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ABSTRACT: Magnetic CoFe2O4−gC3N4 nanocomposites were successfully synthe-
sized, and their photocatalytic activities toward the decomposition of model synthetic
dyes (e.g., methylene blue, methyl orange, and Congo red) in the presence of H2O2 were
evaluated under simulated solar light irradiation. The 50CoFe2O4−50gC3N4 nano-
composite exhibited the highest catalytic activity. The catalytic activity of 50CoFe2O4−
50gC3N4 toward the photodegradation of some industrially used dyes (such as Drimaren
Turquoise CL-B p, Drimaren Yellow CL-2R p, and Drimaren Red CL-5B p) was also
examined, and the catalyst exhibited its capability to decompose the industrial dyes
completely. An aqueous mixture of these dyes was prepared to mimic the dye-containing
wastewater, which was fully photodegraded within 30 min. 50CoFe2O4−50gC3N4 also
exhibited facile magnetic separability from the reaction mixture after the accomplishment
of photocatalysis reaction and stable performance after five cycles. The high
photocatalytic efficiency to degrade several dyes, including dyes used in textile industries,
under solar light irradiation makes 50CoFe2O4−50gC3N4 a promising photocatalyst for
the treatment of dye-containing wastewater discharged from industries.

1. INTRODUCTION

A variety of dyes are quite often used by several industries
(e.g., textile, paper, plastic, rubber, printing, cosmetics, leather,
pharmaceuticals, food processing, etc.) to color their
products.1−4 These industries are causing environmental
pollution by discharging dye-containing effluents into the soil
and aquatic systems and posing a great threat to the
environment. The strong color of the dyes and pigments
poses serious esthetic and ecological problems to the acquiring
aquatic ecosystem, such as inhibition of benthic photosyn-
thesis.5 Moreover, some of these dyes are toxic and
carcinogenic in nature.6 To address this issue, scientists and
technologists have developed a variety of physical, chemical,
and biological techniques to treat the dye-containing
effluents.7−10 Adsorption method, coagulation−flocculation
technique, membrane filtration, ion-exchange technique, and
so forth are some of the examples of physical processes.
Though physical methods are quite often used for wastewater
treatment, they are also associated with some limitations. For
example, the adsorption process is a slow process and is not
very effective for highly colored wastewater. In the case of the
membrane separation process, the slow separation rate, the
special requirement of filtration, ultrahigh vacuum conditions,
and frequent clogging of membrane pores by organic
pollutants make this process limited for use in the dye effluent
treatment. The generation of a huge amount of sludge is the
main disadvantage of coagulation−flocculation-based methods.

Another drawback of the physical treatment techniques is that
most of the time complete degradation of dyes is not possible.
In these processes, although the separation of a pollutant (such
as dyes) from water occurs to a large extent, the pollutant is
not destroyed/decomposed. As the recovery of dyes from the
adsorbents or sludge is not at all cost-effective, the dye
molecules are again discharged in the environment in a more
concentrated form.7,11 Hence, biological and chemical treat-
ments of dye-containing wastewater become attractive
alternatives. Aerobic treatment, anaerobic treatment, and
combined anaerobic−aerobic treatment are the three major
types of biological treatment techniques. In these methods,
microorganisms play critical roles.7 The major limitation of the
biodegradation processes is that they are not efficient for the
dyes having complex aromatic structures. The large-scale
application of pure cultures (algal, fungal, and bacterial) is
practically limited for wastewater containing various types of
dyes because of the dye-specific nature of most of the isolated
cultures.5,12
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For the last few years, oxidation process, particularly
advanced oxidation process (AOP), to treat wastewater has
gained immense attention from scientists.9,13,14 AOP involves
the formation of highly reactive free radicals that oxidize and
destroy organic contaminants in a short period. The use of
Fenton reagent (H2O2−Fe(II)) is a widely used method to
treat wastewater that contains dyes exhibiting resistance
toward biological treatment or are poisonous to live
biomass.15,16 However, the generation of excessive sludge
and short life of some of the oxidizing agents (e.g., O3), which
generate radicals, are the disadvantages of this process.13

Recently, the UV light-assisted oxidation process has
become an attractive approach. Here, UV radiation activates
chemicals (e.g., H2O2) and produces free radicals. These free
radicals degrade the dye molecules to CO2 and H2O. Several
wide band gap semiconductors (such as TiO2, ZnO, etc.) have
been examined for the photocatalytic degradation of dyes.17,18

