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Abstract
Introduction
As clinical trials move toward earlier intervention, we sought to redefine the β-amyloid (Aβ)-PET
threshold based on the lowest point in a baseline distribution that robustly predicts future Aβ
accumulation and cognitive decline in 3 independent samples of clinically normal individuals.

Methods
Sequential Aβ cutoffs were tested to identify the lowest cutoff associated with future change in
cognition (Preclinical Alzheimer Cognitive Composite [PACC]) and Aβ-PET in clinically
normal participants from the Harvard Aging Brain Study (n = 342), Australian Imaging,
Biomarker and Lifestyle study of aging (n = 157), and Alzheimer’s Disease Neuroimaging
Initiative (n = 356).

Results
Within samples, cutoffs derived from future Aβ-PET accumulation and PACC decline con-
verged on the same inflection point, beyond which trajectories diverged from normal. Across
samples, optimal cutoffs fell within a short range (Centiloid 15–18.5).

Discussion
These optimized thresholds can help to inform future research and clinical trials targeting early
Aβ. Threshold convergence raises the possibility of contemporaneous early changes in Aβ and
cognition.

Classification of Evidence
This study provides Class II evidence that among clinically normal individuals a specific Aβ-
PET threshold is predictive of cognitive decline.
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Due to the largely disappointing results of antiamyloid thera-
pies in patients with mild cognitive impairment (MCI) and
Alzheimer disease (AD), many clinical trials are pivoting to
intervention earlier in the AD pathologic trajectory to slow or
prevent disease progression.1,2 Markers of β-amyloid (Aβ) can
be used to target individuals earlier in the disease process3,4

through the use of PET radioligands for Aβ such as 11C-
Pittsburgh compound B (PiB),5 18F-florbetapir (FBP),6 and
18F-NAV4694.7

Elevated, or abnormal, levels of Aβ-PET are most often defined
on the basis of a threshold derived from cross-sectional Aβ-
PET8–13 or from combined PET-neuropathology studies.14

Some evidence indicates that current thresholds might be too
high,10,15 leading to the misclassification of some subthreshold
individuals as Aβ−. Recent neuropathologic studies in partici-
pants with PET before death suggest that far lower PET
thresholds can be achieved.14 However, without confirmation
provided by autopsy on an individual basis, low PET signal is
difficult to differentiate from noise, raising the possibility of
introducing greater false positives.

Thus, our aim was to determine how low thresholds can go in
the Aβ-PET signal while remaining useful as a predictor of
whether individuals are on an AD trajectory, signaled by
continued Aβ accumulation or cognitive decline. To evalu-
ate reliability, we examined longitudinal data from 3 in-
dependent samples. We hypothesize that longitudinal
cognitive and PET outcomes will provide justification for
shifting to a threshold lower than that possible with cross-
sectional bimodality-based approaches, thus potentially
increasing potential benefit from anti-Aβ therapy and in-
creasing eligibility for trials.

Methods
Subjects
Clinically normal (CN) participants (Clinical Dementia
Rating score = 0; Mini-Mental State Examination [MMSE]
score ≥24) were included from 3 independent samples: the
Harvard Aging Brain Study (HABS), the Australian Imaging,
Biomarker and Lifestyle (AIBL) study of aging, and the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI). All studies
included participants with a baseline Clinical Dementia Rat-
ing score of 0 and excluded participants with clinical de-
pression, neurologic disorders, and head trauma.

HABS Sample
HABS is focused on differentiating normal aging from AD and
consequently recruited only individuals initially considered
CN. Detailed inclusion criteria have been published pre-
viously.16 For the primary analysis of baseline PiB predicting
cognitive change, all HABS participants (n = 342) were in-
cluded. Cognitive assessments were conducted annually, with a
median follow-up length of 4.21 (SD = 2.34) years. Analyses
relating to PiB accumulation focused on the subset with at least
2 PiB-PET scans (n = 214), 141 with 3 scans, and 39 with 4
scans. The median follow-up time was 2.82 (2.15) years.

AIBL Sample
AIBL recruited individuals across the AD continuum and
enriched its CN cohort for family history and memory com-
plaints to ensure a high proportion of Aβ+ adults.17 Detailed
inclusion criteria for AIBL have been published previously.17

One hundred fifty-seven CN participants were included from
AIBL. Participants underwent cognitive testing approximately
every 18 months, with a median cognitive follow-up of 7.48
(1.97) years. All participants had at least 1 cognitive follow-up
visit; 123 had at least 2 PiB-PET scans, 87 had at least 3, and 54
had 4 PiB-PET scans, with a median PET follow-up of 3.06
(1.83) years.

ADNI Sample
ADNI is a multisite study conducted across 63 sites in the
United States and Canada, enrolling individuals across the AD
continuum. In contrast to HABS and AIBL, the ADNI CN
cohort was required not to havememory complaints at baseline
but also was allowed a more lenient MMSE score of ≥24
(HABS and AIBL used an MMSE score ≥25). Detailed in-
clusion criteria for ADNI have been published previously.18 Aβ-
PET scanning with FBP was introduced to ADNI at a later
stage, and only longitudinal cognitive data collected pro-
spectively from the first FBP-PET scan were included. Partic-
ipants were restricted to those with a CN diagnosis at first PET
scan (n = 356). All participants had at least 1 cognitive follow-
up visit (median cognitive follow-up 2.97 [2.33] years); 284
had at least 2 scans, 124 had 3 scans, and 7 had 4 scans, with a
median PET follow-up of 2.05 (1.60) years.

