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Abstract
Objective
To determine whether machine learning (ML) algorithms can improve the prediction of
delayed cerebral ischemia (DCI) and functional outcomes after subarachnoid hemorrhage
(SAH).

Methods
ML models and standard models (SMs) were trained to predict DCI and functional outcomes
with data collected within 3 days of admission. Functional outcomes at discharge and at 3
months were quantified using the modified Rankin Scale (mRS) for neurologic disability
(dichotomized as good [mRS ≤ 3] vs poor [mRS ≥ 4] outcomes). Concurrently, clinicians
prospectively prognosticated 3-month outcomes of patients. The performance ofML, SMs, and
clinicians were retrospectively compared.

Results
DCI status, discharge, and 3-month outcomes were available for 399, 393, and 240 participants,
respectively. Prospective clinician (an attending, a fellow, and a nurse) prognostication of
3-month outcomes was available for 90 participants. ML models yielded predictions with the
following area under the receiver operating characteristic curve (AUC) scores: 0.75 ± 0.07
(95% confidence interval [CI] 0.64–0.84) for DCI, 0.85 ± 0.05 (95% CI 0.75–0.92) for
discharge outcome, and 0.89 ± 0.03 (95% CI 0.81–0.94) for 3-month outcome. ML out-
performed SMs, improving AUC by 0.20 (95% CI −0.02 to 0.4) for DCI, by 0.07 ± 0.03 (95%
CI −0.0018 to 0.14) for discharge outcomes, and by 0.14 (95% CI 0.03–0.24) for 3-month
outcomes and matched physician’s performance in predicting 3-month outcomes.

Conclusion
ML models significantly outperform SMs in predicting DCI and functional outcomes and has
the potential to improve SAH management.
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After subarachnoid hemorrhage (SAH), delayed cerebral is-
chemia (DCI) is the largest contributor to poor functional
outcomes. DCI is characterized by neurologic worsening
occurring between 4 and 21 days after the initial hemorrhage,
affecting 20%–30% of patients with SAH. Early identification
of DCI and prognostication of functional outcomes are crit-
ical aspects in SAH management. Currently, the hematoma
volume in the subarachnoid space (quantified by the modified
Fisher Scale [mFS]1) and the clinical severity at admission
(quantified by the Hunt-Hess scale [HH]2) are the validated
predictors of DCI and functional outcomes, respectively.3

HH, typically ascertained by a neurologic examination at
admission, is the most widely used predictor of short-term
and long-term functional outcomes. Clinicians can sub-
jectively prognosticate patient outcomes based on all available
clinical information.

Machine learning (ML) can learn from complex data to
find hidden features that can improve predictions. It often
requires large data samples (“big data”), which has recently
become more accessible,4 resulting in successful clinical
applications.5–7 ML8 can objectively learn from hundreds of
variables and samples to provide inferences. The electronic
medical record (EMR) is a rich repository of archived data
(including laboratory data and vital signs) primarily collected
for the day-to-day management of patients with SAH. Pre-
vious studies show that several EMR measures including
white blood count panel (white blood cells [WBCs],9–11

neutrophil count,12 platelets,13 erythrocytes14), measures of
coagulation and fibrinolysis,15 serum glucose,16 and sodium,17

and vital signs (including ECG18 and blood pressure18) are
either marginally or strongly associated with DCI and func-
tional outcomes.19 We hypothesized that ML models can
learn these associations to accurately predict DCI and func-
tional outcomes and outperform standard models. Our ob-
jective was to develop ML models that predict DCI and
functional outcomes using standard clinical and laboratory
measures captured in the EMR. We compared the perfor-
mance of ML models with that of clinician-based prognosti-
cation in predicting 3-month outcomes.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
We received written informed consent from all patients
(or guardians of patients) participating in the study. We

received approval from the institutional institutional review
board (IRB) and this study was conducted under an in-
stitutional IRB-approved protocol.