In this aspect, TiO2 is one of the most widely explored
semiconductors by several researchers.17,19−22 However, the
photocatalytic activity of TiO2 is limited to UV or near-UV
radiation (≤380 nm) because of its wide band gap (3.2
eV).23−26 The large-scale application of usage of UV radiation
is limited because it makes the process costly and non-
ecofriendly. Therefore, the current research is concentrated on
the development of such photocatalysts for wastewater
treatment, which can efficiently degrade dyes under solar
light irradiation.27−31 Tuning the band gap of the photo-
catalyst, so that it can be activated under visible or solar light
irradiation, is a viable solution. To achieve such photocatalysts,
synthesizing nanocomposites by combining two semiconduct-
ing nanoparticles having matching band gaps is an interesting
strategy adopted by several researchers.32−39 Our previous
study showed that reduced graphene oxide (rGO)-CoFe2O4
nanocomposites can exhibit photocatalytic activity toward the
degradation of some dyes under visible light irradiation.
However, the synthesis of rGO via preparation of graphene
oxide by the Hummers method, followed by its reduction to
rGO, is a cumbersome, environment-unfavorable, and time-
consuming method. Therefore, we have aimed to develop a
photocatalyst that is capable of photodegrading different types
of dyes (model dyes as well as industrially used dyes) under
solar light and at the same time can be synthesized by a simple
but environment-friendly method as well as can be separated
from the reaction mixture easily.
In the present study, we have designed a photocatalyst

composed of graphitic carbon nitride (gC3N4) and CoFe2O4
(CF) nanoparticles to degrade several dyes under visible light
irradiation. Here, we have chosen gC3N4 as one of the
components of the nanocomposite because the advantages it
offers are low cost, easy preparation protocol, nontoxicity,
ability to adsorb organic molecules via π−π interaction, and so
forth. However, gC3N4 suffers from a high recombination rate
of the photogenerated electron−hole,37,40 low conductivity,
low specific surface area,41 insignificant absorption above 460
nm in solar spectra, and so forth.42 These factors limit the wide
application of gC3N4 as the photocatalyst. Designing a
nanocomposite composed of gC3N4 with another semi-
conductor having a matching band gap is an attractive solution
to tune the band gap and to address the limitation associated
with gC3N4. Examples of such nanocomposites are ZnO/
gC3N4,

43 TiO2/gC3N4,
44 SnO2/gC3N4,

45 WO3/gC3N4,
46 and

so forth.

We have chosen CoFe2O4, which is a low band gap
semiconductor (band gap ∼ 1.08 eV),47,48 as another
component of the photocatalyst. Though CoFe2O4 does not
exhibit an appreciable photocatalytic activity toward dye
degradation,49 it can suppress the electron−hole recombina-
tion of gC3N4 by forming a heterojunction when coupled with
gC3N4. By varying the composition of gC3N4 and CF, the band
gap energy of the nanocomposite can be tuned in such a way
that it can act as a photocatalyst in the visible light region.
Moreover, as CF is magnetic in nature (saturation magnet-
ization = 75 emu/g),50 its presence in the nanocomposite
makes the photocatalyst a magnetically separable catalyst. This
feature of this catalyst solves the separation-related problem of
the general nanosized catalysts.
A very few reports are available on the synthesis of the

gC3N4−CoFe2O4 composite and the study of its photocatalytic
activity toward the degradation of dyes. Recently, Hassani et al.
have reported the synthesis of mesoporous gC3N4−CoFe2O4
composite and its ability to photodegrade Malachite green dye
under UV radiation.41 This catalyst exhibited the maximum
degradation efficiency of 93.41% in a reaction time of 120 min.
They have also studied the photodegradation of methylene
blue, acid orange 7, and rhodamine B. They have also reported
the sonocatalytic activity of mesoporous gC3N4−CoFe2O4
toward the removal of methylene blue.51 Huang et al. have
synthesized the CoFe2O4−gC3N4 nanocomposite and showed
that this photocatalyst can degrade 97.3% of methylene blue
dye under visible light irradiation within 3 h.49 Inbaraj et al.
have synthesized the CoFe2O4−gC3N4 nanocomposite by
employing the sol−gel autocombustion method and hydro-
thermal method and reported that the synthesized nano-
composite exhibited 98% of photodecomposition of methylene
blue under solar light irradiation within 150 min.52 Yao et al.
have reported the synthesis of the CoFe2O4−gC3N4 catalyst
and demonstrated its photo-Fenton-like photocatalysis for
organic dyes.53 To the best of our knowledge, till date, the
application of the CF−gC3N4 nanocomposite as a photo-
catalyst to degrade various types of dyes, particularly
industrially used dyes, has not yet been well explored.
We have synthesized nanocomposites composed of varying