Standard Protocol Approvals, Registrations,
and Patient Consents
We conducted the procedures for this study under the Part-
ners Human Research Committee, the Institutional Review
Board for the Massachusetts General Hospital and Brigham

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = Australian Imaging,
Biomarker and Lifestyle; AIC = Akaike information criterion; BIC = Bayesian information criterion; CI = confidence interval;
CL = Centiloid; CN = clinically normal; DVR = distribution volume ratio; FBP = 18F-florbetapir; FLR = frontal, lateral
temporal, and retrosplenial; GMM = gaussian mixture model; HABS = Harvard Aging Brain Study; MCI = mild cognitive
impairment;MMSE =Mini-Mental State Examination; PACC = Preclinical Alzheimer Cognitive Composite; PiB = Pittsburgh
compound B; ROI = region of interest; SUVR = standardized uptake value ratio.
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and Women’s Hospital. All participants provided written
consent.

Cognition
Cognition was assessed with the Preclinical Alzheimer Cog-
nitive Composite (PACC) 5 version19,20 of the PACC,21

which was honed to detect Aβ-related cognitive decline. As
previously reported,20,22 the PACC5 was computed within
each sample as the averaged z scores of 5 tests, with z scores
standardized using the baseline mean and SD within each
cohort. Of these 5 tests, 2 were overlapping across all samples:
theMMSE and Logical Memory Delayed Recall. As a measure
of executive function, Digit Symbol Substitution was used in
HABS and AIBL, while ADNI used Trail Making Test Part B.
As a measure of word recall, HABS used the Free and Cued
Selective Reminding Test, AIBL used California Verbal
Learning Test (second edition) ,and ADNI used Alzheimer’s
Disease Assessment Scale–Cognitive Battery Word Recall.
For semantic memory, each study used versions of Categories,
with HABS using Animals/Vegetables/Fruit, AIBL using
Animals/Names, and ADNI using Animals.

All studies show similar distributions of baseline and slopes
for these study-specific composites.20,22

PET

HABS PET
PiB-PET acquisition parameters for HABS have been pub-
lished previously.16,23 In brief, PET images were acquired on a
Siemens (Munich, Germany) ECAT EXACT HR+ scanner
with a 60-minute dynamic acquisition starting directly after
injection. Distribution volume ratios (DVRs) were calculated
via Logan plotting with a cerebellar gray reference tissue. At
each time point, PET data were rigidly coregistered to the
individual’s closest magnetization-prepared rapid gradient echo
with SPM12 (Wellcome Department of Cognitive Neurology,
Function Imaging Laboratory, London). Cortical regions of
interest (ROIs) were defined from the Desikan-Killiany atlas24

via FreeSurfer version 6.0. Frontal, lateral temporal, and ret-
rosplenial (FLR) regions were averaged into a global aggregate,
as previously reported.8,20,23 PET data were not partial volume
corrected.

AIBL PET
Detailed acquisition parameters have been published pre-
viously.9 PiB-PET images were processed in-house with a
modified version of the HABS pipeline to account for the lack
of full dynamic data. Fifty- to 70-minute frames were summed
and coregistered to their MRI at each time point. Subject-
specific cortical parcellations from FreeSurfer were unavailable,
so instead each individual’s PET was normalized to Montreal
Neurological Institute space, and the same HABS FLR ROI
was selected from a customized probabilistic template space
atlas25 based on the Desikan-Killiany atlas. The standardized
uptake value ratio (SUVR) was computed with FLR referenced
to cerebellar gray.

ADNI PET
Detailed acquisition parameters were published previously.26

FBP-PET images were processed with the same pipeline used
to process AIBL data, but the FBP SUVR was normalized to
whole cerebellum.

Centiloid Scale
Due to our interests in identifying thresholds within the un-
certain range between clearly Aβ− and Aβ+ positive, we pri-
oritized using in-house methods that would maximize
measurement accuracy within each sample. To compare be-
tween samples and to provide generalizable estimates, we
then converted each sample to the Centiloid (CL) scale.27

Notably, the CL transformation is expected to reduce but not
completely eliminate between-sample differences in acquisi-
tion and processing.28 CL values should therefore be con-
sidered approximate.

As recommended27 and published previously,20,25 we ran the
GAAIN dataset using our in-house pipeline and ROIs to
compute the linear transformation between the in-house and
CL scales and then applied the CL transformation. An ad-
ditional linear transformation was required to transform the
ADNI data to translate from FBP SUVR to PiB SUVR using
the GAAIN dataset, similar to previous recommendations.29

Two additional steps were used to transform the HABS data
to CL due to differences in acquisition time from the CL
method and the expression of PiB as a DVR.25 The resulting
equations were as follows: HABS: CL = 143.06 × HABS
DVR − 145.60; AIBL: CL = 96.94 × AIBL SUVR − 105.20;
ADNI: CL = 180.20 × ADNI FBP SUVR − 179.70.

Statistical Analysis
All analyses were conducted in R version 3.6.0. For sample
descriptives and comparison with optimal thresholds,
thresholds were generated within each sample at baseline by
fitting the data to a gaussian mixture model (GMM).8,20,23,30

In all samples, a bimodal 2-class model fit best, exhibiting the
highest Bayesian information criterion (BIC) and significantly
higher likelihood than 1-class or 3-class models in boot-
strapped (n = 1,000) likelihood ratio tests. Mixed-effects
models were used to account for missing data and loss to
follow-up.