Study Population, Enrollment Criteria, and
Clinical Endpoints
We conducted a retrospective analysis of a prospectively col-
lected cohort of consented patients with SAH admitted between
July 2009 and August 2016 to the neuroscience intensive care
unit of our tertiary medical center. Patients with SAH with
traumatic etiology and those who died or were discharged within
3 days of admission were excluded for developing theMLmodel
for DCI prediction. Patients who died within 5 days of admission
were excluded in the development of ML models to predict
functional outcomes. Patients for whom EMR data were not
available post-SAH were also excluded. The clinical severity at
admission was quantified usingHH20 (supplementary data: HH,
doi.org/10.5061/dryad.2rbnzs7kk). The hematoma volume on
admission CT was quantified using the modified Fisher scale
(supplementary data: modified Fisher scale, doi.org/10.5061/
dryad.2rbnzs7kk). The functional outcome at discharge and at 3
months was quantified using the modified Rankin Scale (mRS)
(supplementary data: functional outcome assessment, doi.org/
10.5061/dryad.2rbnzs7kk). DCI status was ascertained using an
established definition21 (supplementary data: DCI assessment,
doi.org/10.5061/dryad.2rbnzs7kk). Members of the clinician
prognostication team (a board-certified neurocritical care at-
tending physician, a neurocritical care nurse, and a neurocritical
care fellow) were asked between days 1 and 3 postadmission to
prospectively predict the 3-month mRS of patients with SAH
over a 16-month period (supplementary data: Clinician prog-
nostication, doi.org/10.5061/dryad.2rbnzs7kk).

Data Extraction and Imputation
Values of several laboratory and vital measures (supplemen-
tary data: List of EMRmeasures initially extracted, doi.org/10.
5061/dryad.2rbnzs7kk), for each 24-hour period, from the
day of admission to the 3rd day postadmission were obtained.
Only measures that were routinely available for most partic-
ipants and at regular intervals were included. If multiple re-
cordings of the measure for each day were available (as in the
case of vital signs), then the maximum, minimum, average,
and SD of each measure was calculated as a separate variable
for each day. The SD of the laboratory values for each day
were excluded as most laboratories are typically done once or
twice a day. Missing data were imputed procedurally (sup-
plementary data: Data preparation and imputation, doi.org/
10.5061/dryad.2rbnzs7kk). Raw EMR data were stored in a

Glossary
ANN = artificial neural network; AUC = area under the receiver operating characteristic curve; CI = confidence interval; CV =
cross-validation; DCI = delayed cerebral ischemia; EMR = electronic medical record; GB = gradient boost; HH = Hunt-Hess
scale; IQR = interquartile range; IRB = institutional review board; IVH = intraventricular hemorrhage; LR = logistic regression;
mFS = modified Fisher Scale; ML = machine learning; mRS = modified Rankin Scale; RF = random forest; ROC = receiver
operating characteristic; SAH = subarachnoid hemorrhage; TCD = transcranial Doppler; WBC = white blood cell.
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MySQL database (MySQL 8.0) and queried by SQL lan-
guage. The data preparation and imputation was preformed
using the Python programming language (v3.6).

Machine Learning Methodology
We first established a baseline clinical model using variables
validated in literature (standard model) for predicting DCI and
functional outcomes. Next, we compared the ML models with
the standardmodels. The standardmodel for predictingDCI is a
logistic regression (LR) model that included age and the mod-
ified Fisher scale.1 The mRS was dichotomized into a binary
response—good (mRS ≤ 3) or poor (mRS ≥ 4)—to train
standard and ML models that predict functional outcomes. The
standard model for predicting functional outcomes is an LR
model that included age and HH. Since several candidate ML
models exist, we heuristically investigated models governed by
tradeoffs between performance and complexity. Models in-
vestigated included support vector machines, random forest,
gradient boost, and artificial neural networks (ANNs). The
dataset was split into a training and test set (supplementary data:
Data split for training/test split protocol, doi.org/10.5061/
dryad.2rbnzs7kk). A stratified 10-fold cross-validation (CV)
approach was used to train the ML models on the training set
and tune the model measures. The model with the best average
AUC on the training set (using the 10-fold CV) was chosen and
its performance on the test set was evaluated and reported. The
MLmodels were developed using the scikitlearn and tensorflow
libraries available in the Python programming language (v3.6).