amounts of CoFe2O4 and gC3N4. The synthesized materials
(i.e., pure CF, pure gC3N4, and CF−gC3N4 nanocomposites)
were characterized by using X-ray diffraction (XRD),
thermogravimetric analysis (TGA), FT-IR spectroscopy,
Raman spectroscopy, UV−vis diffuse reflectance spectroscopy
(UV-DRS), field emission scanning electron spectroscopy
(FESEM), and energy-dispersive X-ray spectrometry (EDXS).
We have determined the change of band gap energy of the
synthesized nanocomposites with the variation of their
compositions. To evaluate the photocatalytic activity of the
synthesized nanocomposites, we have performed the photo-
degradation reaction of different dye solutions in the presence
of H2O2 under simulated solar light irradiation with a light
intensity of 10000 lux (measured by using a light meter (LX-
101A). Initially, the photocatalytic degradation of different
model dyes [such as methylene blue (MB), methyl orange
(MO), Congo red (CR), and a mixture of these dyes] was
investigated, and the optimum composition of the nano-
composite which can exhibit the highest photocatalytic
efficiency was determined. Then, the photocatalytic activity
of this catalyst was also tested for the industrially used dyes
[such as Drimaren Turquoise CL-B p (Turq CL-B), Drimaren
Yellow CL-2R p (Yell CL-2R), and Drimaren Red CL-5B p
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(Red CL-5B)], which are widely used in textile industries. To
mimic the dye-containing wastewater, we have prepared an
aqueous mixture of these industrial dyes and performed the
photocatalysis reaction. The synthesized catalyst exhibited
excellent photocatalytic activity toward the degradation of
model dyes as well as industrial dyes. After the first cycle of
catalysis reaction, the catalyst was magnetically recovered, and
the efficiency of the recovered catalyst was tested for a couple
of cycles.

2. RESULTS AND DISCUSSION

2.1. Structure and Morphology of the CF−gC3N4
Nanocomposites. The XRD patterns of the synthesized
materials (e.g., pure gC3N4, CF, and CF−gC3N4 nano-
composites) are presented in Figures S1−S3. In the XRD
pattern of the pure CF sample, the diffraction peaks at 2θ =
18.2, 30.1, 35.5, 37.1, 43.1, 53.4, 56.9, and 62.6°,
corresponding to the (111), (220), (311), (222), (400),
(422), (511), and (440) diffraction planes [JCPDS card no 22-
1086], are observed.48,54 The XRD pattern of pure gC3N4
displays two peaks at 2θ = 13.1 and 27.3°, which can be
indexed as (100) and (002) planes, respectively. These peaks
indicate the in-plane structural packing motifs of tri-s-triazine
units and the interlayer stacking of the conjugated aromatic
system of gC3N4.

55,56 In the XRD pattern of CF−gC3N4
nanocomposites, all the diffraction peaks of CF and gC3N4
are observed, but in some cases (where the gC3N4 amount is
less) the diffraction peaks characteristic of gC3N4 are not
present. This could be because of the too thin (nanometer
scale) nature of gC3N4 layers.

33,57−59 As a representative, the
XRD pattern of 50CoFe2O4−50gC3N4 is shown in Figure 1a,
which displays both the characteristic peaks of CF and gC3N4.
We have investigated the microstructures of the synthesized

pure gC3N4, pure CF, and CF−gC3N4 nanocomposites by
FESEM. Figure 1b shows the agglomeration of almost

spherical CF nanoparticles (with an average particle size of
∼20−25 nm). Figure 1c displays the nanometer-thin sheets of
gC3N4. Figure 1d displays the FESEM image of the 50CF−
50gC3N4 nanocomposite, depicting the dispersion of CF
nanoparticles on the surface of the gC3N4 sheet. The EDS
spectra (Figure S4) shows the presence of peaks for C, N, Co,
Fe, and O in this nanocomposite.
Figure S5 presents the FT-IR spectra of pure gC3N4, CF,

and CF−gC3N4 nanocomposites. In the FT-IR spectrum of
gC3N4, the prominent peaks are present at (i) 1636 cm−1 for
CN stretching vibration, (ii) 1563 and 1411 cm−1

characteristic to the s-triazine ring vibrations, (iii) 1326 and
1246 cm−1 for C−N stretching, and (iv) 809 cm−1 due to the
s-triazine ring vibration.60−62 The FT-IR spectrum of CF
shows a peak at 591 cm−1, which corresponds to the lattice
absorption of M−O (where M = Fe3+, Co2+).63 In the FT-IR
spectra of CF−gC3N4 nanocomposites, all the characteristic
peaks of gC3N4 and CF are observed.
Figure S6 shows the Raman spectra of pure CF, pure gC3N4,