The first objective was to identify a cognitively derived
PET cutoff separately in each sample, at the lowest point
in baseline Aβ-PET distribution that predicted subsequent
cognitive decline. This has been classified Class II evi-
dence that among CN individuals a specific Aβ-PET
threshold is predictive of cognitive decline. To do so, we
conducted a series of 2-level linear mixture models to
predict PACC5 performance over time iterating through a
range of possible cutoffs (c) of Aβ-PET (i.e., 1.1–1.8 by
0.01), adjusting for sex, age at baseline, APOE «4 status,
and years of education. The first level of the model was as
follows:
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PACC5; time × Random slope model

+ time × covariates

+ random intercept

The second level was as follows:

Random slope model = BL-PET × Ið BL PET> cÞ
+ random intercept

The nested random slope term accounts for change in
PACC5 over time as a function of an threshold indicator I
(baseline PET > c) that assigns a 0 or 1 depending on whether
individuals fell above or below c and the continuous effect of
tracer retention (baseline PET) above the cutoff. The ratio-
nale for this nested slope model was based on the assumption
that below the optimal minimal cutoff the PACC5 should not
relate to Aβ-PET tracer retention, whereas above the cutoff
the magnitude of PACC5 decline is expected to track with the
magnitude of Aβ-PET retention.12 The random intercept
embedded within the nested random slope model represents
an average measure of the baseline PET for all individuals in
the sample regardless of the threshold value c, with random
effects added to allow variations between individuals. The
Akaike information criterion (AIC)/BIC was used to select the
optimal cognitively derived PIB cutoff by comparing model
fits under different baseline thresholds.31,32 Both are reported
but identified the same cutoffs in all models. Sensitivity
analysis was carried out with model expansion in both the
PACC model and the PET model below to ensure that the
optimal models were selected.

We also aimed to identify an accumulation-derived cutoff based
on subsequent Aβ-PET accumulation. Here, we iterated through
a series of linear mixed-effects model of the effect of time, Aβ-
PET cutoff, the same set of covariates used above, and the
random intercept on Aβ-PET with a range of possible cutoffs c:

PET;time × ðBL PET> cÞ + time × covariates + random intercept

The rationale for this model was based on previous
evidence33–35 that at low Aβ levels roughly equivalent propor-
tions of negative and positive PET changes are observed and are
presumed to largely reflect fluctuations in nonspecific binding of
the tracer, but as baseline PET increases, the observed changes
become predominately positive and reflect contributions from
both nonspecific fluctuations and Aβ accumulation. We sought
to identify the threshold beyond which changes are pre-
dominately positive and thus maximize the difference between
Aβ+/− groups. To do so, we iteratively compared models with
different baseline Aβ-PET thresholds and selected the model
that maximized the group differences in change36 as reflected by
the greatest effect size (standardized β) for the Aβ group × time
term. This selected criterion differs from that used for the
PACC model. Goodness of fit was still tested with AIC/BIC,
but due to the greater dynamic range in DVR/SUVR compared
with change over time, overall model fit is dominated by the
between-participant differences in DVR/SUVR (themain effect

of Aβ group) rather than within-participant change (time × Aβ
group). To identify a cutoff based on optimal change over time,
we selected the cutoff associated with the maximal effect size for
the Aβ group × time term.

To further describe the additional individuals who would be
identified as Aβ+ with the optimal cutoffs, participants were
assigned into low (below optimal cutoff), intermediate
(between low and GMM cutoffs), and high (above GMM
cutoff) groups within each sample and then pooled into 1
large sample (n = 855). These groups were then compared
on age, sex, APOE «4 status, Aβ slope (CL/year), and
PACC5 score slope (SD/year) with independent-sample
t tests and χ2 tests.

Finally, the optimal threshold was used to conduct power
analyses to project the sample size needed to detect Aβ-
PET accumulation and PACC score decline over a 5-year
clinical trial. In the pooled sample, 5 possible CL range
groups were selected with the lower bound for inclusion set
at the optimal CL threshold and the CL upper bound
varying from 35, 50, 70, and 100 to the maximum observed
in our samples (140). Within each group, we computed the
sample size needed to detect different possible percent
changes (10%–100%) in Aβ-PET accumulation and PACC
score decline over 5 years with 80% power. Power to detect
Aβ-PET accumulation was based on estimates from a linear
mixed-effect model of CL ; time + random intercept. For
PACC score decline, estimates were based on a linear mixed
effect of PACC score; time + random intercept + random
slope.

Data Availability
All data for ADNI and PET data for AIBL are publicly avail-
able online at ida.loni.usc.edu. AIBL cognitive data and HABS
data are available on request.

Results
Sample Differences
Table 1 displays descriptive statistics for the HABS, AIBL, and
ADNI samples, dichotomized within sample using GMM into
Aβ+/− groups. Between samples, AIBL had a numerically
higher proportion of APOE «4 carriers due to their enriched
recruitment strategy,17 although it did not reach statistical
significance compared with HABS (MDifference = 0.07, p = 0.15,
95% confidence interval [CI] −0.03 to 0.17) or ADNI (MD =
0.08, p = 0.08, 95% CI 0.01–0.18). ADNI participants were
older (MD = 2.91, p < 0 .001, 95% CI 1.83–3.98) and more
highly educated thanHABSparticipants (MD = 0.70, p < 0 .001,
95% CI 0.28–1.11) and older than AIBL participants (MD =
2.17, p < 0 .001, 95% CI 0.92–3.43), although HABS and AIBL
participants did not differ by age. AIBL participants had a
longer cognitive follow-up than HABS (MD = 2.99, p < 0 .001,
95% CI 2.57–3.41) and ADNI (MD = 3.31, p < 0 .001, 95% CI
2.89–3.73) participants.
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Table 1 Sample Descriptives for HABS, AIBL, and ADNI