Statistical Methodology
The performance metrics in this study are sensitivity, specificity,
and area under the receiver operating characteristic curve (AUC)
(table S1, doi.org/10.5061/dryad.2rbnzs7kk). The metrics of the
MLmodel, the standard model, and the clinician’s predictions on
the test sets were compared. The training and the test set were
randomly stratified and the characteristics are shown (table 1).
Receiver operating characteristic (ROC) curves were statistically
compared using the DeLong test.22 To dichotomize the predic-
tions from the ROC curves, the optimal cutoff threshold that
corresponded to the maximum Youden Index23 was selected.
McNemar test was used to compare the binary predictions of
standard models, ML model, and clinician evaluation.24 ML de-
velopment and statistical analysis were performed using python
(v3.6) andMedCalc (v18.11.3)25 software. A complete overview
of the methodology is presented in figure 1, A–E.

Data Availability
All anonymized data used in this study are not available in a
public domain, but request for data may be considered by the
principal investigator.

Results
Demographics and Data Split Approaches
Overall, 451 patients were consented to participate during the
study period. Among them, 290 (64%) were female. Baseline

characteristics of these patients are shown in table S2 (doi.
org/10.5061/dryad.2rbnzs7kk). The average age was 54 years
(interquartile range [IQR] 45–63). A total of 223 participants
(60%) had a history of hypertension, 60 (17%) had a history
of hyperlipidemia, and 44 (12%) had diabetes. The median
HH was 3 (IQR 2–3), the median mFS was 3 (IQR 3–3), and
an intraventricular hemorrhage (IVH) was observed in 240
(66%) participants on admission CT. A total of 88 (21%) of
the participants developed DCI. The median discharge mRS
was 3 (IQR 1–4) and the median 3-month mRS was 1
(IQR 0–4).

Data from 399 participants were available for the de-
velopment of the DCI prediction model and they were ran-
domly stratified into a training set (80%, ;319 participants)
and a test set (20%, ;80 participants). Data from 393 were
available for the development of the discharge mRS pre-
diction model and they were randomly stratified into a
training set (80%, ;314 participants) and a test set (20%,
;79 participants) (table 1). Data from 240 participants were
available for the development of the 3-month outcome pre-
diction model of which the clinician prediction was available
for 90 participants. For 3-month outcome, these 90 partici-
pants with clinician prediction data were used as the test set.
The remainder of the data (150 participants) were used as the
training set to develop the ML models and standard models
(figure 1E). The rationale for the number of participants
available for each model is discussed (see supplementary data:
Subject and variable availability, doi.org/10.5061/dryad.
2rbnzs7kk).

Performance of ML and Standard Model in DCI
and Discharge Outcomes
Among the ML models tested, ANN performed well. The
ANN model had a 10-fold CV AUC of 0.78 ± 0.16 on the
training set (supplementary data: DCI model, doi.org/10.
5061/dryad.2rbnzs7kk). The ML model and the standard
model were evaluated on the test set and the AUC of the ML
model was higher than the standard model (0.75 ± 0.07, 95%
confidence interval [CI] 0.64–0.84 vs 0.56 ± 0.07, 95% CI
0.44–0.66, p = 0.08, figure 2A). The performances of the ML
model and standard model at the optimal cutoff threshold
(sensitivity: 0.82 vs 0.79, and, specificity: 0.72 vs 0.25) were
significantly different (p < 0.01, McNemar test, table 2).

For discharge outcomes, the AUC of the ML model (see
supplementary data: Model measures functional outcomes,
doi.org/10.5061/dryad.2rbnzs7kk) was significantly higher
than the standard model (0.85 ± 0.05, 95% CI [0.75–0.92] vs
0.78 ± 0.06, 95% CI [0.67–0.86], which was a 0.07 [95% CI
−0.0018 to 0.14] improvement). The assessment of the ML
model (at the optimal cutoff threshold) was significantly
different than the standard model (sensitivity: 0.75 vs 0.58
and specificity: 0.87 vs 0.90, respectively, p < 0.05, McNemar
test). This best performing ML model used a combination of
EMR variables and 1 measure that was derived by human
intuition—the HH score. TheMLmodel that only used EMR
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variables (excluding the HH score) had an AUC 0.81 ± 0.05
(95% CI 0.71–0.89) (figure 2C).

