB has been reported for the first time. These find-
ings may emerge as useful therapeutic targets or prognostic
indicators for future investigations on HB.
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