and 50CF−50gC3N4. In the Raman spectra of pure gC3N4, the
Raman peaks are present at 461, 570, 688, 745, 962, 1253,
1406, 1464, 1559, and 1616 cm−1, which can be attributed to
the layer−layer deformation vibrations or the correlation
vibrations, out-of-plane bending mode of the graphitic domain,
breathing mode of the s-triazine ring, lattice vibration of
gC3N4, D band, G band, and vibration modes of CN
heterocycles, respectively.64−68 The Raman spectra of pure
CF displays the T2g and A1g modes at 460 and 672 cm−1,
corresponding to the vibrational modes of octahedral iron and
tetrahedral cobalt, respectively, present in CF.69 The presence
of Raman bands corresponding to both CF and gC3N4 in the
Raman spectra of the synthesized nanocomposite also confirms
their presence in the 50CF−50gC3N4 nanocomposite.
XRD, FESEM, IR spectroscopy, and Raman spectral analysis

clearly indicate the formation of pure CF nanoparticles on the

Figure 1. (a) XRD patterns of the 50CF−50gC3N4 nanocomposite, (b−d) FESEM micrographs, (e) UV−vis absorption spectra, (f) (αhν)2 versus
photon energy plots of pure CoFe2O4, pure gC3N4, and 50CF−50gC3N4 nanocomposite.
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surface of gC3N4 sheets. The chemical reactions involved in
the synthesis of CoFe2O4 can be presented by the following
equations48

+ →+ −Co 2OH Co(OH)2
2 (1)

+ →+ −Fe 3OH FeO(OH)3
3 (2)

+ ⎯ →⎯⎯⎯⎯⎯ +
°

2 FeO(OH) Co(OH) CoFe O 2H O3 2 16 h

160 C
2 4 2 (3)

To estimate the amount of gC3N4 present in the CF−gC3N4
nanocomposites, we have performed TGA of pure CF, pure
gC3N4, and CF−gC3N4 nanocomposites in the temperature
range of 30−800 °C (Figure S7). Pure CF shows its thermal
stability in this temperature range. For pure gC3N4, the
decomposition starts at ∼400 °C, and 100% decomposition
completes at 700 °C. TGA of CF−gC3N4 nanocomposites was
performed to calculate the amount of undecomposed sample
after 700 °C. This remaining amount of solid indicates the
amount of CF present in the composite. TGA thermograms of
the nanocomposites show that the weight % of CF and gC3N4
matches well with the composition, which is expected as per
the synthesis of the samples. For example, in the case of the
50CF−50gC3N4 composite, ∼50% solid (i.e., CF) remains
undecomposed above 600 °C, indicating the presence of 50 wt
% CF and 50 wt % gC3N4 in this nanocomposite.
2.2. Optical Properties of the CF−gC3N4 Nano-

composites. We have studied the optical absorption proper-
ties of the as-synthesized materials by using UV−vis diffuse
reflectance spectroscopy. Figure 1e represents the UV−vis
DRS spectra of pure CF, pure gC3N4, and 50CF−50gC3N4
nanocomposite. Pure gC3N4 shows an absorption edge at
∼460 nm, and pure CF displays a broad absorption range from
200 to 800 nm. In the case of CF−gC3N4 nanocomposites, the
red shift of the absorption edge position was observed
compared to pristine gC3N4, and the absorption of visible
light enhances to a great extent with the increasing CF weight
% in the nanocomposite (Figure S8). This observation is
similar to the results reported by several research-
ers.35,36,42,49,53,70,71 This property of the nanocomposites can
be exploited for their application as photocatalysts, which can
be activated upon visible light irradiation. The band gap energy
(Eg) of the synthesized materials was calculated from the
(αhν)2 versus photon energy plot (Figure 1f) by using the
Kubelka−Munk equation72

α ν ν= −h A h E( )n
g

/2
(4)

where h, ν, and Eg are Planck’s constant, frequency of light, and
band gap, respectively. The band gap values of the synthesized
pristine gC3N4 and pure CF nanoparticles are 2.76 and 1.04
eV, respectively. For the nanocomposites, the band gap value is
increased with the increasing gC3N4 content, and the band gap
values increase from 1.11 to 1.31 eV when the weight % of
gC3N4 is increased from 5 to 50 wt %. This is mainly owing to
the synergistic effect arising from the formation of hetero-
junctions between the CF nanoparticles and gC3N4 in the
nanocomposite, which causes an easy electron transfer between
these two components. This observation is in agreement with
the other substantive findings in the literature.36,42,49,70,71