Analysis of DCI andDischarge OutcomeModels
After developing the ML models, we attempted to interpret
the ML models. The ML model that had the highest AUC for
predicting DCI used 31 derived variables from the EMR. The
variables included age and laboratory test results such as he-
moglobin, sodium,WBC, platelets, and creatinine (figure 2B).
Since ANN models are difficult to interpret, we employed
analysis using the gradient boost (GB) and random forest
(RF) model,26 both tree-based models that are relatively less
challenging to interpret. We trained the GB model to predict
DCI using only these 31 variables and ranked these variables
based on relative importance. The top 20% of the ranked
variables included sodium, WBC, and neutrophils. The ML
model for discharge mRS prediction included 8 derived var-
iables including glucose, segmented neutrophil levels, varia-
tions in systolic blood pressure, WBC, hematocrit levels,
and lymphocytes (figure 2D). This model also included age
and HH score. The best performing ML model was obtained
by using a combination of EMR variables and the clinician-
derived HH score.

Performance of ML, Standard Model, and
Clinician Prognostication in Predicting
3-Month Mutcomes
Both ML models previously developed to predict discharge
outcome (one model that included only EMR and another
that included both EMR and HH score) were retrained to
predict 3-month outcomes. For 3-month outcome prediction,

the AUC of the ML model that included only EMR variables
(0.89 ± 0.03, 95% CI 0.8–0.94) and the AUC of the ML
model that included both EMR variables and HH score
(0.893 ± 0.03, 95%CI 0.81–0.94) were significantly (p < 0.05)
higher than the AUC of the standard model (0.75 ± 0.06, 95%
CI 0.65–0.83), The ML model that included the EMR and
HH variables resulted in a 0.13 ± 0.05 (95% CI 0.038–0.24)
improvement in the AUC over the standard model (figure 3).

Among clinical team members, the attending physician
(sensitivity 0.88, specificity 0.95) outperformed the nurse
(0.86 and 0.85) and fellow (0.81 and 0.75). The sensitivity
and specificity of the ML model (at the optimal threshold)
was 0.91 and 0.64, respectively. The attending physician’s
prognostication was numerically higher than the ML model,
but the difference in performance was not statistically signif-
icant (p > 0.05, McNemar test).

Discussion
There are 3 main findings in this study. ML models predict
DCI and functional outcomes better than standard models.
They match physician’s performance in predicting 3-month
outcomes. ML models that include variables derived from
clinician insight are marginally better than ML models that
exclude them.

ML results in a 36% improvement in AUC over the SM in
predicting DCI. Except for the mFS, the variables used by the
ML model are routinely available, potentially allowing for

Table 1 Demographics of Training and Test Set in Delayed Cerebral Ischemia (DCI): Discharge and 3-Month Outcome
Cohort

Patient demographics

DCI Discharge outcome 3-month outcome

Train (n = 319) Test (n = 80) Train (n = 314) Test (n = 79) Train (n = 150) Test (n = 90)

Age, y 52 (44–62) 56 (45–65) 54 (44–63) 54 (46–62) 54 (44–62) 56 (45–64)

Female 211 (66) 53 (66) 209 (66) 51 (63) 102 (67) 55 (61)

Hypertension 170 (60) 41 (57) 159 (57) 47 (69) 74 (59) 52 (64)

Hyperlipidemia 46 (17) 8 (12) 45 (17) 10 (15) 21 (17) 20 (24)

Diabetes 33 (12) 7 (10) 34 (13) 5 (7) 15 (12) 8 (9.8)

Clipping 96 (30) 29 (36) 103 (32) 26 (32) 42 (27) 25 (27)

mRS 3 (1–4) 3 (2–4) 3 (1–4) 3 (1–4) 1 (0–2) 1 (1–4.7)

Mortality 29 (9) 7 (8) 21 (6) 6 (7) 12 (8) 17 (18)

DCI 70 (21) 18 (22) 67 (22) 20 (25) 33 (22) 25 (28)

HH 3 (2–3) 3 (2–3) 3 (2–3) 3 (2–3) 2 (2–3) 3 (2–3)

mFS score 3 181 (69) 43 (65) 174 (69) 44 (65) 78 (65) 54 (69)

IVH 187 (67) 42 (60) 179 (65) 46 (67) 81 (66) 56 (69)

Abbreviations: HH = Hunt-Hess scale; IVH = intraventricular hemorrhage; mFS = modified Fisher Scale; mRS = modified Rankin Scale.
Values are median (IQR) or n (%).
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easier integration into existing EMR systems. The variables
identified in the DCI prediction ML model including sodium
levels, hemoglobin, WBC, and segmented neutrophils are
relevant in the pathophysiologic mechanisms of DCI. For
instance, sodium imbalances can be attributed to SAH-
induced release of natriuretic peptides17 linked to DCI.27,28