HABS AIBL ADNI
Sample
Difference

All Aβ2 Aβ+ All Aβ2 Aβ+ All Aβ2 Aβ+ F or χ2 (p)

No. 342 265 77 157 106 51 356 252 104 6.74 (0.03)

Age, y 71.7 (8.00) 70.8 (8.05) 74.8 (6.48) 72.5 (6.72) 70.8 (6.34) 75.8 (6.28) 74.6 (6.50) 73.9 (6.60) 76.5 (5.88) 14.6 (<0.001)

Education, y 15.78 (3.01) 15.8 (2.97) 16.1 (2.94) 14.54 (3.1) 14.2 (3.2) 14.7 (3.0) 16.54 (2.59) 16.7 (2.56) 16.2 (2.61) NA

Sex, n female (%) 206 (60) 160 (60) 46 (60) 86 (55) 59 (56) 27 (53) 189 (56) 125 (50) 64 (62) 3.79 (0.15)

APOE «4, n (%) 89/324 (27) 44/251 (18) 45/73 (62) 54 (34) 27 (25) 27 (53) 94 (26) 50 (20) 44 (42) 3.61 (0.16)

Baseline PET 1.14 DVR
(0.18)

1.06 DVR
(0.05)

1.43 DVR
(0.17)

1.32 SUVR
(0.35)

1.12 SUVR
(0.06)

1.75 SUVR
(0.30)

1.12 SUVR
(0.18)

1.02 SUVR
(0.06)

1.36 SUVR
(0.161)

NA

Baseline CL 18.15 (25.90) 6.10 (6.94) 59.6 (24.4) 23.19 (33.51) 3.35 (5.81) 64.4 (29.4) 21.65 (33.28) 3.64 (10.3) 65.3 (29.1) 1.85 (0.16)

Baseline PACC5 score 0.06 (0.68) 0.07 (0.68) 0.01 (0.68) 0.08 (0.62) 0.12 (0.63) 0.01 (0.60) −0.05 (0.69) −0.00 (0.71) −0.15 (0.62) 3.14 (0.04)

Median PACC5 score
follow-up, y

4.21 (2.34) 4.15 (2.40) 4.43 (2.07) 7.48 (1.97) 7.49 (1.65) 6.33 (2.38) 2.97 (2.33) 2.85 (2.35) 4.02 1.98 215 (<0.001)

Median PiB follow-up, y 2.81 (2.14) 2.80 (2.16) 2.89 (2.09) 3.06 (1.83) 3.16 (1.75) 1.79 (1.94) 2.05 (1.60) 2.07 (1.60) 2.02 (1.59) 21.8 (<0.001)

Progression to
MCI/dementia,
n (%)

21 (6) 6 (2) 15 (21) 22 (14) 12 (11) 10 (20) 59 (18) 29 (12.4) 30 (30.6) 18.9 (<0.001)

Abbreviations: Aβ = β-amyloid; ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = Australian Imaging, Biomarker and Lifestyle; CL = Centiloid; DVR = distribution volume ratio; HABS = Harvard Aging Brain Study; MCI =
mild cognitive impairment; NA = not applicable; PACC5 = Preclinical Alzheimer Cognitive Composite 5 version; PiB = Pittsburgh compound B; SUVR = standardized uptake value ratio.
Descriptives are shown for both each full sample and dichotomized into Aβ+/− groups using gaussian mixture model (figure 1). Means (SDs) are displayed for continuous variables and numbers (percents) for categorical
variables. To demonstrate which variables varied across sample, 1-way analysis of variance F statistics are reported in the final column for continuous variables and χ statistics for categorical variables, aswell as p values. Some
participants in HABS did not have APOE data available, so total with genetic data are also displayed. Education was measured differently in AIBL and is not directly comparable to education in HABS or ADNI. Baseline PET
measures are provided for within-sample description and baseline CL for between-sample comparison.
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Overall, each sample exhibited typical bimodal Aβ-PET dis-
tributions (figure 1) that mapped onto a similar range on the
CL scale, but some small differences are noted. The AIBL
sample had a greater SUVR range than HABS and ADNI
participants. Notably, the GMM in AIBL also provided a
lower CL threshold for positivity (CLGMM = 19.0) than in
HABS (CLGMM = 24.6) or ADNI (CLGMM = 25.7). In ADNI,
a larger variance was observed in the Aβ2 group, but this
variance translated into more negative CL values rather than a
higher GMM threshold. The proportion of Aβ+ participants
based on the GMM threshold varied by sample, with a lower
proportion in HABS (22.5%) than in AIBL (32.5%, χ2 = 5.61,
p = 0.02) and ADNI (29.0% χ2 = 4.08, p = 0.04). The varied
mixing proportions may contribute to slight differences in
how the distributions transform to the CL scale.

Cognitively Derived Cutoff
We detected similar optimal cutoffs associated with cognitive
decline across the 3 samples: HABS at a PiB DVR of 1.14 (CL
= 17.5), AIBL at a PiB SUVR of 1.24 (CL = 15.0), and ADNI

at an FBP SUVR of 1.1 (CL = 18.5) (figure 2). The optimal
cutoff was selected from the model with absolute lowest AIC/
BIC in HABS, and the lower of 2 thresholds associated with
similar AIC/BIC in AIBL and ADNI (table 2). Across sam-
ples, the optimal cutoff fell 0.04 to 0.05 SUVR/DVR below
their respective GMM cutoff. As shown in figure 1, the cutoff
corresponds to an approximate inflection point in the baseline
Aβ-PET distribution beyond which cognitive slopes begin to
negatively deviate from zero.