2.3. Photocatalytic Activity of CF−gC3N4 Nano-
composites. To evaluate the photocatalytic activity of the
synthesized nanocomposites, we have performed the photo-
degradation reaction of different dye solutions under visible

light irradiation (emitted from the solar light simulator) in the
presence of H2O2. Initially, we used several model synthetic
dyes (e.g., MB, MO, and CR) to determine the optimum
composition of the nanocomposites which can exhibit the
highest catalytic activity. Then, we conducted the photo-
catalytic reaction toward the degradation of some of the
industrially used dyes (e.g., Turq CL-B, Yell CL-2R, and Red
CL-5B) to demonstrate the potential use of the synthesized
nanocomposite as an effective photocatalyst to treat the dye-
containing wastewater discharged from industries.
Of all the dyes, pure CF showed a poor photocatalytic

activity. The highest efficiency of the photocatalyst is observed
when the catalyst contained 50 wt % CF and 50 wt % gC3N4
(50CF−50gC3N4). For MB, after 3 h of exposure to light, pure
CF- and pure gC3N4-catalyzed reactions showed ∼49 and
∼63% of dye degradation, respectively. With the increasing
weight % of gC3N4 in the nanocomposite, the performance of
the nanocomposite as photocatalyst has increased. For
example, in the case of 95CF−5gC3N4, 83% photodegradation
of MB has occurred after 3 h of reaction, whereas 50CF−
50gC3N4 showed ∼100% MB degradation in 45 min. A similar
trend has been observed for the photocatalysis reaction of
other dyes. The photocatalyst that composed of 50 wt % CF
and 50 wt % gC3N4 (50CF−50gC3N4) displayed the highest
efficiency toward the degradation of dyes. The change of
photocatalytic efficiency (i.e., % of dye degradation at different
reaction times) with varying compositions of the photocatalyst
is tabulated in Table 1 and depicted in Figures 2 and S9−S11.

Figure 2a−c shows the UV−vis spectra displaying the decrease
of the intensity of λmax with increasing reaction times for MB,
MO, and CR, respectively, for the 50CF−50gC3N4-catalyzed
photodegradation reaction. Figure 2d−f displays the variation
of Ct/C0 ratio for MB, MO, and CR with the progress of
reaction time when photocatalytic reactions are performed in
the presence of a catalyst (pure CF, gC3N4, and 50CF−
50gC3N4). Upon photocatalysis, the total organic carbon
(TOC) removal ratio for MB, MO, and CR solutions is 69, 36,
and 78.11%, respectively. We have also performed the 50CF−
50gC3N4-catalyzed photocatalysis reaction with an aqueous
solution containing a mixture of MB, MO, and CR dyes (60
ppm). The complete photocatalytic decomposition of this dye
mixture occurred in 3 h (Figure 2g). We have observed that
the photocatalytic activity of 50CF−50gC3N4 is better than
that of the rGO-CoFe2O4 nanocomposites, which we have
investigated in our previous study.48

Now, to examine whether 50CF−50gC3N4 can be used to
treat dye-containing industrial wastewater, we performed the
photocatalysis reaction using three different dyes (e.g., Turq

Table 1. Photocatalytic Activity of CF−gC3N4
Nanocomposites toward the Decomposition of Different
Dyes

% of degradation (time)

catalyst MB MO CR

pure CF 49% (3 h) 59% (3 h) 69% (2.5 h)
pure gC3N4 63% (3 h) 100% (2.5 h) 93% (2 h)
95CF−5gC3N4 83% (3 h) 76% (3 h) 75% (2.5 h)
90CF−10gC3N4 87% (3 h) 81% (3 h) 86% (2.5 h)
85CF−15gC3N4 98% (3 h) 87.7% (3 h) 89% (2.5 h)
75CF−25gC3N4 ∼100% (1.5 h) 93% (2 h) 95% (2 h)
50CF−50gC3N4 ∼100% (45 min) ∼100% (1.5 h) ∼100% (1.5 h)
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CL-B, Yell CL-2R, and Red CL-5B), which are widely used in
textile industries and present in the wastewater discharged
from these industries. Here also, it is observed that 50CF−
50gC3N4 exhibited a better photocatalytic activity than pure
CF and pure gC3N4 (Figure 3d−f). In the presence of 50CF−
50gC3N4, the time required for 100% decomposition of Turq
CL-B, Yell CL-2R, and Red CL-5B is 90, 45, and 60 min,
respectively. To mimic the industrial wastewater, we have
prepared an aqueous mixture of these three dyes, and the
complete photodegradation of this dye mixture occurred
within 30 min when catalyzed by 50CF−50gC3N4 (Figure 3g).
In this case, the TOC removal ratio is 66.74%.
2.4. Photocatalytic Reaction Mechanism. To under-