The WBCs ML model can be attributed to inflammatory
response after SAH,29–31 which has been shown to be asso-
ciated with poor outcomes and DCI.11,32–34 Lymphocytic
infiltrators in aneurysm walls are associated with cerebral

vasospasm, a precursor to DCI, suggesting a direct mecha-
nism between cerebral vasospasm/DCI and WBC level.35

Serum neutrophils12 and erythroid abnormalities (including
hemoglobin and hematocrit levels) are linked to DCI.14 The
superior AUC of the ANN/ML is likely due to its ability to
leverage the combined predictive value of these variables.
Previous implication of the identified variables in DCI liter-
ature adds credence to the physiologic plausibility of the
model. It is noteworthy that some ML models, using con-
tinuous physiologic data, predict DCI with an AUC of 0.77.36

Figure 1 Architectural Overview of Data Extraction, Preprocessing, Machine Learning (ML) Model Development, and
Performance Comparison

(A) Data (static and dynamic) extraction from the electronicmedical record (EMR). Data from the EMR is stored in a local server and queried. (B) Data quality is
checked for errors, outliers, and split into a training set and test set followed by missing data imputation. (C) The development set was used to train and
develop aMLmodel. (D) The test set is used to evaluate the performance of theMLmodel, standard clinician, andphysician. The performances are statistically
compared. (E) Overview of participant allocation for training of the ML models and testing. DCI = delayed cerebral ischemia.
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ML models can make systemic inferences, as opposed to re-
ductionist approaches of traditional approaches. Among several
reported risk factors for DCI, with the exception of the mFS,
none has translated into a practical tool. For instance, a pro-
posedWBC threshold of 12.1 × 109 cells/L has an AUC of 0.63
(only slightly better than the AUCof themFS score;0.57) and

hence nongeneralizable.37 Other approaches to predict DCI
using different modalities have been proposed. A cEEG-based
approach reports DCI prediction 24 hours prior to onset with
high sensitivity and specificity. Transcranial Doppler (TCD)
and CT angiography/CT perfusion have been used for DCI
prognostication but with limitations. TCDs only achieve

Figure 2 Evaluation of Machine Learning (ML) Model and Standard Model Performance on the Same Test/Evaluation Set

(A) Comparison of receiver operating characteristic (ROC) curves of the standard delayed cerebral ischemia (DCI) prediction model with the ML model. The
area under the ROC curve (AUC) of theMLmodel (0.75 ± 0.07, 95% confidence interval [CI] 0.65 to 0.84) was higher (0.19 ± 0.11, 95% CI −0.02 to 0.42, p = 0.08,
DeLong test) than the AUCof the standardmodel (0.56 ± 0.07, 95%CI 0.44 to 0.66). The standardmodel is a logistic regressionmodel that included age and the
modified Fisher score. The ML model included the modified Fisher score and other variables including white blood cells (WBC), neutrophils, lymphocytes,
platelets, creatinine, sodium, and hemoglobin. (B) Variables used in theMLmodel are ranked by the gradient boostmodel based on their importance. Among
the 31 variables included in theMLmodel, variables pertaining to serum sodium, neutrophil, creatinine, andWBC count levels during the pre-DCI phase were
ranked most important in predicting impending DCI. (C) Comparison of the standard model and 2 ML models (one that included only electronic medical
record [EMR] variables and another that included both EMR variables and the Hunt-Hess scale [HH] score). The standardmodel is a logistic regressionmodel
that included age and HH score. The AUC of the ML model that included only EMR variables (0.81 ± 0.05, 95% CI 0.71 to 0.89) was higher than the AUC of the
standardmodel (0.78 ± 0.06, 95%CI 0.67 to 0.86), but the differences were not statistically significant (p = 0.6). The AUC of theMLmodel that included both the
EMR measures and the HH score (0.85 ± 0.05, 95% CI 0.75 to 0.92) was significantly higher than the AUC of the standard model (p = 0.05, DeLong test) (D)
Variables in the best ML model were ranked using the random forest model to identify relative importance of variables in prognosticating discharge
outcomes. The variables are named with the prefix of the EMR measure (e.g., Sod = sodium), followed by the day in which it was recorded and then the
aggregation (max, min, SD, or average). For instance, Sod_3_Max denotes the maximum value of sodium levels at day 3 after admission. Besides age and
clinical severity, glucose levels at admission, segmented neutrophil count, and variations in systolic blood pressurewere ranked among the top variables used
by the model. mRS = modified Rankin Scale; SBP = systolic blood pressure.
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reasonable sensitivity and specificity on day 8 of SAH, which is
too late for early risk stratification and intervention.39 CT an-
giography or CT perfusion require iodinated contrast injections,
additional exposure to radiation for patients, and they lack the
sensitivity and specificity to be used in routine clinical practice.40