Accumulation-Derived Cutoff
Analyses of Aβ-PET accumulation–derived optimal thresh-
olds converged on the same threshold as with those derived
from cognitive outcomes in HABS (PiB DVR 1.14/CL =
17.5), and AIBL (PiB SUVR1.24/CL = 15.0) and nearly
converged in ADNI (FBP SUVR 1.09/CL = 16.7). Across
samples, the standardized β criterion provided clear cutoffs for
maximizing group differences in accumulation (figure 3). As
shown in figure 3, these cutoffs corresponded to an inflection
point in baseline Aβ-PET distribution beyond which PET

Figure 1 Bimodal Gaussian Distribution of PET Signal in HABS, AIBL, and ADNI

A–C) Histograms of the baseline (BL) PET data in each sample are plotted and fitted to a bimodal gaussian distribution using gaussianmixture model (GMM).
Data are plotted on the tracer for each sample and processing-specific scale on the bottomx-axis and transformed to the Centiloid (CL) scale on the top x-axis.
TheGMM threshold (purple line) was identifiedwithin each sample as the point at which an individual had an equal probability of being in the lowerβ-amyloid
(Aβ)− and higher Aβ+ gaussian. ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = Australian Imaging, Biomarker and Lifestyle; DVR = distribution
volume ratio; HABS = Harvard Aging Brain Study; PiB = Pittsburgh compound B; SUVR = standardized uptake value ratio.
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slopes shift from a roughly equal mix of negative and positive
PET slopes to predominately positive slopes. In contrast, the
GMM cutoff had lower standardized β values (table 2) and
failed to identify several individuals with low baseline but high
accumulation as Aβ+.

Participants Between the Optimal and
GMM Cutoffs
A total of 54 individuals were identified with intermediate Aβ
between the optimal andGMMcutoffs across samples (table 3).
This group was also intermediate between the low Aβ and high
Aβ group in terms of age (MD_low_int = 2.36, p = 0.01, 95% CI
0.52–4.20;MD_int_high = −1.58, p = 0.10, 95%CI −3.49 to 0.33),
number of APOE «4 carriers (MD_low_int = 0.113, p = 0.07, 95%

CI −0.03 to 0.25;MD_int_high = −0.21, p = 0.01, 95%CI −0.36 to
−0.06), and PACC5 score slope (MD_low_int = −0.07, p = 0.05,
95% CI −0.001 to 0.12; MD_int_high = −0.17, p = 0.01, 95%
CI −0.31 to −0.03). Notably, the intermediate Aβ group had CL
slopes comparable to those of the high Aβ group and higher CL
slopes than the lowAβ group (MD_low_int= 2.26, p< 0 .001, 95%
CI 1.09–3.43; MD_int_high = −0.64, p = 0.40, 95% CI −0.86
to 2.14).

Power toDetect ReducedAβ-PETAccumulation
and PACC Score Decline
Power analyses (figure 4) demonstrated that a CL in the 18 to 35
range would require the smallest sample size to detect reduced
Aβ-PET accumulation (n = 64 for 20% reduction over 5 years).

Figure 2 Optimal Cutoffs Within HABS, AIBL, and ADNI Based on Longitudinal Cognitive Outcomes

For each sample, the Akaike information criterion (AIC) demonstrating the model fit for a range of possible cutoffs are shown (A, C, E). In Harvard Aging Brain
Study (HABS) (A), an optimal cutoff of Pittsburgh compound B (PiB) distribution volume ratio (DVR) 1.14/Centiloid (CL) 17.5 is derived from a clear lowest AIC
(least information loss). In Australian Imaging, Biomarker and Lifestyle (AIBL), similarly low AIC was achieved twice, and the lower cutoff at a PiB standardized
uptake value ratio (SUVR) 1.24/CL 15.0 was selected. Likewise, in Alzheimer’s Disease Neuroimaging Initiative (ADNI) an optimal cutoff of 18F-florbetapir (FBP)
SUVR 1.1/CL 18.5 was selected as the lower cutoff from 2 similarly well-fittingmodels with nearly equivalent AIC. Notably, across samples, the optimal cutoffs
based on cognitive decline fit in a tight CL range of 15.0 to 18.5. (B, D, F) Preclinical Alzheimer Cognitive Composite 5 version (PACC5) score slope over time is
plotted as a function of baseline (BL) PET within each sample using a loess curve to demonstrate the shift in trajectories of change with increasing baseline
β-amyloid (Aβ)-PET tracer retention. PACC5 score slope for each participant was extracted from the slope of the linear regression of PACC5 score over time.
Data are unadjusted for covariates. In each sample, the magnitude of tracer retention is unrelated to PACC score slope until an inflection point is reached,
beyondwhich greater levels of Aβ-tracer retention are associated with increasing rates of cognitive decline on the PACC5. The inflection point corresponds to
the optimal cutoff derived from the iterative models of PACC5 score over time.
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In contrast, trials with a primary cognitive outcomewould exhibit
optimal power using a wider CL range of 18 to 70. Targeting
individuals in the 18 to 50CL range for an early intervention trial
would provide a balance betweenminimizing sample size needed
to detect PACC score decline while maintaining high power to
detect reduced Aβ-PET accumulation (n = 886).