stand the role of H2O2 and the 50CF−50gC3N4 catalyst in the
photodecomposition reaction of MB, we have performed the
experiment in the presence of only H2O2 (but no catalyst) and
only with the catalyst (but no H2O2). In both cases, the
reaction is found to be significantly slower. After 45 min of
reaction time, only 17% decomposition occurred when only
H2O2 is present. Similarly, when only the catalyst (50CF−
50gC3N4) is present, 35% degradation of MB occurred after 45
min. However, when both H2O2 and 50CF−50gC3N4 are

present in the reaction mixture, 100% degradation of MB is
achieved in 45 min (Figure 4). These experiments confirmed
that the activation of H2O2 was promoted by the catalyst when
excited by visible light. As discussed before, the % of
degradation of dyes is appreciably higher when the photo-
catalysis reaction is catalyzed by the 50CF−50gC3N4 nano-
composite in comparison with pure CF- or pure gC3N4-
catalyzed reaction (Figure 2d). This enhancement of the
catalytic activity of the 50CF−50gC3N4 nanocomposite can be
attributed to the synergistic effect arising from the coupling of
CF and gC3N4 in the nanocomposite.
The CF−gC3N4-catalyzed photocatalytic reaction proceeds

via the step-scheme (S-scheme) heterojunction mechanism, as
described by Xu et al., and is presented in Scheme 1.73 In the
S-scheme heterojunction mechanism, heterojunctions are
formed at the interface between two photocatalysts having a
staggered band structure. These heterojunctions can increase
the usage of photoinduced charge carriers to generate an
enormous amount of active species.74−77 The conduction
(CB) and valence band (VB) values of CF are +0.91 and +1.71
eV, whereas those for gC3N4 are −1.13 and +1.57 eV,
respectively.49 Under visible light irradiation, both CF and

Figure 2. (a−c) Time-dependent UV−vis spectral changes of the 50CF−50gC3N4-catalyzed photodecomposition reaction of different dyes (MB,
MO, and CR). (d−f) Photodegradation rates of different dyes catalyzed by gC3N4, CF, and 50CF−50gC3N4. (g) Time-dependent UV−vis spectral
changes of the 50CF−50gC3N4-catalyzed photodecomposition reaction of the model dye mixture.
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gC3N4 became excited, which leads to the formation of
photogenerated holes and electrons in their VB and CB,
respectively. The powerful photogenerated electrons and holes
are reserved in the CB of gC3N4 and VB of CF, respectively,
and the pointless charge carriers recombine and introduce a
redox potential. When CF and gC3N4 come in contact, the
electrons of gC3N4 diffuse into CF, and in the contact
interface, an electron depletion layer and electron accumu-
lation layer form. This electric field helps in the transfer of

photogenerated electrons from CF to gC3N4. In the contact
interface between CF and gC3N4, their individual Fermi
energies (Ef) align to the same level, which causes band
bending and results in the recombination of electrons in the
CB of CF and holes in the VB of gC3N4. Moreover, because of
the Coulombic attraction, the photogenerated electrons in the
CB of CF and holes in the VB of gC3N4 also recombine. Thus,
the useless electrons and holes recombine, whereas the
powerful photogenerated electrons in the CB of gC3N4 and
holes in the VB of CF are retained to proceed the
photocatalysis reaction. During the photocatalysis reaction,
these powerful photogenerated electrons and holes produce
superoxide radicals (O2

•−) and hydroxyl radicals (•OH), and
these radicals degrade the dye molecules. The photocatalytic
reactions which are involved in this dye degradation process
can be presented in eqs 5−9.
To understand the role of these reactive species, we have

performed a series of radical tapping experiments by using p-
benzoquinone (BQ), EDTA-2Na, and isopropanol (IPA)
which act as scavengers for O2

•−, holes, and •OH
respectively.33,37,49,78 Figure 4 shows that the % decomposition
of MB was slightly decreased with the addition of BQ and
EDTA-2Na. It is observed that after 45 min of reaction, ∼88

Figure 3. (a−c) Time-dependent UV−vis spectral changes of the 50CF−50gC3N4-catalyzed photodecomposition reaction of industrial dyes (Turq
CL-B, Yell CL-2R, and Red CL-5B). (d−f) Photodegradation rates of the dyes catalyzed by gC3N4, CF, and 50CF−50gC3N4. (g) Time-dependent
UV−vis spectral changes of the 50CF−50gC3N4-catalyzed photodecomposition reaction of the industrial dye mixture.