importantly, these methods are surrogate markers of cerebral
vessel narrowing (cerebral vasospasm), which is only one of the
many processes important to the development of DCI. Unlike
EEG and TCD, the ML approach uses only routine clinical
variables (which are already available as part of standard care); it
avoids the need for expensive instrumentation (as in the case of
EEG and TCD). The output of the MLmodel (which is simply
a probabilistic risk score between 0 and 1) is easily translatable in
most settings because, unlike EEG and TCD, expertise of
trained technician is not required. ML utilizes hundreds of
variables in tandem. ML augments the precision medicine
paradigm, wherein patient-specific risk can be evaluated. To
verify whether theMLmodel’s high AUC is attributed to model
complexity (rather than the choice of variables alone), a logistic
regression model was trained using all 31 variables and its
performance evaluated on the test set. The AUC of this model
was 0.65, which was 13% less than the AUC of the ML model,
implying that high AUC of the ML can be attributed to its
complex model architecture.

The AUCs of theMLmodels were 9% and 18% higher than the
standard models in predicting discharge and 3-month func-
tional outcomes, and both models included only 8 variables (of
which only one—the HH score—was derived by physician
examination). Even ML models that only relied on EMR

variables (blinded to the HH score) showed 4% and 18% in-
crease in AUC over standard models. Variables in the ML
model include glucose, WBC, and variations in systolic blood
pressure (markers of systemic inflammation), which were
previously linked to poor outcomes in SAH. Impaired glucose
metabolism is frequent after SAH,41 likely a stress response due
to disruption in the metabolic processes and inhibition of in-
sulin release via the sympathetic noradrenergic nerves42; it
exacerbates neurologic injury43 and contributes to poor out-
comes.44 Early systemic inflammatory processes have been
shown to be associated with poor outcomes and ML models
likely leverage the combined predictive value of variables linked
to these processes to predict outcomes with high AUCs.

Among clinicians, compared to the nurse and fellow, the at-
tending physician had the highest sensitivity and specificity
scores (0.88 and 0.95) for predicting outcome (table 2). The
sensitivity and specificity of theMLmodel (0.91 and 0.64) did
not significantly differ from that of the physician’s assessment.
The demonstrated sensitivity and high specificity of the
physician in prognosticating 3-month outcome highlights the
importance of factors that influence human decision-making
processes, which are difficult to be objectively ascertained.
These factors are likely to have a bigger effect on long-term
outcomes than EMR variables collected <3 days of admission.

It is important to contrast the differences in clinician and ML
predictions. Physicians consider a more holistic set of in-
formation in their decision-making as compared to the ML
model, which has information limited to clinical and