Discussion
As the fieldmoves toward intervening earlier in the course of the
disease, it is important to ascertain the lowest point in the AD-
related biomarker cascade that can robustly identify individuals
who are embarking on the AD pathologic trajectory and effec-
tively exclude those unlikely to benefit from intervention. Here,
we focused on Aβ-PET markers because they are currently the
primary method for recruiting at-risk CN individuals in many
early intervention trials.1,37 Independently deriving baseline Aβ
cutoffs for PET on the basis of the prediction of both future
cognitive decline and Aβ accumulation converged on the same
or very nearly the same point in the distribution across 3 in-
dependent samples. Furthermore, the 3 samples indicated an
optimal threshold in the short CL range of 15.0 to 18.5. In each
sample, the optimal cutoff fell at an inflection point beyond
which Aβ-PET and cognitive trajectories diverged from normal.
This point was consistently below the GMM-derived cutoff that
relies primarily on the bimodality of the Aβ distribution but was
higher than cutoffs previously reported and based on autopsy

data.14 Individuals in the intermediate range between the opti-
mal and GMM cutoffs were older than those in the lowest PET
tracer uptake range (below the optimal cutoff) and exhibited Aβ
accumulation comparable to that displayed in those with the
highest PET tracer uptake (above the GMM cutoff). The lower
optimal cutoff allows excellent power to detect reductions in Aβ
accumulation and sufficient power to detect slowing of cognitive
decline in preclinical individuals with low to moderate Aβ
burden. Consequently, this threshold may prove useful for re-
search and clinical trials targeting individuals in the early stages
of amyloidosis.

Within each sample, the optimal cutoff derived from cognitive
outcomes converged on the identical or nearly identical cutoff
derived from Aβ accumulation. This may suggest a more
contemporaneous onset of change in Aβ and cognition than
would be expected from the amyloid cascade hypothesis,38,39

which posits a cognitive lag behind Aβ accumulation. It is
important to note, however, that these optimal thresholds
remain thresholds of detection and not necessarily initial
onset of Aβ. Undoubtedly, toxic Aβ species exist, both soluble
and insoluble isoforms, below these lower PET-detection
thresholds, because PET tracers primarily have been found to
bind to aggregated fibrillar Aβ.40 The converging cutoffs based
on Aβ-PET accumulation and cognitive decline may instead
reflect the lowest point in the PET distribution where signal
exceeds noise and is therefore likely to predict future out-
comes. While additional studies are needed to probe the

Table 2 Model Fit and Parameter Estimates at Optimal and GMM cutoffs in HABS, AIBL, and ADNI

On PACC5

Model at Optimal Cutoff Model at GMM Cutoff

Full Model Time × Aβ Cutoff × BL DVR/SUVR Full Model Time × Aβ Cutoff × BL DVR/SUVR

AIC BIC β SE AIC BIC β SE

HABS 2,317 2,422 −1.14 0.31 2,291 2,434 −1.00 0.38

AIBL 991 1,079 −0.18 0.15 995 1,084 −0.08 0.10

ADNI 2,519 2,614 −0.47 0.30 2,527 2,621 −0.52 0.34

On Aβ-PET Accumulation

Model at Optimal Cutoff Model at GMM Cutoff

Full Model Time × Aβ Cutoffa Full Model Time × Aβ Cutoff

AIC BIC β Value SE AIC BIC β Value SE

HABS −1,490 −1,398 0.12 0.01 −1,580 −1,489 0.10 0.02

AIBL −593 −508 0.14 0.02 −615 −530 0.13 0.02

ADNI −1,551 −1,457 0.08 0.01 −1,622 −1,529 0.06 0.01

Abbreviations: Aβ = β-amyloid; ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = Australian Imaging, Biomarker and Lifestyle; AIC = Akaike
information criterion; BIC = Bayesian information criterion; BL = baseline; DVR = distribution volume ratio; GMM = gaussian mixture model; HABS = Harvard
Aging Brain Study; PACC5 = Preclinical Alzheimer Cognitive Composite 5 version; SUVR = standardized uptake value ratio.
AIC and BIC are reported describing model fit for the models predicting PACC5 decline (top) and Aβ Accumulation (bottom) at the optimal cutoff and GMM
cutoff within each sample. In addition, standardizedβ values, standard error, and p values are shown as ameasure of effect size on the termof interest (time ×
Aβ cutoff × BL DVR/SUVR in the PACC5 model; time × Aβ cutoff in the Aβ accumulation model).
a Model thresholds were selected by iterating through multiple possible models, reducing the interpretability of the nominal p values associated with
individual models.36 As a result, p values are not reported.
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possibility of contemporaneous changes in Aβ and cognition,
the present findings add to mounting evidence that even very
low levels of Aβ-PET signal are associated with subtle cog-
nitive changes35,41,42 in advance of more severe decline ob-
served at higher levels of Aβ pathology. Furthermore, while
the observed PACC changes are subtle, it has recently been
demonstrated in the same 3 cohorts that subtle decline over 3
years is predictive of future progression to MCI.22 While the
present study was focused earlier in the AD spectrum, it is
noted that individuals with high baseline Aβ and declining
cognition were the most likely to progress to MCI.

