Skip to main content
. 2021 Feb 25;21:73. doi: 10.1186/s12911-021-01436-7

Table 13.

Experimental results on Hungarian dataset with the best feature subset

Mean ± SD RF LR SVM ELM KNN Proposed ensemble
E (%) 80.43 ± 5.37 82.07 ± 7.12 78.91 ± 5.61 80.40 ± 6.86 75.43 ± 8.64 89.47 ± 3.06
Precision (%) 75.52 ± 5.96 77.93 ± 8.48 74.48 ± 6.54 75.86 ± 7.09 66.55 ± 14.99 89.31 ± 4.44
Recall (%) 60.19 ± 16.84 62.08 ± 15.89 53.38 ± 17.93 59.42 ± 19.49 61.36 ± 19.71 82.39 ± 5.73
G-mean 71.04 ± 8.34 73.72 ± 10.15 67.55 ± 9.21 70.97 ± 10.16 59.97 ± 24.07 82.95 ± 4.63
MC (%) 87.93  ± 34.95 82.76 ± 37.63 100.00 ± 36.09 90.34 ± 44.33 94.14 ± 30.89 38.28 ± 12.10
Specificity (%) 86.34 ± 9.83 88.99 ± 7.79 89.10 ± 11.61 88.13 ± 9.92 70.92 ± 25.22 92.02 ± 5.76
AUC (%) 74.07 ± 9.16 76.31 ± 10.87 71.96 ± 10.98 74.59 ± 9.55 69.07 ± 9.98 88.38 ± 5.36

The average +- sd on 10-folds CV. The best result is bolded