Figure 4. Effect of different radical scavengers on the photo-
degradation reaction of MB.
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and ∼86% decomposition of MB occurred in the presence of
BQ and EDTA-2Na, respectively. However, ∼100% photo-
degradation of MB occurred when no scavenger was present.
The rate of MB degradation became significantly slow in the
presence of IPA, and only 55% of MB is decomposed within 45
min. These results indicate that •OH plays a more critical role
than holes and O2

•−.

ν− ⎯→⎯ ‐‐‐ − ‐‐‐− + − +h h hCF gC N CF(e ) gC N (e )3 4 3 4 (5)

+ →− •−O e O2 2 (6)

+ ⎯ →⎯⎯⎯⎯⎯+•−
+

•O H O H 3 OH2 2 (7)

+ → +− • −H O e OH OH2 2 (8)

+ →•OH dye degradation product (9)

3. REUSABILITY
After the photocatalysis reaction, the catalyst was magnetically
separated from the reaction mixture and used for the next
cycle. Figure 5a,b shows the complete decolorization of the
dyes because of photodegradation and the separation of the
50CF−50gC3N4 catalyst by a magnet. We have observed that
the catalyst retains its efficiency for the first three cycles, after

which it slightly decreases (Figure 6). The XRD and FESEM
investigations of the recycled catalyst reveal that no significant

change in the crystal structure and morphology of the catalyst
occurred during the photocatalysis reaction (Figure S12).

4. CONCLUSIONS
We have successfully synthesized CoFe2O4−gC3N4 nano-
composites. These nanocomposites exhibit strong absorption
in the visible light region, and their band gap can be tuned
simply by varying the amount of CoFe2O4 and gC3N4 in the
nanocomposite. Among these nanocomposites, 50CoFe2O4−
50gC3N4 shows the highest photocatalytic activity for the
degradation of several model dyes (e.g., MB, MO, and CR) as
well as industrially used dyes (such as Turq CL-B, Yell CL-2R,
and Red CL-5B) and a mixture of dyes. The photocatalytic
activities of 50CF−50gC3N4 for the degradation of dyes are
significantly higher than those of individual CoFe2O4 and
gC3N4. This enhancement could be due to the synergistic
effect arising from the intimate coexistence of CoFe2O4 and
gC3N4 in the catalysts and their staggered band structure. The
photocatalytic efficiency of 50CoFe2O4−50gC3N4 is compara-
ble and in some cases superior to that of many reported
photocatalysts (Table S1).33,40,71,79−87 Moreover, the capa-
bility of this catalyst to degrade a variety of dyes, particularly
industrially used dyes under solar light irradiation, makes it an
attractive photocatalyst. This photocatalyst also offers easy
magnetic separation and shows a stable catalytic efficiency even
after five cycles. 50CoFe2O4−50gC3N4 demonstrates its

Scheme 1. Proposed S-Scheme Mechanism of the Degradation of Dyes by CF−gC3N4 Nanocomposites

Figure 5. (a) Decolorization of model dyes by the photocatalysis
reaction; (b) decolorization of industrial dyes by the photocatalysis
reaction, and separation of the catalyst by using a magnet.

Figure 6. Reusability of the catalyst 50CF−50gC3N4 toward the
photodegradation of MB, MO, CR, and the industrial dye mixture.
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potential as an efficient photocatalyst for the wastewater
treatment of dye-containing effluents discharged from
industries.