The optimal thresholds remained in a short CL range despite
the use of different tracers (PiB and FBP) across the 3 unique

cohorts. Although FBP is known to exhibit greater nonspecific
binding than PiB and consequently requires a more conser-
vative whole cerebellum reference region,6 both the GMM
and optimal thresholds remained in a similar CL range. FBP
translated primarily into a wider Aβ range for ADNI, with CL
values extending further into the negatives. Furthermore,
despite the differences in sample populations, the robustness
of the pattern of Aβ accumulation and cognitive decline across
samples yielded highly similar thresholds. Exclusive re-
cruitment of CN adults in HABS resulted in a lower pro-
portion of Aβ+ participants but did not hinder detection of a
lower optimal threshold. The multisite ADNI exhibited
greater variance in measurement over time, leading to a more
modest relationship between Aβ and cognitive decline, but

Figure 3 Optimal Cutoffs Within HABS, AIBL, and ADNI Based on Longitudinal Aβ-PET Accumulation

For each sample, the standardized β for the cutoff × time interaction term from iterative models across a range of possible cutoffs is shown (A, C, E). The
optimal cutoff based on Aβ-PET accumulation was set at the cutoff that gave the highest standardized β in each sample. In Harvard Aging Brain Study (HABS)
and Australian Imaging, Biomarker and Lifestyle (AIBL), the β-amyloid (Aβ) accumulation–derived optimal cutoff is identical to the cognitively derived optimal
cutoff: (A) HABS: Pittsburgh compound B (PiB) distribution volume ratio (DVR) 1.14/Centiloid (CL) 17.5; (C) AIBL: PiB standardized uptake value ratio (SUVR)
1.24/CL 15.0. In Alzheimer’s DiseaseNeuroimaging Initiative (ADNI), the Aβ accumulation–derived optimal cutoff (18F-florbetapir [FBP] SUVR 1.09, CL 16.7) was
very slightly lower than the cognitively derived cutoff (FBP SUVR 1.1, CL 18.5). (B, D, F) DVR/SUVR slope over time is plotted as a function of baseline DVR/SUVR
within each sample using a loess curve to demonstrate the shift in trajectories of change as function of baseline Aβ-PiB tracer retention. DVR/SUVR slope for
each participant was extracted from the slope of the linear regression of DVR/SUVR over time. Data are unadjusted for covariates. In each sample, the slopes
below the optimal cutoff consist of a roughly equal proportion of both negative and positive slopes, presumed to reflect random fluctuations in signal noise.
Increasing baselineDVR/SUVR is associatedwith a small negative trend in this range suggestive of regression to themean. The optimal cutoff appears tomark
a shift toward more positive slopes presumed to reflect Aβ accumulation.
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still arrived at a comparable threshold. In AIBL, enrichment
for family history and memory complaints led to fewer indi-
viduals with low to moderate Aβ and a greater dynamic range
in the PiB SUVR distribution. Despite the resulting slight
discrepancy in the translation of AIBL to the CL scale, the
observed 15 CL optimal threshold remained very close to 16.7
to 18.5 CL observed in HABS and ADNI.

Much attention in recent years has been paid to the question
of whether existing thresholds are too high.10,43 Our CL range
of 15 to 18.5 in HABS, ADNI, and AIBL was closely cor-
roborated by a fourth PiB sample (Mayo Clinic Study of
Aging) that demonstrated reliable worsening of PiB accu-
mulation beyond a CL 19.15 In each of our 3 samples, the
optimal cutoff fell approximately 0.04 to 0.05 DVR/SUVR

Table 3 Descriptives for Participants Between Optimal and GMM Cutoffs Pooled Across Samples

Aβ Group Low vs Intermediate Intermediate vs High Low vs High

Low:
<Optimal

Intermediate:
>Optimal <GMM High: >GMM t Value p Value t Value p Value t Value p Value

Total, n (%) 569 (67) 54 (6) 232 (27) — — — — — —

HABS, n (%) 246 (72) 19 (5) 77 (23) — — — — — —

AIBL, n (%) 102 (65) 4 (3) 51 (32) — — — — — —

ADNI, n (%) 221 (62) 31 (9) 104 (29) — — — — — —

Age, y 71.9 (7.41) 74.2 (6.38) 75.8 (6.19) −2.26 0.02 −1.68 0.09 −7.18 <0.001

Sex, n female (%) 316 (56) 28 (52) 137 (59) 0.14 0.7 0.66 0.42 0.69 0.41

APOE «4+, n (%) 82/556 (19) 16/53 (30) 116/228 (51) 3.21 0.07 6.58 0.01 80.18 <0.001

CL slope 0.791 (2.48) 3.05 (3.44) 3.70 (6.45) −5.14 <0.001 −0.59 0.56 −7.91 <0.001

PACC5 score slope −0.01 (0.21) −0.07 (0.29) −0.24 (0.49) −1.93 0.05 −2.45 0.01 −8.93 <0.001

Abbreviations: Aβ = β-amyloid; ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = Australian Imaging, Biomarker and Lifestyle; CL = Centiloid;
GMM = gaussian mixture model; HABS = Harvard Aging Brain Study; PACC5 = Preclinical Alzheimer Cognitive Composite 5 version.
Individuals were grouped into low (below optimal cutoff), intermediate (between low and GMM cutoffs) and high (above GMM cutoff) groups within each
sample and pooled to describe the additional individuals identified by the optimal threshold relative the low and high Aβ groups. The total for the pooled-
sample number and within-sample number is reported, along with the percentage within sample. In the pooled sample, mean (SD) is reported for age,
CL slope, and PACC5 score slope and number (percent) for sex and APOE.