Table 2 Summary of Model Performances on the Test Set

Accuracy Sensitivity Specificity AUC

DCI

Standard model 0.55 0.79 0.25 0.55

ML model 0.8 0.82 0.72 0.75

Discharge mRS

Standard model 0.81 0.58 0.90 0.78

ML EMR 0.81 0.58 0.94 0.81

ML EMR + HH 0.84 0.75 0.87 0.85

3-month mRS

Standard model 0.75 0.90 0.56 0.75

ML EMR 0.84 0.92 0.69 0.89

ML EMR + HH 0.81 0.91 0.64 0.89

Attending 0.89 0.88 0.95 NA

Nurse 0.86 0.86 0.85 NA

Fellow 0.80 0.81 0.75 NA

Abbreviations: AUC = area under the receiver operating characteristic curve; DCI = delayed cerebral ischemia; EMR = electronic medical record; HH = Hunt-
Hess scale; ML = machine learning; mRS = modified Rankin Scale score; NA = not available.
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laboratory measures during the first 3 days of admission. The
developed ML models are blinded to any information about
preexisting functional status of the patient. However, physician
assessments are aided by past medical history and examination
of the patient. They possess an intuition from years of treating
patients via which they have developed their aptitude (albeit
subjective) to prognosticate outcomes. Even experienced
physicians are limited by inability to process several variables at
the same time.45 However, the actual outcome/impending
complication (like DCI) can depend on several hundred vari-
ables. ML can learn objectively and can handle numerous
variables. Variability in physician-to-physician assessment—
due to experience, education, and hospital protocols—is also
absent or minimized in ML models. Other issues, like time
pressure, cognitive biases, fatigue, information load, and be-
havioral confirmation effects,46 are less of a concern inML.ML
can offer unique perspective on the patient’s condition and can
serve as a decision support tool in the management of SAH.
However, clinical judgement is necessary to interpret the ML
results and implement a corresponding plan of action.

First, reproducibility in ML studies is a concern,47 wherein per-
formance measures observed in one cohort may not be

generalizable to others. This may be due to overfitting and varia-
tions in treatment protocols at different centers. To minimize
overfitting, we used a 10-fold CV training approach and report
performance measures on a separate test set that was not used in
the training process. The difference in the 10-fold AUCof theDCI
prediction ML model on the training and testing data is small,
indicating that the model was not overfitting. To minimize effects
due to varied treatment protocols, only data fromwithin a few days
of admissionwere included in theMLmodel, as this acute period is
more likely to reflect a patient’s physiologic status and is less
influenced by variations in the interventions following admission
due to the short time span. Second, even though our models were
trained with hundreds of patients, this is still a relatively small
dataset in comparison with recent ML studies, which include
thousands of patients. All other factors unperturbed, ML models
trained with larger samples have better performance.48 Though we
includeddata froma7-year period, the incidence of SAH is low and
larger sample sizes are challenging. Third, the clinicians adjudicat-
ing DCI were unblinded to the clinical case. While DCI was
adjudicated prospectively, the EMR data were queried retrospec-
tively and the informatician developing theMLmodel was blinded
to the clinical case. Fourth, due to the large number of participants
included and variables included, missing data were prevalent. We
removed all variables thatweremissing for >30%of the participants
and used diligent imputation strategies and the model is not sen-
sitive tomissing values. Finally, it is challenging to interpret theML
models. This challenge—termed a “black box” problem49—is a
problem in other domains as well. Though we employed the RF
analysis to rank the variables, a thorough understanding of the
decision-making process ofML could further our understanding of
the disease process. Nevertheless, successful identification of
impendingDCI has great potential to improve SAHmanagement.

ML improves prediction of DCI and functional outcomes
compared to standard models. It matches attending physi-
cians’ performance in predicting 3-month outcomes. Its per-
formance must be evaluated in patient cohorts from other
centers. In the future, the model can be expanded to include
other variables including imaging and specimen biomarkers to
improve performance.
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Figure 3 Evaluation of 3-Month Outcome Prediction by
Machine Learning (ML) Models

(A) Comparison of the standard model, a ML model that included only
electronic medical record (EMR) variables, and another ML model that in-
cluded both EMR variables and the Hunt-Hess scale (HH) score. The stan-
dard model is a logistic regression model that included age and HH score.
The area under the receiver operating characteristic curve (AUC) of the ML
model that included only EMR variables (0.89 ± 0.03, 95% confidence interval
[CI] 0.8 to 0.94) and the AUC of the ML model that included EMR variables
and HH score (0.89 ± 0.03, 95% CI 0.81 to 0.94) was significantly (p < 0.05)
higher than the AUC of the standardmodel (0.75 ± 0.06, 95% CI 0.65 to 0.83).
The AUCs of both the MLmodels were not statistically different (p = 0.93) (B)
The FPR vs TPR of attendings, nurses, and fellows are shown (indicated by A,
N, and F in the receiver operating characteristic plot at the locations [0.05,
0.88], [0.15, 0.86], and [0.25, 0.81], respectively). Among the clinicians, the
assessment of the attending was most accurate (sensitivity of 0.88, speci-
ficity of 0.95). The best performingMLmodel (ML EMR+HH) had a sensitivity
of 0.91 and specificity of 0.64. The 2 assessments (clinician and ML model)
are compared (difference = −9.09%, 95% CI −18.35 to 0.17, p = 0.09, McNe-
mar test). mRS = modified Rankin Scale.
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