5. EXPERIMENTAL SECTION

5.1. Synthesis of CoFe2O4−gC3N4 Nanocomposites.
The nanocomposites composed of CoFe2O4 and gC3N4 were
synthesized by employing a two-step process. The schematic
presentation of this synthetic methodology is depicted in
Scheme 2. In the first step, gC3N4 powder was prepared by the
thermal treatment of melamine at 550 °C for 2 h at a heating
rate of 5 °C/min.34 In a beaker, a dispersion of gC3N4 in an
aqueous medium was prepared by adding a calculated amount
of gC3N4 in water, followed by ultrasonication. In the next
step, in this aqueous dispersion of gC3N4, a mixture of
Co(NO3)2·6H2O and Fe(NO3)3·9H2O (molar ratio 1:2) in
the polyethylene glycol and water medium (weight ratio 1: 5)
was added. In this mixture, an aqueous solution of NaOH (2
M) was added dropwise till the pH reached ∼11. This mixture
was refluxed at 160 °C for 16 h. After reflux, the reaction
mixture was allowed to cool down to room temperature. The
black-colored product thus formed was magnetically separated
from the reaction mixture by applying a permanent magnet
externally. After separation, this solid powder was washed with
water, ethanol, and finally with acetone and then dried at 60 °C
for 10 h. Using this protocol, nanocomposites having various
weight % of gC3N4 and CF nanoparticles were synthesized by
varying the amount of gC3N4, Co(NO3)2·6H2O, and Fe-
(NO3)3·9H2O. The nanocomposites having 5, 10, 15, 25, and
50 wt % gC3N4 content are referred as 95CF−5gC3N4, 90CF−
10gC3N4, 85CF−15gC3N4, 75CF−25gC3N4, and 50CF−
50gC3N4, respectively. Pure CF nanoparticles were also
synthesized by employing the same protocol, except that
gC3N4 was not added to the reaction mixture.
5.2. Photocatalytic Activity Measurement. To evaluate

the photocatalytic activity of the synthesized materials,
photodegradation reactions of different dye solutions in the
presence of H2O2 under simulated solar light irradiation was
performed. Initially, the photocatalytic degradation of different
model dyes (such as MB, MO, CR) was investigated.

First, aqueous solutions of MB (25 ppm), CR (25 ppm), and
MO (10 ppm) were prepared. In a typical photocatalysis
reaction, 50 mL of dye solution was taken in a beaker and
mixed with 25 mg of catalyst (50 mg in the case of MO). This
mixture was stirred in the dark for 30 min to reach the
absorption−desorption equilibrium between the catalyst and
dye solution. The UV−vis spectra of the mixture were
recorded before and after the stirring of the reaction mixture
in the dark. It was observed that some amount of dye was
adsorbed on the surface of the catalyst during this mixing
process, and the extent of dye adsorption varied with the
composition and nature of the catalyst. To this mixture, 2 mL
of 30% H2O2 was added, and the reaction mixture was
irradiated by simulated solar light emitted from a solar light
simulator, which is equipped with a 150 W Xenon lamp. A 3
mL aliquot of the reaction mixture was collected just before the
exposure of light, and this point was considered as the starting
point (t = 0). The color of the dye solution started to fade
because of the exposure to light. The change of the
concentration of dye with the progress of the reaction time
was monitored spectrophotometrically by using a UV−vis
spectrophotometer and following the decrease of intensity of
the λmax peak with increasing reaction time (the λmax values of
MB, MO, and CR are 664, 463, and 500 nm, respectively).
In the UV−vis spectra, the absorbance of the dye is

proportional to its concentration. The ratio of absorbance of
dye At (measured at time t) to A0 (measured at t = 0) is equal
to Ct/C0 (where Ct and C0 are the concentrations of the dye at
time t and t = 0, respectively). The % decomposition of the dye
because of the photocatalysis reaction was determined from
Ct/C0. The optimal composition of the CF−gC3N4 nano-
composite which exhibited the highest catalytic activity was
determined by studying the photocatalysis reaction of these
model dye solutions. Then, photodegradation reaction was
performed for a mixture of dye solution containing 25 ppm
MB, 25 ppm CR, and 10 ppm MO, using this catalyst.
The photocatalytic efficiency of the catalyst having optimal

composition was also tested for the industrially used dyes
(such as Turq CL-B, Yell CL-2R, and Red CL-5B). First, the
photodegradation of individual dye solution was performed,
followed by a mixture of dye solution (the total concentration

Scheme 2. Synthetic Route of CF−gC3N4 Nanocomposites
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of Turq CL-B, Yell CL-2R, and Red CL-5B in the mixture was
10 ppm).
After the completion of the photocatalysis reaction, the

catalyst was recovered from the reaction mixture by a magnetic
separation method, where a permanent magnet (N35-grade
NdFeB magnet having an energy product BHmax = 33−36
MGOe) was used externally. After recovery, the catalyst was
washed with ethanol. The absence of any dye in ethanol after
washing indicated that all dye molecules present in the reaction
mixture along with the dye molecules which were adsorbed on
the surface of the catalyst were completely photodegraded.
After washing the catalyst, it was dried, and the next cycle of
the reaction was performed. The TOC removal ratio of the dye
solutions after photocatalysis was calculated by using the
following equation88

−TOC TOC
TOC
i f

i (10)

TOCi and TOCf are the TOC contents of the dye solution
before and after the photocatalysis reaction.
The details of the chemicals and instruments used in this

study are provided in the Supporting Information.
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