Figure 4 Sample Sizes Needed to Detect Aβ-PET Accumulation and PACC Score Decline

(A andB) Sample size needed per arm to detect varying levels of change over 5 yearswith 80%power in (A)β-amyloid (Aβ)-PET accumulation and (B) Preclinical
Alzheimer Cognitive Composite (PACC) score decline for groups with different ranges of Aβ burden measured in Centiloid (CL) at baseline. Power analyses
were estimated from a combined Harvard Aging Brain Study (HABS), Alzheimer’s Disease Neuroimaging Initiative (ADNI), and Australian Imaging, Biomarker
and Lifestyle (AIBL) datasetmeasured in CL. As shown in the red line, an early intervention trial targeting individuals in the low 18 to 35 CL rangewould require
the smallest sample to detect Aβ-PET accumulation because individuals in this range typically exhibit the highest rates of accumulation. However, detecting
PACC decline in the low 18 to 35 CL range would necessitate very large sample sizes. Targeting individuals in the 18 to 50 CL range wouldminimize the sample
size needed to detect PACC score decline while maximizing power to detect reduced Aβ-PET accumulation.
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below their respective GMM cutoffs (CL 20–26) and below
the CL 24 to 35 range most often implicated in studies using
similar approaches.29,44–46

These thresholds do, however, sit slightly higher than the CL
12 cutoff that was recently suggested by autopsy and ante-
mortem PET data from La Joie et al.14 Due to the lag between
PET and autopsy, it is likely that if PET were acquired closer
to death, Aβ accumulation in the intervening years would
result in a higher CL threshold. However, a recent combined
CSF-PET study47 found a CL 12 threshold based on CSF
Aβ42 levels. Thus, it may instead be that autopsy and CSF
allow earlier detection of Aβ than is possible with PET due to
their sensitivity to earlier forms of Aβ, including diffuse pla-
ques and soluble Aβ oligomers. Our findings (figures 2 and 3)
suggest that a CL of 12 is likely to introduce false positives in
PET. A CL in the 15 to 18.5 range therefore provides a good
compromise, minimizing false positives that could weaken
outcomes and introduce ethical considerations while in-
creasing inclusion of those at higher risk for future deleterious
changes along the AD trajectory.

The 15 to 18.5 CL range as a lower bound may thus be a useful
target threshold for clinical trials, particularly those aiming to get
closer to primary prevention. As posited by the amyloid cascade
hypothesis38 and supported with recent evidence,48,49 Aβ ac-
cumulates very gradually over 2 decades or more34 and leads to
neocortical tau proliferation, neurodegeneration, and cognitive
decline. The success of some anti-Aβ therapies may depend on
very early intervention at low to moderate Aβ levels, before
individuals exhibit neocortical tau and neurodegeneration.1,37

Our analyses demonstrated that when focusing on individuals
with low to moderate Aβ (18–50 CL), clinical trials will be well
powered to detect changes in Aβ accumulation. Furthermore,
despite the subtle rate of change in cognition in this earlier stage
of preclinical AD, our power analyses indicate that cognition
may be still be a useful outcome measure with larger sample
sizes or longer follow-up. The exact threshold chosen for a given
trial will depend on the specific goals of the study and the length
of follow-up available to detect change; there are design trade-
offs with targeting earlier vs later stages of preclinical AD and
potential sample size considerations with increased heteroge-
neity in baseline Aβ burden.

By modeling possible cutoffs separately, we limit our ability to
estimate uncertainty in the cutoff. However, by using 3 in-
dependent sample with different tracers and scanners, we were
able to demonstrate a short CL range (15–18.5) in which an
optimal cutoff likely falls. Researchers should be cautious in
selecting a single cutoff within this range because linear trans-
formations toCL cannot be expected to completely account for
all differences in scanner, acquisition, processing, tracer, and
sample.25,28 Evidence suggests that linear transformation to a
common scale may be particularly problematic at the low levels
of tracer retention around which the threshold falls.25 Fur-
thermore, while the CL recommendations27 for translating in-
house pipelines and ROIs to the CL scale were followed, the

additional transformations likely confer some additional error
to the CL estimation. As a result, we elected to select a more
conservative 18CL in our power analyses to minimize the in-
clusion of false positives due to measurement error. Clinical
trials aimed at later AD stages should continue using more
conservative existing thresholds to minimize false positives
further.

In addition, ADNI had a higher proportion of individuals with
only 2 PET scans, which reduces our ability to more robustly
estimate Aβ change. While ≥3 scans is optimal for measuring
change, we opted to use all data presently available. As these
studies continue to gather larger samples with ≥3 scans
available, it is possible that more refined PET change mea-
sures will result in even lower optimal thresholds. Participants
in the HABS, AIBL, and ADNI samples are predominantly
White, highly educated individuals with low cardiovascular
risk, and future studies with more representative samples are
needed. Finally, testing specific aspects of episodic memory
such as free recall and more targeted regional composites50–52

may be even more sensitive to early detection.

Across 3 independent samples of CN older adults, we found
evidence that lower thresholds for Aβ-PET in the CL range of
15.0 to 18.5 are optimally predictive of future Aβ accumula-
tion and cognitive decline. This range appears to correspond
to an inflection point in the Aβ-PET distribution beyond
which Aβ and cognitive trajectories diverge from normal.
Such thresholds may be useful in future studies and clinical
trials using Aβ-PET imaging to detect and track the earliest
stages of AD. Thresholds derived from future changes in Aβ
and cognition converged across 3 samples, and future studies
are needed to determine whether this phenomenon suggests
that early changes in Aβ and cognition are contemporaneous
or if this convergence reflects signal-to-noise properties of the
PET tracers.
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